| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * |
| * X86-64 port |
| * Andi Kleen. |
| * |
| * CPU hotplug support - ashok.raj@intel.com |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/ptrace.h> |
| #include <linux/notifier.h> |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| #include <linux/prctl.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/ftrace.h> |
| #include <linux/syscalls.h> |
| #include <linux/iommu.h> |
| |
| #include <asm/processor.h> |
| #include <asm/pkru.h> |
| #include <asm/fpu/sched.h> |
| #include <asm/mmu_context.h> |
| #include <asm/prctl.h> |
| #include <asm/desc.h> |
| #include <asm/proto.h> |
| #include <asm/ia32.h> |
| #include <asm/debugreg.h> |
| #include <asm/switch_to.h> |
| #include <asm/xen/hypervisor.h> |
| #include <asm/vdso.h> |
| #include <asm/resctrl.h> |
| #include <asm/unistd.h> |
| #include <asm/fsgsbase.h> |
| #include <asm/fred.h> |
| #ifdef CONFIG_IA32_EMULATION |
| /* Not included via unistd.h */ |
| #include <asm/unistd_32_ia32.h> |
| #endif |
| |
| #include "process.h" |
| |
| /* Prints also some state that isn't saved in the pt_regs */ |
| void __show_regs(struct pt_regs *regs, enum show_regs_mode mode, |
| const char *log_lvl) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned int fsindex, gsindex; |
| unsigned int ds, es; |
| |
| show_iret_regs(regs, log_lvl); |
| |
| if (regs->orig_ax != -1) |
| pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); |
| else |
| pr_cont("\n"); |
| |
| printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n", |
| log_lvl, regs->ax, regs->bx, regs->cx); |
| printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n", |
| log_lvl, regs->dx, regs->si, regs->di); |
| printk("%sRBP: %016lx R08: %016lx R09: %016lx\n", |
| log_lvl, regs->bp, regs->r8, regs->r9); |
| printk("%sR10: %016lx R11: %016lx R12: %016lx\n", |
| log_lvl, regs->r10, regs->r11, regs->r12); |
| printk("%sR13: %016lx R14: %016lx R15: %016lx\n", |
| log_lvl, regs->r13, regs->r14, regs->r15); |
| |
| if (mode == SHOW_REGS_SHORT) |
| return; |
| |
| if (mode == SHOW_REGS_USER) { |
| rdmsrl(MSR_FS_BASE, fs); |
| rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| printk("%sFS: %016lx GS: %016lx\n", |
| log_lvl, fs, shadowgs); |
| return; |
| } |
| |
| asm("movl %%ds,%0" : "=r" (ds)); |
| asm("movl %%es,%0" : "=r" (es)); |
| asm("movl %%fs,%0" : "=r" (fsindex)); |
| asm("movl %%gs,%0" : "=r" (gsindex)); |
| |
| rdmsrl(MSR_FS_BASE, fs); |
| rdmsrl(MSR_GS_BASE, gs); |
| rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = __read_cr3(); |
| cr4 = __read_cr4(); |
| |
| printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", |
| log_lvl, fs, fsindex, gs, gsindex, shadowgs); |
| printk("%sCS: %04x DS: %04x ES: %04x CR0: %016lx\n", |
| log_lvl, regs->cs, ds, es, cr0); |
| printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n", |
| log_lvl, cr2, cr3, cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| |
| /* Only print out debug registers if they are in their non-default state. */ |
| if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && |
| (d6 == DR6_RESERVED) && (d7 == 0x400))) { |
| printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n", |
| log_lvl, d0, d1, d2); |
| printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n", |
| log_lvl, d3, d6, d7); |
| } |
| |
| if (cpu_feature_enabled(X86_FEATURE_OSPKE)) |
| printk("%sPKRU: %08x\n", log_lvl, read_pkru()); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| WARN_ON(dead_task->mm); |
| } |
| |
| enum which_selector { |
| FS, |
| GS |
| }; |
| |
| /* |
| * Out of line to be protected from kprobes and tracing. If this would be |
| * traced or probed than any access to a per CPU variable happens with |
| * the wrong GS. |
| * |
| * It is not used on Xen paravirt. When paravirt support is needed, it |
| * needs to be renamed with native_ prefix. |
| */ |
| static noinstr unsigned long __rdgsbase_inactive(void) |
| { |
| unsigned long gsbase; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| /* |
| * SWAPGS is no longer needed thus NOT allowed with FRED because |
| * FRED transitions ensure that an operating system can _always_ |
| * operate with its own GS base address: |
| * - For events that occur in ring 3, FRED event delivery swaps |
| * the GS base address with the IA32_KERNEL_GS_BASE MSR. |
| * - ERETU (the FRED transition that returns to ring 3) also swaps |
| * the GS base address with the IA32_KERNEL_GS_BASE MSR. |
| * |
| * And the operating system can still setup the GS segment for a |
| * user thread without the need of loading a user thread GS with: |
| * - Using LKGS, available with FRED, to modify other attributes |
| * of the GS segment without compromising its ability always to |
| * operate with its own GS base address. |
| * - Accessing the GS segment base address for a user thread as |
| * before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR. |
| * |
| * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE |
| * MSR instead of the GS segment’s descriptor cache. As such, the |
| * operating system never changes its runtime GS base address. |
| */ |
| if (!cpu_feature_enabled(X86_FEATURE_FRED) && |
| !cpu_feature_enabled(X86_FEATURE_XENPV)) { |
| native_swapgs(); |
| gsbase = rdgsbase(); |
| native_swapgs(); |
| } else { |
| instrumentation_begin(); |
| rdmsrl(MSR_KERNEL_GS_BASE, gsbase); |
| instrumentation_end(); |
| } |
| |
| return gsbase; |
| } |
| |
| /* |
| * Out of line to be protected from kprobes and tracing. If this would be |
| * traced or probed than any access to a per CPU variable happens with |
| * the wrong GS. |
| * |
| * It is not used on Xen paravirt. When paravirt support is needed, it |
| * needs to be renamed with native_ prefix. |
| */ |
| static noinstr void __wrgsbase_inactive(unsigned long gsbase) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| if (!cpu_feature_enabled(X86_FEATURE_FRED) && |
| !cpu_feature_enabled(X86_FEATURE_XENPV)) { |
| native_swapgs(); |
| wrgsbase(gsbase); |
| native_swapgs(); |
| } else { |
| instrumentation_begin(); |
| wrmsrl(MSR_KERNEL_GS_BASE, gsbase); |
| instrumentation_end(); |
| } |
| } |
| |
| /* |
| * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are |
| * not available. The goal is to be reasonably fast on non-FSGSBASE systems. |
| * It's forcibly inlined because it'll generate better code and this function |
| * is hot. |
| */ |
| static __always_inline void save_base_legacy(struct task_struct *prev_p, |
| unsigned short selector, |
| enum which_selector which) |
| { |
| if (likely(selector == 0)) { |
| /* |
| * On Intel (without X86_BUG_NULL_SEG), the segment base could |
| * be the pre-existing saved base or it could be zero. On AMD |
| * (with X86_BUG_NULL_SEG), the segment base could be almost |
| * anything. |
| * |
| * This branch is very hot (it's hit twice on almost every |
| * context switch between 64-bit programs), and avoiding |
| * the RDMSR helps a lot, so we just assume that whatever |
| * value is already saved is correct. This matches historical |
| * Linux behavior, so it won't break existing applications. |
| * |
| * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we |
| * report that the base is zero, it needs to actually be zero: |
| * see the corresponding logic in load_seg_legacy. |
| */ |
| } else { |
| /* |
| * If the selector is 1, 2, or 3, then the base is zero on |
| * !X86_BUG_NULL_SEG CPUs and could be anything on |
| * X86_BUG_NULL_SEG CPUs. In the latter case, Linux |
| * has never attempted to preserve the base across context |
| * switches. |
| * |
| * If selector > 3, then it refers to a real segment, and |
| * saving the base isn't necessary. |
| */ |
| if (which == FS) |
| prev_p->thread.fsbase = 0; |
| else |
| prev_p->thread.gsbase = 0; |
| } |
| } |
| |
| static __always_inline void save_fsgs(struct task_struct *task) |
| { |
| savesegment(fs, task->thread.fsindex); |
| savesegment(gs, task->thread.gsindex); |
| if (static_cpu_has(X86_FEATURE_FSGSBASE)) { |
| /* |
| * If FSGSBASE is enabled, we can't make any useful guesses |
| * about the base, and user code expects us to save the current |
| * value. Fortunately, reading the base directly is efficient. |
| */ |
| task->thread.fsbase = rdfsbase(); |
| task->thread.gsbase = __rdgsbase_inactive(); |
| } else { |
| save_base_legacy(task, task->thread.fsindex, FS); |
| save_base_legacy(task, task->thread.gsindex, GS); |
| } |
| } |
| |
| /* |
| * While a process is running,current->thread.fsbase and current->thread.gsbase |
| * may not match the corresponding CPU registers (see save_base_legacy()). |
| */ |
| void current_save_fsgs(void) |
| { |
| unsigned long flags; |
| |
| /* Interrupts need to be off for FSGSBASE */ |
| local_irq_save(flags); |
| save_fsgs(current); |
| local_irq_restore(flags); |
| } |
| #if IS_ENABLED(CONFIG_KVM) |
| EXPORT_SYMBOL_GPL(current_save_fsgs); |
| #endif |
| |
| static __always_inline void loadseg(enum which_selector which, |
| unsigned short sel) |
| { |
| if (which == FS) |
| loadsegment(fs, sel); |
| else |
| load_gs_index(sel); |
| } |
| |
| static __always_inline void load_seg_legacy(unsigned short prev_index, |
| unsigned long prev_base, |
| unsigned short next_index, |
| unsigned long next_base, |
| enum which_selector which) |
| { |
| if (likely(next_index <= 3)) { |
| /* |
| * The next task is using 64-bit TLS, is not using this |
| * segment at all, or is having fun with arcane CPU features. |
| */ |
| if (next_base == 0) { |
| /* |
| * Nasty case: on AMD CPUs, we need to forcibly zero |
| * the base. |
| */ |
| if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { |
| loadseg(which, __USER_DS); |
| loadseg(which, next_index); |
| } else { |
| /* |
| * We could try to exhaustively detect cases |
| * under which we can skip the segment load, |
| * but there's really only one case that matters |
| * for performance: if both the previous and |
| * next states are fully zeroed, we can skip |
| * the load. |
| * |
| * (This assumes that prev_base == 0 has no |
| * false positives. This is the case on |
| * Intel-style CPUs.) |
| */ |
| if (likely(prev_index | next_index | prev_base)) |
| loadseg(which, next_index); |
| } |
| } else { |
| if (prev_index != next_index) |
| loadseg(which, next_index); |
| wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, |
| next_base); |
| } |
| } else { |
| /* |
| * The next task is using a real segment. Loading the selector |
| * is sufficient. |
| */ |
| loadseg(which, next_index); |
| } |
| } |
| |
| /* |
| * Store prev's PKRU value and load next's PKRU value if they differ. PKRU |
| * is not XSTATE managed on context switch because that would require a |
| * lookup in the task's FPU xsave buffer and require to keep that updated |
| * in various places. |
| */ |
| static __always_inline void x86_pkru_load(struct thread_struct *prev, |
| struct thread_struct *next) |
| { |
| if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) |
| return; |
| |
| /* Stash the prev task's value: */ |
| prev->pkru = rdpkru(); |
| |
| /* |
| * PKRU writes are slightly expensive. Avoid them when not |
| * strictly necessary: |
| */ |
| if (prev->pkru != next->pkru) |
| wrpkru(next->pkru); |
| } |
| |
| static __always_inline void x86_fsgsbase_load(struct thread_struct *prev, |
| struct thread_struct *next) |
| { |
| if (static_cpu_has(X86_FEATURE_FSGSBASE)) { |
| /* Update the FS and GS selectors if they could have changed. */ |
| if (unlikely(prev->fsindex || next->fsindex)) |
| loadseg(FS, next->fsindex); |
| if (unlikely(prev->gsindex || next->gsindex)) |
| loadseg(GS, next->gsindex); |
| |
| /* Update the bases. */ |
| wrfsbase(next->fsbase); |
| __wrgsbase_inactive(next->gsbase); |
| } else { |
| load_seg_legacy(prev->fsindex, prev->fsbase, |
| next->fsindex, next->fsbase, FS); |
| load_seg_legacy(prev->gsindex, prev->gsbase, |
| next->gsindex, next->gsbase, GS); |
| } |
| } |
| |
| unsigned long x86_fsgsbase_read_task(struct task_struct *task, |
| unsigned short selector) |
| { |
| unsigned short idx = selector >> 3; |
| unsigned long base; |
| |
| if (likely((selector & SEGMENT_TI_MASK) == 0)) { |
| if (unlikely(idx >= GDT_ENTRIES)) |
| return 0; |
| |
| /* |
| * There are no user segments in the GDT with nonzero bases |
| * other than the TLS segments. |
| */ |
| if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) |
| return 0; |
| |
| idx -= GDT_ENTRY_TLS_MIN; |
| base = get_desc_base(&task->thread.tls_array[idx]); |
| } else { |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| struct ldt_struct *ldt; |
| |
| /* |
| * If performance here mattered, we could protect the LDT |
| * with RCU. This is a slow path, though, so we can just |
| * take the mutex. |
| */ |
| mutex_lock(&task->mm->context.lock); |
| ldt = task->mm->context.ldt; |
| if (unlikely(!ldt || idx >= ldt->nr_entries)) |
| base = 0; |
| else |
| base = get_desc_base(ldt->entries + idx); |
| mutex_unlock(&task->mm->context.lock); |
| #else |
| base = 0; |
| #endif |
| } |
| |
| return base; |
| } |
| |
| unsigned long x86_gsbase_read_cpu_inactive(void) |
| { |
| unsigned long gsbase; |
| |
| if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| gsbase = __rdgsbase_inactive(); |
| local_irq_restore(flags); |
| } else { |
| rdmsrl(MSR_KERNEL_GS_BASE, gsbase); |
| } |
| |
| return gsbase; |
| } |
| |
| void x86_gsbase_write_cpu_inactive(unsigned long gsbase) |
| { |
| if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __wrgsbase_inactive(gsbase); |
| local_irq_restore(flags); |
| } else { |
| wrmsrl(MSR_KERNEL_GS_BASE, gsbase); |
| } |
| } |
| |
| unsigned long x86_fsbase_read_task(struct task_struct *task) |
| { |
| unsigned long fsbase; |
| |
| if (task == current) |
| fsbase = x86_fsbase_read_cpu(); |
| else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || |
| (task->thread.fsindex == 0)) |
| fsbase = task->thread.fsbase; |
| else |
| fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex); |
| |
| return fsbase; |
| } |
| |
| unsigned long x86_gsbase_read_task(struct task_struct *task) |
| { |
| unsigned long gsbase; |
| |
| if (task == current) |
| gsbase = x86_gsbase_read_cpu_inactive(); |
| else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || |
| (task->thread.gsindex == 0)) |
| gsbase = task->thread.gsbase; |
| else |
| gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex); |
| |
| return gsbase; |
| } |
| |
| void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) |
| { |
| WARN_ON_ONCE(task == current); |
| |
| task->thread.fsbase = fsbase; |
| } |
| |
| void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) |
| { |
| WARN_ON_ONCE(task == current); |
| |
| task->thread.gsbase = gsbase; |
| } |
| |
| static void |
| start_thread_common(struct pt_regs *regs, unsigned long new_ip, |
| unsigned long new_sp, |
| u16 _cs, u16 _ss, u16 _ds) |
| { |
| WARN_ON_ONCE(regs != current_pt_regs()); |
| |
| if (static_cpu_has(X86_BUG_NULL_SEG)) { |
| /* Loading zero below won't clear the base. */ |
| loadsegment(fs, __USER_DS); |
| load_gs_index(__USER_DS); |
| } |
| |
| reset_thread_features(); |
| |
| loadsegment(fs, 0); |
| loadsegment(es, _ds); |
| loadsegment(ds, _ds); |
| load_gs_index(0); |
| |
| regs->ip = new_ip; |
| regs->sp = new_sp; |
| regs->csx = _cs; |
| regs->ssx = _ss; |
| /* |
| * Allow single-step trap and NMI when starting a new task, thus |
| * once the new task enters user space, single-step trap and NMI |
| * are both enabled immediately. |
| * |
| * Entering a new task is logically speaking a return from a |
| * system call (exec, fork, clone, etc.). As such, if ptrace |
| * enables single stepping a single step exception should be |
| * allowed to trigger immediately upon entering user space. |
| * This is not optional. |
| * |
| * NMI should *never* be disabled in user space. As such, this |
| * is an optional, opportunistic way to catch errors. |
| * |
| * Paranoia: High-order 48 bits above the lowest 16 bit SS are |
| * discarded by the legacy IRET instruction on all Intel, AMD, |
| * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally, |
| * even when FRED is not enabled. But we choose the safer side |
| * to use these bits only when FRED is enabled. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_FRED)) { |
| regs->fred_ss.swevent = true; |
| regs->fred_ss.nmi = true; |
| } |
| |
| regs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; |
| } |
| |
| void |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| { |
| start_thread_common(regs, new_ip, new_sp, |
| __USER_CS, __USER_DS, 0); |
| } |
| EXPORT_SYMBOL_GPL(start_thread); |
| |
| #ifdef CONFIG_COMPAT |
| void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32) |
| { |
| start_thread_common(regs, new_ip, new_sp, |
| x32 ? __USER_CS : __USER32_CS, |
| __USER_DS, __USER_DS); |
| } |
| #endif |
| |
| /* |
| * switch_to(x,y) should switch tasks from x to y. |
| * |
| * This could still be optimized: |
| * - fold all the options into a flag word and test it with a single test. |
| * - could test fs/gs bitsliced |
| * |
| * Kprobes not supported here. Set the probe on schedule instead. |
| * Function graph tracer not supported too. |
| */ |
| __no_kmsan_checks |
| __visible __notrace_funcgraph struct task_struct * |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread; |
| struct thread_struct *next = &next_p->thread; |
| int cpu = smp_processor_id(); |
| |
| WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && |
| this_cpu_read(pcpu_hot.hardirq_stack_inuse)); |
| |
| if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD)) |
| switch_fpu_prepare(prev_p, cpu); |
| |
| /* We must save %fs and %gs before load_TLS() because |
| * %fs and %gs may be cleared by load_TLS(). |
| * |
| * (e.g. xen_load_tls()) |
| */ |
| save_fsgs(prev_p); |
| |
| /* |
| * Load TLS before restoring any segments so that segment loads |
| * reference the correct GDT entries. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. This |
| * must be done after loading TLS entries in the GDT but before |
| * loading segments that might reference them. |
| */ |
| arch_end_context_switch(next_p); |
| |
| /* Switch DS and ES. |
| * |
| * Reading them only returns the selectors, but writing them (if |
| * nonzero) loads the full descriptor from the GDT or LDT. The |
| * LDT for next is loaded in switch_mm, and the GDT is loaded |
| * above. |
| * |
| * We therefore need to write new values to the segment |
| * registers on every context switch unless both the new and old |
| * values are zero. |
| * |
| * Note that we don't need to do anything for CS and SS, as |
| * those are saved and restored as part of pt_regs. |
| */ |
| savesegment(es, prev->es); |
| if (unlikely(next->es | prev->es)) |
| loadsegment(es, next->es); |
| |
| savesegment(ds, prev->ds); |
| if (unlikely(next->ds | prev->ds)) |
| loadsegment(ds, next->ds); |
| |
| x86_fsgsbase_load(prev, next); |
| |
| x86_pkru_load(prev, next); |
| |
| /* |
| * Switch the PDA and FPU contexts. |
| */ |
| raw_cpu_write(pcpu_hot.current_task, next_p); |
| raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p)); |
| |
| switch_fpu_finish(next_p); |
| |
| /* Reload sp0. */ |
| update_task_stack(next_p); |
| |
| switch_to_extra(prev_p, next_p); |
| |
| if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { |
| /* |
| * AMD CPUs have a misfeature: SYSRET sets the SS selector but |
| * does not update the cached descriptor. As a result, if we |
| * do SYSRET while SS is NULL, we'll end up in user mode with |
| * SS apparently equal to __USER_DS but actually unusable. |
| * |
| * The straightforward workaround would be to fix it up just |
| * before SYSRET, but that would slow down the system call |
| * fast paths. Instead, we ensure that SS is never NULL in |
| * system call context. We do this by replacing NULL SS |
| * selectors at every context switch. SYSCALL sets up a valid |
| * SS, so the only way to get NULL is to re-enter the kernel |
| * from CPL 3 through an interrupt. Since that can't happen |
| * in the same task as a running syscall, we are guaranteed to |
| * context switch between every interrupt vector entry and a |
| * subsequent SYSRET. |
| * |
| * We read SS first because SS reads are much faster than |
| * writes. Out of caution, we force SS to __KERNEL_DS even if |
| * it previously had a different non-NULL value. |
| */ |
| unsigned short ss_sel; |
| savesegment(ss, ss_sel); |
| if (ss_sel != __KERNEL_DS) |
| loadsegment(ss, __KERNEL_DS); |
| } |
| |
| /* Load the Intel cache allocation PQR MSR. */ |
| resctrl_sched_in(next_p); |
| |
| return prev_p; |
| } |
| |
| void set_personality_64bit(void) |
| { |
| /* inherit personality from parent */ |
| |
| /* Make sure to be in 64bit mode */ |
| clear_thread_flag(TIF_ADDR32); |
| /* Pretend that this comes from a 64bit execve */ |
| task_pt_regs(current)->orig_ax = __NR_execve; |
| current_thread_info()->status &= ~TS_COMPAT; |
| if (current->mm) |
| __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags); |
| |
| /* TBD: overwrites user setup. Should have two bits. |
| But 64bit processes have always behaved this way, |
| so it's not too bad. The main problem is just that |
| 32bit children are affected again. */ |
| current->personality &= ~READ_IMPLIES_EXEC; |
| } |
| |
| static void __set_personality_x32(void) |
| { |
| #ifdef CONFIG_X86_X32_ABI |
| if (current->mm) |
| current->mm->context.flags = 0; |
| |
| current->personality &= ~READ_IMPLIES_EXEC; |
| /* |
| * in_32bit_syscall() uses the presence of the x32 syscall bit |
| * flag to determine compat status. The x86 mmap() code relies on |
| * the syscall bitness so set x32 syscall bit right here to make |
| * in_32bit_syscall() work during exec(). |
| * |
| * Pretend to come from a x32 execve. |
| */ |
| task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; |
| current_thread_info()->status &= ~TS_COMPAT; |
| #endif |
| } |
| |
| static void __set_personality_ia32(void) |
| { |
| #ifdef CONFIG_IA32_EMULATION |
| if (current->mm) { |
| /* |
| * uprobes applied to this MM need to know this and |
| * cannot use user_64bit_mode() at that time. |
| */ |
| __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags); |
| } |
| |
| current->personality |= force_personality32; |
| /* Prepare the first "return" to user space */ |
| task_pt_regs(current)->orig_ax = __NR_ia32_execve; |
| current_thread_info()->status |= TS_COMPAT; |
| #endif |
| } |
| |
| void set_personality_ia32(bool x32) |
| { |
| /* Make sure to be in 32bit mode */ |
| set_thread_flag(TIF_ADDR32); |
| |
| if (x32) |
| __set_personality_x32(); |
| else |
| __set_personality_ia32(); |
| } |
| EXPORT_SYMBOL_GPL(set_personality_ia32); |
| |
| #ifdef CONFIG_CHECKPOINT_RESTORE |
| static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) |
| { |
| int ret; |
| |
| ret = map_vdso_once(image, addr); |
| if (ret) |
| return ret; |
| |
| return (long)image->size; |
| } |
| #endif |
| |
| #ifdef CONFIG_ADDRESS_MASKING |
| |
| #define LAM_U57_BITS 6 |
| |
| static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits) |
| { |
| if (!cpu_feature_enabled(X86_FEATURE_LAM)) |
| return -ENODEV; |
| |
| /* PTRACE_ARCH_PRCTL */ |
| if (current->mm != mm) |
| return -EINVAL; |
| |
| if (mm_valid_pasid(mm) && |
| !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags)) |
| return -EINVAL; |
| |
| if (mmap_write_lock_killable(mm)) |
| return -EINTR; |
| |
| if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) { |
| mmap_write_unlock(mm); |
| return -EBUSY; |
| } |
| |
| if (!nr_bits) { |
| mmap_write_unlock(mm); |
| return -EINVAL; |
| } else if (nr_bits <= LAM_U57_BITS) { |
| mm->context.lam_cr3_mask = X86_CR3_LAM_U57; |
| mm->context.untag_mask = ~GENMASK(62, 57); |
| } else { |
| mmap_write_unlock(mm); |
| return -EINVAL; |
| } |
| |
| write_cr3(__read_cr3() | mm->context.lam_cr3_mask); |
| set_tlbstate_lam_mode(mm); |
| set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags); |
| |
| mmap_write_unlock(mm); |
| |
| return 0; |
| } |
| #endif |
| |
| long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) |
| { |
| int ret = 0; |
| |
| switch (option) { |
| case ARCH_SET_GS: { |
| if (unlikely(arg2 >= TASK_SIZE_MAX)) |
| return -EPERM; |
| |
| preempt_disable(); |
| /* |
| * ARCH_SET_GS has always overwritten the index |
| * and the base. Zero is the most sensible value |
| * to put in the index, and is the only value that |
| * makes any sense if FSGSBASE is unavailable. |
| */ |
| if (task == current) { |
| loadseg(GS, 0); |
| x86_gsbase_write_cpu_inactive(arg2); |
| |
| /* |
| * On non-FSGSBASE systems, save_base_legacy() expects |
| * that we also fill in thread.gsbase. |
| */ |
| task->thread.gsbase = arg2; |
| |
| } else { |
| task->thread.gsindex = 0; |
| x86_gsbase_write_task(task, arg2); |
| } |
| preempt_enable(); |
| break; |
| } |
| case ARCH_SET_FS: { |
| /* |
| * Not strictly needed for %fs, but do it for symmetry |
| * with %gs |
| */ |
| if (unlikely(arg2 >= TASK_SIZE_MAX)) |
| return -EPERM; |
| |
| preempt_disable(); |
| /* |
| * Set the selector to 0 for the same reason |
| * as %gs above. |
| */ |
| if (task == current) { |
| loadseg(FS, 0); |
| x86_fsbase_write_cpu(arg2); |
| |
| /* |
| * On non-FSGSBASE systems, save_base_legacy() expects |
| * that we also fill in thread.fsbase. |
| */ |
| task->thread.fsbase = arg2; |
| } else { |
| task->thread.fsindex = 0; |
| x86_fsbase_write_task(task, arg2); |
| } |
| preempt_enable(); |
| break; |
| } |
| case ARCH_GET_FS: { |
| unsigned long base = x86_fsbase_read_task(task); |
| |
| ret = put_user(base, (unsigned long __user *)arg2); |
| break; |
| } |
| case ARCH_GET_GS: { |
| unsigned long base = x86_gsbase_read_task(task); |
| |
| ret = put_user(base, (unsigned long __user *)arg2); |
| break; |
| } |
| |
| #ifdef CONFIG_CHECKPOINT_RESTORE |
| # ifdef CONFIG_X86_X32_ABI |
| case ARCH_MAP_VDSO_X32: |
| return prctl_map_vdso(&vdso_image_x32, arg2); |
| # endif |
| # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION |
| case ARCH_MAP_VDSO_32: |
| return prctl_map_vdso(&vdso_image_32, arg2); |
| # endif |
| case ARCH_MAP_VDSO_64: |
| return prctl_map_vdso(&vdso_image_64, arg2); |
| #endif |
| #ifdef CONFIG_ADDRESS_MASKING |
| case ARCH_GET_UNTAG_MASK: |
| return put_user(task->mm->context.untag_mask, |
| (unsigned long __user *)arg2); |
| case ARCH_ENABLE_TAGGED_ADDR: |
| return prctl_enable_tagged_addr(task->mm, arg2); |
| case ARCH_FORCE_TAGGED_SVA: |
| if (current != task) |
| return -EINVAL; |
| set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags); |
| return 0; |
| case ARCH_GET_MAX_TAG_BITS: |
| if (!cpu_feature_enabled(X86_FEATURE_LAM)) |
| return put_user(0, (unsigned long __user *)arg2); |
| else |
| return put_user(LAM_U57_BITS, (unsigned long __user *)arg2); |
| #endif |
| case ARCH_SHSTK_ENABLE: |
| case ARCH_SHSTK_DISABLE: |
| case ARCH_SHSTK_LOCK: |
| case ARCH_SHSTK_UNLOCK: |
| case ARCH_SHSTK_STATUS: |
| return shstk_prctl(task, option, arg2); |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) |
| { |
| long ret; |
| |
| ret = do_arch_prctl_64(current, option, arg2); |
| if (ret == -EINVAL) |
| ret = do_arch_prctl_common(option, arg2); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_IA32_EMULATION |
| COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) |
| { |
| return do_arch_prctl_common(option, arg2); |
| } |
| #endif |
| |
| unsigned long KSTK_ESP(struct task_struct *task) |
| { |
| return task_pt_regs(task)->sp; |
| } |