| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/fsnotify.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mount.h> |
| #include <linux/namei.h> |
| #include <linux/writeback.h> |
| #include <linux/compat.h> |
| #include <linux/security.h> |
| #include <linux/xattr.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/uuid.h> |
| #include <linux/btrfs.h> |
| #include <linux/uaccess.h> |
| #include <linux/iversion.h> |
| #include <linux/fileattr.h> |
| #include <linux/fsverity.h> |
| #include <linux/sched/xacct.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "export.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "locking.h" |
| #include "backref.h" |
| #include "rcu-string.h" |
| #include "send.h" |
| #include "dev-replace.h" |
| #include "props.h" |
| #include "sysfs.h" |
| #include "qgroup.h" |
| #include "tree-log.h" |
| #include "compression.h" |
| #include "space-info.h" |
| #include "delalloc-space.h" |
| #include "block-group.h" |
| #include "subpage.h" |
| |
| #ifdef CONFIG_64BIT |
| /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI |
| * structures are incorrect, as the timespec structure from userspace |
| * is 4 bytes too small. We define these alternatives here to teach |
| * the kernel about the 32-bit struct packing. |
| */ |
| struct btrfs_ioctl_timespec_32 { |
| __u64 sec; |
| __u32 nsec; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_ioctl_received_subvol_args_32 { |
| char uuid[BTRFS_UUID_SIZE]; /* in */ |
| __u64 stransid; /* in */ |
| __u64 rtransid; /* out */ |
| struct btrfs_ioctl_timespec_32 stime; /* in */ |
| struct btrfs_ioctl_timespec_32 rtime; /* out */ |
| __u64 flags; /* in */ |
| __u64 reserved[16]; /* in */ |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ |
| struct btrfs_ioctl_received_subvol_args_32) |
| #endif |
| |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_send_args_32 { |
| __s64 send_fd; /* in */ |
| __u64 clone_sources_count; /* in */ |
| compat_uptr_t clone_sources; /* in */ |
| __u64 parent_root; /* in */ |
| __u64 flags; /* in */ |
| __u32 version; /* in */ |
| __u8 reserved[28]; /* in */ |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ |
| struct btrfs_ioctl_send_args_32) |
| |
| struct btrfs_ioctl_encoded_io_args_32 { |
| compat_uptr_t iov; |
| compat_ulong_t iovcnt; |
| __s64 offset; |
| __u64 flags; |
| __u64 len; |
| __u64 unencoded_len; |
| __u64 unencoded_offset; |
| __u32 compression; |
| __u32 encryption; |
| __u8 reserved[64]; |
| }; |
| |
| #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ |
| struct btrfs_ioctl_encoded_io_args_32) |
| #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ |
| struct btrfs_ioctl_encoded_io_args_32) |
| #endif |
| |
| /* Mask out flags that are inappropriate for the given type of inode. */ |
| static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, |
| unsigned int flags) |
| { |
| if (S_ISDIR(inode->i_mode)) |
| return flags; |
| else if (S_ISREG(inode->i_mode)) |
| return flags & ~FS_DIRSYNC_FL; |
| else |
| return flags & (FS_NODUMP_FL | FS_NOATIME_FL); |
| } |
| |
| /* |
| * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS |
| * ioctl. |
| */ |
| static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) |
| { |
| unsigned int iflags = 0; |
| u32 flags = binode->flags; |
| u32 ro_flags = binode->ro_flags; |
| |
| if (flags & BTRFS_INODE_SYNC) |
| iflags |= FS_SYNC_FL; |
| if (flags & BTRFS_INODE_IMMUTABLE) |
| iflags |= FS_IMMUTABLE_FL; |
| if (flags & BTRFS_INODE_APPEND) |
| iflags |= FS_APPEND_FL; |
| if (flags & BTRFS_INODE_NODUMP) |
| iflags |= FS_NODUMP_FL; |
| if (flags & BTRFS_INODE_NOATIME) |
| iflags |= FS_NOATIME_FL; |
| if (flags & BTRFS_INODE_DIRSYNC) |
| iflags |= FS_DIRSYNC_FL; |
| if (flags & BTRFS_INODE_NODATACOW) |
| iflags |= FS_NOCOW_FL; |
| if (ro_flags & BTRFS_INODE_RO_VERITY) |
| iflags |= FS_VERITY_FL; |
| |
| if (flags & BTRFS_INODE_NOCOMPRESS) |
| iflags |= FS_NOCOMP_FL; |
| else if (flags & BTRFS_INODE_COMPRESS) |
| iflags |= FS_COMPR_FL; |
| |
| return iflags; |
| } |
| |
| /* |
| * Update inode->i_flags based on the btrfs internal flags. |
| */ |
| void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) |
| { |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| unsigned int new_fl = 0; |
| |
| if (binode->flags & BTRFS_INODE_SYNC) |
| new_fl |= S_SYNC; |
| if (binode->flags & BTRFS_INODE_IMMUTABLE) |
| new_fl |= S_IMMUTABLE; |
| if (binode->flags & BTRFS_INODE_APPEND) |
| new_fl |= S_APPEND; |
| if (binode->flags & BTRFS_INODE_NOATIME) |
| new_fl |= S_NOATIME; |
| if (binode->flags & BTRFS_INODE_DIRSYNC) |
| new_fl |= S_DIRSYNC; |
| if (binode->ro_flags & BTRFS_INODE_RO_VERITY) |
| new_fl |= S_VERITY; |
| |
| set_mask_bits(&inode->i_flags, |
| S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | |
| S_VERITY, new_fl); |
| } |
| |
| /* |
| * Check if @flags are a supported and valid set of FS_*_FL flags and that |
| * the old and new flags are not conflicting |
| */ |
| static int check_fsflags(unsigned int old_flags, unsigned int flags) |
| { |
| if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ |
| FS_NOATIME_FL | FS_NODUMP_FL | \ |
| FS_SYNC_FL | FS_DIRSYNC_FL | \ |
| FS_NOCOMP_FL | FS_COMPR_FL | |
| FS_NOCOW_FL)) |
| return -EOPNOTSUPP; |
| |
| /* COMPR and NOCOMP on new/old are valid */ |
| if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) |
| return -EINVAL; |
| |
| if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) |
| return -EINVAL; |
| |
| /* NOCOW and compression options are mutually exclusive */ |
| if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) |
| return -EINVAL; |
| if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, |
| unsigned int flags) |
| { |
| if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| /* |
| * Set flags/xflags from the internal inode flags. The remaining items of |
| * fsxattr are zeroed. |
| */ |
| int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) |
| { |
| struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); |
| |
| fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); |
| return 0; |
| } |
| |
| int btrfs_fileattr_set(struct user_namespace *mnt_userns, |
| struct dentry *dentry, struct fileattr *fa) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| struct btrfs_root *root = binode->root; |
| struct btrfs_trans_handle *trans; |
| unsigned int fsflags, old_fsflags; |
| int ret; |
| const char *comp = NULL; |
| u32 binode_flags; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (fileattr_has_fsx(fa)) |
| return -EOPNOTSUPP; |
| |
| fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); |
| old_fsflags = btrfs_inode_flags_to_fsflags(binode); |
| ret = check_fsflags(old_fsflags, fsflags); |
| if (ret) |
| return ret; |
| |
| ret = check_fsflags_compatible(fs_info, fsflags); |
| if (ret) |
| return ret; |
| |
| binode_flags = binode->flags; |
| if (fsflags & FS_SYNC_FL) |
| binode_flags |= BTRFS_INODE_SYNC; |
| else |
| binode_flags &= ~BTRFS_INODE_SYNC; |
| if (fsflags & FS_IMMUTABLE_FL) |
| binode_flags |= BTRFS_INODE_IMMUTABLE; |
| else |
| binode_flags &= ~BTRFS_INODE_IMMUTABLE; |
| if (fsflags & FS_APPEND_FL) |
| binode_flags |= BTRFS_INODE_APPEND; |
| else |
| binode_flags &= ~BTRFS_INODE_APPEND; |
| if (fsflags & FS_NODUMP_FL) |
| binode_flags |= BTRFS_INODE_NODUMP; |
| else |
| binode_flags &= ~BTRFS_INODE_NODUMP; |
| if (fsflags & FS_NOATIME_FL) |
| binode_flags |= BTRFS_INODE_NOATIME; |
| else |
| binode_flags &= ~BTRFS_INODE_NOATIME; |
| |
| /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ |
| if (!fa->flags_valid) { |
| /* 1 item for the inode */ |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| goto update_flags; |
| } |
| |
| if (fsflags & FS_DIRSYNC_FL) |
| binode_flags |= BTRFS_INODE_DIRSYNC; |
| else |
| binode_flags &= ~BTRFS_INODE_DIRSYNC; |
| if (fsflags & FS_NOCOW_FL) { |
| if (S_ISREG(inode->i_mode)) { |
| /* |
| * It's safe to turn csums off here, no extents exist. |
| * Otherwise we want the flag to reflect the real COW |
| * status of the file and will not set it. |
| */ |
| if (inode->i_size == 0) |
| binode_flags |= BTRFS_INODE_NODATACOW | |
| BTRFS_INODE_NODATASUM; |
| } else { |
| binode_flags |= BTRFS_INODE_NODATACOW; |
| } |
| } else { |
| /* |
| * Revert back under same assumptions as above |
| */ |
| if (S_ISREG(inode->i_mode)) { |
| if (inode->i_size == 0) |
| binode_flags &= ~(BTRFS_INODE_NODATACOW | |
| BTRFS_INODE_NODATASUM); |
| } else { |
| binode_flags &= ~BTRFS_INODE_NODATACOW; |
| } |
| } |
| |
| /* |
| * The COMPRESS flag can only be changed by users, while the NOCOMPRESS |
| * flag may be changed automatically if compression code won't make |
| * things smaller. |
| */ |
| if (fsflags & FS_NOCOMP_FL) { |
| binode_flags &= ~BTRFS_INODE_COMPRESS; |
| binode_flags |= BTRFS_INODE_NOCOMPRESS; |
| } else if (fsflags & FS_COMPR_FL) { |
| |
| if (IS_SWAPFILE(inode)) |
| return -ETXTBSY; |
| |
| binode_flags |= BTRFS_INODE_COMPRESS; |
| binode_flags &= ~BTRFS_INODE_NOCOMPRESS; |
| |
| comp = btrfs_compress_type2str(fs_info->compress_type); |
| if (!comp || comp[0] == 0) |
| comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); |
| } else { |
| binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); |
| } |
| |
| /* |
| * 1 for inode item |
| * 2 for properties |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| if (comp) { |
| ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, |
| strlen(comp), 0); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| } else { |
| ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, |
| 0, 0); |
| if (ret && ret != -ENODATA) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| } |
| |
| update_flags: |
| binode->flags = binode_flags; |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); |
| |
| out_end_trans: |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| /* |
| * Start exclusive operation @type, return true on success |
| */ |
| bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, |
| enum btrfs_exclusive_operation type) |
| { |
| bool ret = false; |
| |
| spin_lock(&fs_info->super_lock); |
| if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { |
| fs_info->exclusive_operation = type; |
| ret = true; |
| } |
| spin_unlock(&fs_info->super_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Conditionally allow to enter the exclusive operation in case it's compatible |
| * with the running one. This must be paired with btrfs_exclop_start_unlock and |
| * btrfs_exclop_finish. |
| * |
| * Compatibility: |
| * - the same type is already running |
| * - when trying to add a device and balance has been paused |
| * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller |
| * must check the condition first that would allow none -> @type |
| */ |
| bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, |
| enum btrfs_exclusive_operation type) |
| { |
| spin_lock(&fs_info->super_lock); |
| if (fs_info->exclusive_operation == type || |
| (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && |
| type == BTRFS_EXCLOP_DEV_ADD)) |
| return true; |
| |
| spin_unlock(&fs_info->super_lock); |
| return false; |
| } |
| |
| void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) |
| { |
| spin_unlock(&fs_info->super_lock); |
| } |
| |
| void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) |
| { |
| spin_lock(&fs_info->super_lock); |
| WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); |
| spin_unlock(&fs_info->super_lock); |
| sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); |
| } |
| |
| void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, |
| enum btrfs_exclusive_operation op) |
| { |
| switch (op) { |
| case BTRFS_EXCLOP_BALANCE_PAUSED: |
| spin_lock(&fs_info->super_lock); |
| ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || |
| fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); |
| fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; |
| spin_unlock(&fs_info->super_lock); |
| break; |
| case BTRFS_EXCLOP_BALANCE: |
| spin_lock(&fs_info->super_lock); |
| ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); |
| fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; |
| spin_unlock(&fs_info->super_lock); |
| break; |
| default: |
| btrfs_warn(fs_info, |
| "invalid exclop balance operation %d requested", op); |
| } |
| } |
| |
| static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) |
| { |
| return put_user(inode->i_generation, arg); |
| } |
| |
| static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_device *device; |
| struct fstrim_range range; |
| u64 minlen = ULLONG_MAX; |
| u64 num_devices = 0; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| /* |
| * btrfs_trim_block_group() depends on space cache, which is not |
| * available in zoned filesystem. So, disallow fitrim on a zoned |
| * filesystem for now. |
| */ |
| if (btrfs_is_zoned(fs_info)) |
| return -EOPNOTSUPP; |
| |
| /* |
| * If the fs is mounted with nologreplay, which requires it to be |
| * mounted in RO mode as well, we can not allow discard on free space |
| * inside block groups, because log trees refer to extents that are not |
| * pinned in a block group's free space cache (pinning the extents is |
| * precisely the first phase of replaying a log tree). |
| */ |
| if (btrfs_test_opt(fs_info, NOLOGREPLAY)) |
| return -EROFS; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, |
| dev_list) { |
| if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) |
| continue; |
| num_devices++; |
| minlen = min_t(u64, bdev_discard_granularity(device->bdev), |
| minlen); |
| } |
| rcu_read_unlock(); |
| |
| if (!num_devices) |
| return -EOPNOTSUPP; |
| if (copy_from_user(&range, arg, sizeof(range))) |
| return -EFAULT; |
| |
| /* |
| * NOTE: Don't truncate the range using super->total_bytes. Bytenr of |
| * block group is in the logical address space, which can be any |
| * sectorsize aligned bytenr in the range [0, U64_MAX]. |
| */ |
| if (range.len < fs_info->sb->s_blocksize) |
| return -EINVAL; |
| |
| range.minlen = max(range.minlen, minlen); |
| ret = btrfs_trim_fs(fs_info, &range); |
| if (ret < 0) |
| return ret; |
| |
| if (copy_to_user(arg, &range, sizeof(range))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| int __pure btrfs_is_empty_uuid(u8 *uuid) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_UUID_SIZE; i++) { |
| if (uuid[i]) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Calculate the number of transaction items to reserve for creating a subvolume |
| * or snapshot, not including the inode, directory entries, or parent directory. |
| */ |
| static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) |
| { |
| /* |
| * 1 to add root block |
| * 1 to add root item |
| * 1 to add root ref |
| * 1 to add root backref |
| * 1 to add UUID item |
| * 1 to add qgroup info |
| * 1 to add qgroup limit |
| * |
| * Ideally the last two would only be accounted if qgroups are enabled, |
| * but that can change between now and the time we would insert them. |
| */ |
| unsigned int num_items = 7; |
| |
| if (inherit) { |
| /* 2 to add qgroup relations for each inherited qgroup */ |
| num_items += 2 * inherit->num_qgroups; |
| } |
| return num_items; |
| } |
| |
| static noinline int create_subvol(struct user_namespace *mnt_userns, |
| struct inode *dir, struct dentry *dentry, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key key; |
| struct btrfs_root_item *root_item; |
| struct btrfs_inode_item *inode_item; |
| struct extent_buffer *leaf; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *new_root; |
| struct btrfs_block_rsv block_rsv; |
| struct timespec64 cur_time = current_time(dir); |
| struct btrfs_new_inode_args new_inode_args = { |
| .dir = dir, |
| .dentry = dentry, |
| .subvol = true, |
| }; |
| unsigned int trans_num_items; |
| int ret; |
| dev_t anon_dev; |
| u64 objectid; |
| |
| root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); |
| if (!root_item) |
| return -ENOMEM; |
| |
| ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); |
| if (ret) |
| goto out_root_item; |
| |
| /* |
| * Don't create subvolume whose level is not zero. Or qgroup will be |
| * screwed up since it assumes subvolume qgroup's level to be 0. |
| */ |
| if (btrfs_qgroup_level(objectid)) { |
| ret = -ENOSPC; |
| goto out_root_item; |
| } |
| |
| ret = get_anon_bdev(&anon_dev); |
| if (ret < 0) |
| goto out_root_item; |
| |
| new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir); |
| if (!new_inode_args.inode) { |
| ret = -ENOMEM; |
| goto out_anon_dev; |
| } |
| ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); |
| if (ret) |
| goto out_inode; |
| trans_num_items += create_subvol_num_items(inherit); |
| |
| btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); |
| ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, |
| trans_num_items, false); |
| if (ret) |
| goto out_new_inode_args; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_subvolume_release_metadata(root, &block_rsv); |
| goto out_new_inode_args; |
| } |
| trans->block_rsv = &block_rsv; |
| trans->bytes_reserved = block_rsv.size; |
| |
| ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); |
| if (ret) |
| goto out; |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, |
| BTRFS_NESTING_NORMAL); |
| if (IS_ERR(leaf)) { |
| ret = PTR_ERR(leaf); |
| goto out; |
| } |
| |
| btrfs_mark_buffer_dirty(leaf); |
| |
| inode_item = &root_item->inode; |
| btrfs_set_stack_inode_generation(inode_item, 1); |
| btrfs_set_stack_inode_size(inode_item, 3); |
| btrfs_set_stack_inode_nlink(inode_item, 1); |
| btrfs_set_stack_inode_nbytes(inode_item, |
| fs_info->nodesize); |
| btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| |
| btrfs_set_root_flags(root_item, 0); |
| btrfs_set_root_limit(root_item, 0); |
| btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); |
| |
| btrfs_set_root_bytenr(root_item, leaf->start); |
| btrfs_set_root_generation(root_item, trans->transid); |
| btrfs_set_root_level(root_item, 0); |
| btrfs_set_root_refs(root_item, 1); |
| btrfs_set_root_used(root_item, leaf->len); |
| btrfs_set_root_last_snapshot(root_item, 0); |
| |
| btrfs_set_root_generation_v2(root_item, |
| btrfs_root_generation(root_item)); |
| generate_random_guid(root_item->uuid); |
| btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); |
| btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); |
| root_item->ctime = root_item->otime; |
| btrfs_set_root_ctransid(root_item, trans->transid); |
| btrfs_set_root_otransid(root_item, trans->transid); |
| |
| btrfs_tree_unlock(leaf); |
| |
| btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); |
| |
| key.objectid = objectid; |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| ret = btrfs_insert_root(trans, fs_info->tree_root, &key, |
| root_item); |
| if (ret) { |
| /* |
| * Since we don't abort the transaction in this case, free the |
| * tree block so that we don't leak space and leave the |
| * filesystem in an inconsistent state (an extent item in the |
| * extent tree with a backreference for a root that does not |
| * exists). |
| */ |
| btrfs_tree_lock(leaf); |
| btrfs_clean_tree_block(leaf); |
| btrfs_tree_unlock(leaf); |
| btrfs_free_tree_block(trans, objectid, leaf, 0, 1); |
| free_extent_buffer(leaf); |
| goto out; |
| } |
| |
| free_extent_buffer(leaf); |
| leaf = NULL; |
| |
| new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); |
| if (IS_ERR(new_root)) { |
| ret = PTR_ERR(new_root); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| /* anon_dev is owned by new_root now. */ |
| anon_dev = 0; |
| BTRFS_I(new_inode_args.inode)->root = new_root; |
| /* ... and new_root is owned by new_inode_args.inode now. */ |
| |
| ret = btrfs_record_root_in_trans(trans, new_root); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = btrfs_uuid_tree_add(trans, root_item->uuid, |
| BTRFS_UUID_KEY_SUBVOL, objectid); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = btrfs_create_new_inode(trans, &new_inode_args); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| d_instantiate_new(dentry, new_inode_args.inode); |
| new_inode_args.inode = NULL; |
| |
| out: |
| trans->block_rsv = NULL; |
| trans->bytes_reserved = 0; |
| btrfs_subvolume_release_metadata(root, &block_rsv); |
| |
| if (ret) |
| btrfs_end_transaction(trans); |
| else |
| ret = btrfs_commit_transaction(trans); |
| out_new_inode_args: |
| btrfs_new_inode_args_destroy(&new_inode_args); |
| out_inode: |
| iput(new_inode_args.inode); |
| out_anon_dev: |
| if (anon_dev) |
| free_anon_bdev(anon_dev); |
| out_root_item: |
| kfree(root_item); |
| return ret; |
| } |
| |
| static int create_snapshot(struct btrfs_root *root, struct inode *dir, |
| struct dentry *dentry, bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct inode *inode; |
| struct btrfs_pending_snapshot *pending_snapshot; |
| unsigned int trans_num_items; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| /* We do not support snapshotting right now. */ |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_warn(fs_info, |
| "extent tree v2 doesn't support snapshotting yet"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| return -EINVAL; |
| |
| if (atomic_read(&root->nr_swapfiles)) { |
| btrfs_warn(fs_info, |
| "cannot snapshot subvolume with active swapfile"); |
| return -ETXTBSY; |
| } |
| |
| pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); |
| if (!pending_snapshot) |
| return -ENOMEM; |
| |
| ret = get_anon_bdev(&pending_snapshot->anon_dev); |
| if (ret < 0) |
| goto free_pending; |
| pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), |
| GFP_KERNEL); |
| pending_snapshot->path = btrfs_alloc_path(); |
| if (!pending_snapshot->root_item || !pending_snapshot->path) { |
| ret = -ENOMEM; |
| goto free_pending; |
| } |
| |
| btrfs_init_block_rsv(&pending_snapshot->block_rsv, |
| BTRFS_BLOCK_RSV_TEMP); |
| /* |
| * 1 to add dir item |
| * 1 to add dir index |
| * 1 to update parent inode item |
| */ |
| trans_num_items = create_subvol_num_items(inherit) + 3; |
| ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, |
| &pending_snapshot->block_rsv, |
| trans_num_items, false); |
| if (ret) |
| goto free_pending; |
| |
| pending_snapshot->dentry = dentry; |
| pending_snapshot->root = root; |
| pending_snapshot->readonly = readonly; |
| pending_snapshot->dir = dir; |
| pending_snapshot->inherit = inherit; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto fail; |
| } |
| |
| trans->pending_snapshot = pending_snapshot; |
| |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| goto fail; |
| |
| ret = pending_snapshot->error; |
| if (ret) |
| goto fail; |
| |
| ret = btrfs_orphan_cleanup(pending_snapshot->snap); |
| if (ret) |
| goto fail; |
| |
| inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| goto fail; |
| } |
| |
| d_instantiate(dentry, inode); |
| ret = 0; |
| pending_snapshot->anon_dev = 0; |
| fail: |
| /* Prevent double freeing of anon_dev */ |
| if (ret && pending_snapshot->snap) |
| pending_snapshot->snap->anon_dev = 0; |
| btrfs_put_root(pending_snapshot->snap); |
| btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); |
| free_pending: |
| if (pending_snapshot->anon_dev) |
| free_anon_bdev(pending_snapshot->anon_dev); |
| kfree(pending_snapshot->root_item); |
| btrfs_free_path(pending_snapshot->path); |
| kfree(pending_snapshot); |
| |
| return ret; |
| } |
| |
| /* copy of may_delete in fs/namei.c() |
| * Check whether we can remove a link victim from directory dir, check |
| * whether the type of victim is right. |
| * 1. We can't do it if dir is read-only (done in permission()) |
| * 2. We should have write and exec permissions on dir |
| * 3. We can't remove anything from append-only dir |
| * 4. We can't do anything with immutable dir (done in permission()) |
| * 5. If the sticky bit on dir is set we should either |
| * a. be owner of dir, or |
| * b. be owner of victim, or |
| * c. have CAP_FOWNER capability |
| * 6. If the victim is append-only or immutable we can't do anything with |
| * links pointing to it. |
| * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. |
| * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. |
| * 9. We can't remove a root or mountpoint. |
| * 10. We don't allow removal of NFS sillyrenamed files; it's handled by |
| * nfs_async_unlink(). |
| */ |
| |
| static int btrfs_may_delete(struct user_namespace *mnt_userns, |
| struct inode *dir, struct dentry *victim, int isdir) |
| { |
| int error; |
| |
| if (d_really_is_negative(victim)) |
| return -ENOENT; |
| |
| BUG_ON(d_inode(victim->d_parent) != dir); |
| audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); |
| |
| error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); |
| if (error) |
| return error; |
| if (IS_APPEND(dir)) |
| return -EPERM; |
| if (check_sticky(mnt_userns, dir, d_inode(victim)) || |
| IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || |
| IS_SWAPFILE(d_inode(victim))) |
| return -EPERM; |
| if (isdir) { |
| if (!d_is_dir(victim)) |
| return -ENOTDIR; |
| if (IS_ROOT(victim)) |
| return -EBUSY; |
| } else if (d_is_dir(victim)) |
| return -EISDIR; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| if (victim->d_flags & DCACHE_NFSFS_RENAMED) |
| return -EBUSY; |
| return 0; |
| } |
| |
| /* copy of may_create in fs/namei.c() */ |
| static inline int btrfs_may_create(struct user_namespace *mnt_userns, |
| struct inode *dir, struct dentry *child) |
| { |
| if (d_really_is_positive(child)) |
| return -EEXIST; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) |
| return -EOVERFLOW; |
| return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); |
| } |
| |
| /* |
| * Create a new subvolume below @parent. This is largely modeled after |
| * sys_mkdirat and vfs_mkdir, but we only do a single component lookup |
| * inside this filesystem so it's quite a bit simpler. |
| */ |
| static noinline int btrfs_mksubvol(const struct path *parent, |
| struct user_namespace *mnt_userns, |
| const char *name, int namelen, |
| struct btrfs_root *snap_src, |
| bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct inode *dir = d_inode(parent->dentry); |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct dentry *dentry; |
| int error; |
| |
| error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); |
| if (error == -EINTR) |
| return error; |
| |
| dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); |
| error = PTR_ERR(dentry); |
| if (IS_ERR(dentry)) |
| goto out_unlock; |
| |
| error = btrfs_may_create(mnt_userns, dir, dentry); |
| if (error) |
| goto out_dput; |
| |
| /* |
| * even if this name doesn't exist, we may get hash collisions. |
| * check for them now when we can safely fail |
| */ |
| error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, |
| dir->i_ino, name, |
| namelen); |
| if (error) |
| goto out_dput; |
| |
| down_read(&fs_info->subvol_sem); |
| |
| if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) |
| goto out_up_read; |
| |
| if (snap_src) |
| error = create_snapshot(snap_src, dir, dentry, readonly, inherit); |
| else |
| error = create_subvol(mnt_userns, dir, dentry, inherit); |
| |
| if (!error) |
| fsnotify_mkdir(dir, dentry); |
| out_up_read: |
| up_read(&fs_info->subvol_sem); |
| out_dput: |
| dput(dentry); |
| out_unlock: |
| btrfs_inode_unlock(dir, 0); |
| return error; |
| } |
| |
| static noinline int btrfs_mksnapshot(const struct path *parent, |
| struct user_namespace *mnt_userns, |
| const char *name, int namelen, |
| struct btrfs_root *root, |
| bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| int ret; |
| bool snapshot_force_cow = false; |
| |
| /* |
| * Force new buffered writes to reserve space even when NOCOW is |
| * possible. This is to avoid later writeback (running dealloc) to |
| * fallback to COW mode and unexpectedly fail with ENOSPC. |
| */ |
| btrfs_drew_read_lock(&root->snapshot_lock); |
| |
| ret = btrfs_start_delalloc_snapshot(root, false); |
| if (ret) |
| goto out; |
| |
| /* |
| * All previous writes have started writeback in NOCOW mode, so now |
| * we force future writes to fallback to COW mode during snapshot |
| * creation. |
| */ |
| atomic_inc(&root->snapshot_force_cow); |
| snapshot_force_cow = true; |
| |
| btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); |
| |
| ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, |
| root, readonly, inherit); |
| out: |
| if (snapshot_force_cow) |
| atomic_dec(&root->snapshot_force_cow); |
| btrfs_drew_read_unlock(&root->snapshot_lock); |
| return ret; |
| } |
| |
| /* |
| * Defrag specific helper to get an extent map. |
| * |
| * Differences between this and btrfs_get_extent() are: |
| * |
| * - No extent_map will be added to inode->extent_tree |
| * To reduce memory usage in the long run. |
| * |
| * - Extra optimization to skip file extents older than @newer_than |
| * By using btrfs_search_forward() we can skip entire file ranges that |
| * have extents created in past transactions, because btrfs_search_forward() |
| * will not visit leaves and nodes with a generation smaller than given |
| * minimal generation threshold (@newer_than). |
| * |
| * Return valid em if we find a file extent matching the requirement. |
| * Return NULL if we can not find a file extent matching the requirement. |
| * |
| * Return ERR_PTR() for error. |
| */ |
| static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, |
| u64 start, u64 newer_than) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_path path = { 0 }; |
| struct extent_map *em; |
| struct btrfs_key key; |
| u64 ino = btrfs_ino(inode); |
| int ret; |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = start; |
| |
| if (newer_than) { |
| ret = btrfs_search_forward(root, &key, &path, newer_than); |
| if (ret < 0) |
| goto err; |
| /* Can't find anything newer */ |
| if (ret > 0) |
| goto not_found; |
| } else { |
| ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); |
| if (ret < 0) |
| goto err; |
| } |
| if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { |
| /* |
| * If btrfs_search_slot() makes path to point beyond nritems, |
| * we should not have an empty leaf, as this inode must at |
| * least have its INODE_ITEM. |
| */ |
| ASSERT(btrfs_header_nritems(path.nodes[0])); |
| path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; |
| } |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| /* Perfect match, no need to go one slot back */ |
| if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && |
| key.offset == start) |
| goto iterate; |
| |
| /* We didn't find a perfect match, needs to go one slot back */ |
| if (path.slots[0] > 0) { |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) |
| path.slots[0]--; |
| } |
| |
| iterate: |
| /* Iterate through the path to find a file extent covering @start */ |
| while (true) { |
| u64 extent_end; |
| |
| if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) |
| goto next; |
| |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| |
| /* |
| * We may go one slot back to INODE_REF/XATTR item, then |
| * need to go forward until we reach an EXTENT_DATA. |
| * But we should still has the correct ino as key.objectid. |
| */ |
| if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) |
| goto next; |
| |
| /* It's beyond our target range, definitely not extent found */ |
| if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) |
| goto not_found; |
| |
| /* |
| * | |<- File extent ->| |
| * \- start |
| * |
| * This means there is a hole between start and key.offset. |
| */ |
| if (key.offset > start) { |
| em->start = start; |
| em->orig_start = start; |
| em->block_start = EXTENT_MAP_HOLE; |
| em->len = key.offset - start; |
| break; |
| } |
| |
| fi = btrfs_item_ptr(path.nodes[0], path.slots[0], |
| struct btrfs_file_extent_item); |
| extent_end = btrfs_file_extent_end(&path); |
| |
| /* |
| * |<- file extent ->| | |
| * \- start |
| * |
| * We haven't reached start, search next slot. |
| */ |
| if (extent_end <= start) |
| goto next; |
| |
| /* Now this extent covers @start, convert it to em */ |
| btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); |
| break; |
| next: |
| ret = btrfs_next_item(root, &path); |
| if (ret < 0) |
| goto err; |
| if (ret > 0) |
| goto not_found; |
| } |
| btrfs_release_path(&path); |
| return em; |
| |
| not_found: |
| btrfs_release_path(&path); |
| free_extent_map(em); |
| return NULL; |
| |
| err: |
| btrfs_release_path(&path); |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, |
| u64 newer_than, bool locked) |
| { |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em; |
| const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; |
| |
| /* |
| * hopefully we have this extent in the tree already, try without |
| * the full extent lock |
| */ |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, sectorsize); |
| read_unlock(&em_tree->lock); |
| |
| /* |
| * We can get a merged extent, in that case, we need to re-search |
| * tree to get the original em for defrag. |
| * |
| * If @newer_than is 0 or em::generation < newer_than, we can trust |
| * this em, as either we don't care about the generation, or the |
| * merged extent map will be rejected anyway. |
| */ |
| if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && |
| newer_than && em->generation >= newer_than) { |
| free_extent_map(em); |
| em = NULL; |
| } |
| |
| if (!em) { |
| struct extent_state *cached = NULL; |
| u64 end = start + sectorsize - 1; |
| |
| /* get the big lock and read metadata off disk */ |
| if (!locked) |
| lock_extent_bits(io_tree, start, end, &cached); |
| em = defrag_get_extent(BTRFS_I(inode), start, newer_than); |
| if (!locked) |
| unlock_extent_cached(io_tree, start, end, &cached); |
| |
| if (IS_ERR(em)) |
| return NULL; |
| } |
| |
| return em; |
| } |
| |
| static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, |
| const struct extent_map *em) |
| { |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) |
| return BTRFS_MAX_COMPRESSED; |
| return fs_info->max_extent_size; |
| } |
| |
| static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, |
| u32 extent_thresh, u64 newer_than, bool locked) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *next; |
| bool ret = false; |
| |
| /* this is the last extent */ |
| if (em->start + em->len >= i_size_read(inode)) |
| return false; |
| |
| /* |
| * Here we need to pass @newer_then when checking the next extent, or |
| * we will hit a case we mark current extent for defrag, but the next |
| * one will not be a target. |
| * This will just cause extra IO without really reducing the fragments. |
| */ |
| next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); |
| /* No more em or hole */ |
| if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) |
| goto out; |
| if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) |
| goto out; |
| /* |
| * If the next extent is at its max capacity, defragging current extent |
| * makes no sense, as the total number of extents won't change. |
| */ |
| if (next->len >= get_extent_max_capacity(fs_info, em)) |
| goto out; |
| /* Skip older extent */ |
| if (next->generation < newer_than) |
| goto out; |
| /* Also check extent size */ |
| if (next->len >= extent_thresh) |
| goto out; |
| |
| ret = true; |
| out: |
| free_extent_map(next); |
| return ret; |
| } |
| |
| /* |
| * Prepare one page to be defragged. |
| * |
| * This will ensure: |
| * |
| * - Returned page is locked and has been set up properly. |
| * - No ordered extent exists in the page. |
| * - The page is uptodate. |
| * |
| * NOTE: Caller should also wait for page writeback after the cluster is |
| * prepared, here we don't do writeback wait for each page. |
| */ |
| static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, |
| pgoff_t index) |
| { |
| struct address_space *mapping = inode->vfs_inode.i_mapping; |
| gfp_t mask = btrfs_alloc_write_mask(mapping); |
| u64 page_start = (u64)index << PAGE_SHIFT; |
| u64 page_end = page_start + PAGE_SIZE - 1; |
| struct extent_state *cached_state = NULL; |
| struct page *page; |
| int ret; |
| |
| again: |
| page = find_or_create_page(mapping, index, mask); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Since we can defragment files opened read-only, we can encounter |
| * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We |
| * can't do I/O using huge pages yet, so return an error for now. |
| * Filesystem transparent huge pages are typically only used for |
| * executables that explicitly enable them, so this isn't very |
| * restrictive. |
| */ |
| if (PageCompound(page)) { |
| unlock_page(page); |
| put_page(page); |
| return ERR_PTR(-ETXTBSY); |
| } |
| |
| ret = set_page_extent_mapped(page); |
| if (ret < 0) { |
| unlock_page(page); |
| put_page(page); |
| return ERR_PTR(ret); |
| } |
| |
| /* Wait for any existing ordered extent in the range */ |
| while (1) { |
| struct btrfs_ordered_extent *ordered; |
| |
| lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); |
| ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); |
| unlock_extent_cached(&inode->io_tree, page_start, page_end, |
| &cached_state); |
| if (!ordered) |
| break; |
| |
| unlock_page(page); |
| btrfs_start_ordered_extent(ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| lock_page(page); |
| /* |
| * We unlocked the page above, so we need check if it was |
| * released or not. |
| */ |
| if (page->mapping != mapping || !PagePrivate(page)) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| } |
| |
| /* |
| * Now the page range has no ordered extent any more. Read the page to |
| * make it uptodate. |
| */ |
| if (!PageUptodate(page)) { |
| btrfs_read_folio(NULL, page_folio(page)); |
| lock_page(page); |
| if (page->mapping != mapping || !PagePrivate(page)) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| if (!PageUptodate(page)) { |
| unlock_page(page); |
| put_page(page); |
| return ERR_PTR(-EIO); |
| } |
| } |
| return page; |
| } |
| |
| struct defrag_target_range { |
| struct list_head list; |
| u64 start; |
| u64 len; |
| }; |
| |
| /* |
| * Collect all valid target extents. |
| * |
| * @start: file offset to lookup |
| * @len: length to lookup |
| * @extent_thresh: file extent size threshold, any extent size >= this value |
| * will be ignored |
| * @newer_than: only defrag extents newer than this value |
| * @do_compress: whether the defrag is doing compression |
| * if true, @extent_thresh will be ignored and all regular |
| * file extents meeting @newer_than will be targets. |
| * @locked: if the range has already held extent lock |
| * @target_list: list of targets file extents |
| */ |
| static int defrag_collect_targets(struct btrfs_inode *inode, |
| u64 start, u64 len, u32 extent_thresh, |
| u64 newer_than, bool do_compress, |
| bool locked, struct list_head *target_list, |
| u64 *last_scanned_ret) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| bool last_is_target = false; |
| u64 cur = start; |
| int ret = 0; |
| |
| while (cur < start + len) { |
| struct extent_map *em; |
| struct defrag_target_range *new; |
| bool next_mergeable = true; |
| u64 range_len; |
| |
| last_is_target = false; |
| em = defrag_lookup_extent(&inode->vfs_inode, cur, |
| newer_than, locked); |
| if (!em) |
| break; |
| |
| /* |
| * If the file extent is an inlined one, we may still want to |
| * defrag it (fallthrough) if it will cause a regular extent. |
| * This is for users who want to convert inline extents to |
| * regular ones through max_inline= mount option. |
| */ |
| if (em->block_start == EXTENT_MAP_INLINE && |
| em->len <= inode->root->fs_info->max_inline) |
| goto next; |
| |
| /* Skip hole/delalloc/preallocated extents */ |
| if (em->block_start == EXTENT_MAP_HOLE || |
| em->block_start == EXTENT_MAP_DELALLOC || |
| test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| goto next; |
| |
| /* Skip older extent */ |
| if (em->generation < newer_than) |
| goto next; |
| |
| /* This em is under writeback, no need to defrag */ |
| if (em->generation == (u64)-1) |
| goto next; |
| |
| /* |
| * Our start offset might be in the middle of an existing extent |
| * map, so take that into account. |
| */ |
| range_len = em->len - (cur - em->start); |
| /* |
| * If this range of the extent map is already flagged for delalloc, |
| * skip it, because: |
| * |
| * 1) We could deadlock later, when trying to reserve space for |
| * delalloc, because in case we can't immediately reserve space |
| * the flusher can start delalloc and wait for the respective |
| * ordered extents to complete. The deadlock would happen |
| * because we do the space reservation while holding the range |
| * locked, and starting writeback, or finishing an ordered |
| * extent, requires locking the range; |
| * |
| * 2) If there's delalloc there, it means there's dirty pages for |
| * which writeback has not started yet (we clean the delalloc |
| * flag when starting writeback and after creating an ordered |
| * extent). If we mark pages in an adjacent range for defrag, |
| * then we will have a larger contiguous range for delalloc, |
| * very likely resulting in a larger extent after writeback is |
| * triggered (except in a case of free space fragmentation). |
| */ |
| if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, |
| EXTENT_DELALLOC, 0, NULL)) |
| goto next; |
| |
| /* |
| * For do_compress case, we want to compress all valid file |
| * extents, thus no @extent_thresh or mergeable check. |
| */ |
| if (do_compress) |
| goto add; |
| |
| /* Skip too large extent */ |
| if (range_len >= extent_thresh) |
| goto next; |
| |
| /* |
| * Skip extents already at its max capacity, this is mostly for |
| * compressed extents, which max cap is only 128K. |
| */ |
| if (em->len >= get_extent_max_capacity(fs_info, em)) |
| goto next; |
| |
| /* |
| * Normally there are no more extents after an inline one, thus |
| * @next_mergeable will normally be false and not defragged. |
| * So if an inline extent passed all above checks, just add it |
| * for defrag, and be converted to regular extents. |
| */ |
| if (em->block_start == EXTENT_MAP_INLINE) |
| goto add; |
| |
| next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, |
| extent_thresh, newer_than, locked); |
| if (!next_mergeable) { |
| struct defrag_target_range *last; |
| |
| /* Empty target list, no way to merge with last entry */ |
| if (list_empty(target_list)) |
| goto next; |
| last = list_entry(target_list->prev, |
| struct defrag_target_range, list); |
| /* Not mergeable with last entry */ |
| if (last->start + last->len != cur) |
| goto next; |
| |
| /* Mergeable, fall through to add it to @target_list. */ |
| } |
| |
| add: |
| last_is_target = true; |
| range_len = min(extent_map_end(em), start + len) - cur; |
| /* |
| * This one is a good target, check if it can be merged into |
| * last range of the target list. |
| */ |
| if (!list_empty(target_list)) { |
| struct defrag_target_range *last; |
| |
| last = list_entry(target_list->prev, |
| struct defrag_target_range, list); |
| ASSERT(last->start + last->len <= cur); |
| if (last->start + last->len == cur) { |
| /* Mergeable, enlarge the last entry */ |
| last->len += range_len; |
| goto next; |
| } |
| /* Fall through to allocate a new entry */ |
| } |
| |
| /* Allocate new defrag_target_range */ |
| new = kmalloc(sizeof(*new), GFP_NOFS); |
| if (!new) { |
| free_extent_map(em); |
| ret = -ENOMEM; |
| break; |
| } |
| new->start = cur; |
| new->len = range_len; |
| list_add_tail(&new->list, target_list); |
| |
| next: |
| cur = extent_map_end(em); |
| free_extent_map(em); |
| } |
| if (ret < 0) { |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| |
| list_for_each_entry_safe(entry, tmp, target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| } |
| if (!ret && last_scanned_ret) { |
| /* |
| * If the last extent is not a target, the caller can skip to |
| * the end of that extent. |
| * Otherwise, we can only go the end of the specified range. |
| */ |
| if (!last_is_target) |
| *last_scanned_ret = max(cur, *last_scanned_ret); |
| else |
| *last_scanned_ret = max(start + len, *last_scanned_ret); |
| } |
| return ret; |
| } |
| |
| #define CLUSTER_SIZE (SZ_256K) |
| static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); |
| |
| /* |
| * Defrag one contiguous target range. |
| * |
| * @inode: target inode |
| * @target: target range to defrag |
| * @pages: locked pages covering the defrag range |
| * @nr_pages: number of locked pages |
| * |
| * Caller should ensure: |
| * |
| * - Pages are prepared |
| * Pages should be locked, no ordered extent in the pages range, |
| * no writeback. |
| * |
| * - Extent bits are locked |
| */ |
| static int defrag_one_locked_target(struct btrfs_inode *inode, |
| struct defrag_target_range *target, |
| struct page **pages, int nr_pages, |
| struct extent_state **cached_state) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_changeset *data_reserved = NULL; |
| const u64 start = target->start; |
| const u64 len = target->len; |
| unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; |
| unsigned long start_index = start >> PAGE_SHIFT; |
| unsigned long first_index = page_index(pages[0]); |
| int ret = 0; |
| int i; |
| |
| ASSERT(last_index - first_index + 1 <= nr_pages); |
| |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); |
| if (ret < 0) |
| return ret; |
| clear_extent_bit(&inode->io_tree, start, start + len - 1, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 0, 0, cached_state); |
| set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); |
| |
| /* Update the page status */ |
| for (i = start_index - first_index; i <= last_index - first_index; i++) { |
| ClearPageChecked(pages[i]); |
| btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); |
| } |
| btrfs_delalloc_release_extents(inode, len); |
| extent_changeset_free(data_reserved); |
| |
| return ret; |
| } |
| |
| static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, |
| u32 extent_thresh, u64 newer_than, bool do_compress, |
| u64 *last_scanned_ret) |
| { |
| struct extent_state *cached_state = NULL; |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| LIST_HEAD(target_list); |
| struct page **pages; |
| const u32 sectorsize = inode->root->fs_info->sectorsize; |
| u64 last_index = (start + len - 1) >> PAGE_SHIFT; |
| u64 start_index = start >> PAGE_SHIFT; |
| unsigned int nr_pages = last_index - start_index + 1; |
| int ret = 0; |
| int i; |
| |
| ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); |
| ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); |
| |
| pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); |
| if (!pages) |
| return -ENOMEM; |
| |
| /* Prepare all pages */ |
| for (i = 0; i < nr_pages; i++) { |
| pages[i] = defrag_prepare_one_page(inode, start_index + i); |
| if (IS_ERR(pages[i])) { |
| ret = PTR_ERR(pages[i]); |
| pages[i] = NULL; |
| goto free_pages; |
| } |
| } |
| for (i = 0; i < nr_pages; i++) |
| wait_on_page_writeback(pages[i]); |
| |
| /* Lock the pages range */ |
| lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, |
| (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, |
| &cached_state); |
| /* |
| * Now we have a consistent view about the extent map, re-check |
| * which range really needs to be defragged. |
| * |
| * And this time we have extent locked already, pass @locked = true |
| * so that we won't relock the extent range and cause deadlock. |
| */ |
| ret = defrag_collect_targets(inode, start, len, extent_thresh, |
| newer_than, do_compress, true, |
| &target_list, last_scanned_ret); |
| if (ret < 0) |
| goto unlock_extent; |
| |
| list_for_each_entry(entry, &target_list, list) { |
| ret = defrag_one_locked_target(inode, entry, pages, nr_pages, |
| &cached_state); |
| if (ret < 0) |
| break; |
| } |
| |
| list_for_each_entry_safe(entry, tmp, &target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| unlock_extent: |
| unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, |
| (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, |
| &cached_state); |
| free_pages: |
| for (i = 0; i < nr_pages; i++) { |
| if (pages[i]) { |
| unlock_page(pages[i]); |
| put_page(pages[i]); |
| } |
| } |
| kfree(pages); |
| return ret; |
| } |
| |
| static int defrag_one_cluster(struct btrfs_inode *inode, |
| struct file_ra_state *ra, |
| u64 start, u32 len, u32 extent_thresh, |
| u64 newer_than, bool do_compress, |
| unsigned long *sectors_defragged, |
| unsigned long max_sectors, |
| u64 *last_scanned_ret) |
| { |
| const u32 sectorsize = inode->root->fs_info->sectorsize; |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| LIST_HEAD(target_list); |
| int ret; |
| |
| ret = defrag_collect_targets(inode, start, len, extent_thresh, |
| newer_than, do_compress, false, |
| &target_list, NULL); |
| if (ret < 0) |
| goto out; |
| |
| list_for_each_entry(entry, &target_list, list) { |
| u32 range_len = entry->len; |
| |
| /* Reached or beyond the limit */ |
| if (max_sectors && *sectors_defragged >= max_sectors) { |
| ret = 1; |
| break; |
| } |
| |
| if (max_sectors) |
| range_len = min_t(u32, range_len, |
| (max_sectors - *sectors_defragged) * sectorsize); |
| |
| /* |
| * If defrag_one_range() has updated last_scanned_ret, |
| * our range may already be invalid (e.g. hole punched). |
| * Skip if our range is before last_scanned_ret, as there is |
| * no need to defrag the range anymore. |
| */ |
| if (entry->start + range_len <= *last_scanned_ret) |
| continue; |
| |
| if (ra) |
| page_cache_sync_readahead(inode->vfs_inode.i_mapping, |
| ra, NULL, entry->start >> PAGE_SHIFT, |
| ((entry->start + range_len - 1) >> PAGE_SHIFT) - |
| (entry->start >> PAGE_SHIFT) + 1); |
| /* |
| * Here we may not defrag any range if holes are punched before |
| * we locked the pages. |
| * But that's fine, it only affects the @sectors_defragged |
| * accounting. |
| */ |
| ret = defrag_one_range(inode, entry->start, range_len, |
| extent_thresh, newer_than, do_compress, |
| last_scanned_ret); |
| if (ret < 0) |
| break; |
| *sectors_defragged += range_len >> |
| inode->root->fs_info->sectorsize_bits; |
| } |
| out: |
| list_for_each_entry_safe(entry, tmp, &target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| if (ret >= 0) |
| *last_scanned_ret = max(*last_scanned_ret, start + len); |
| return ret; |
| } |
| |
| /* |
| * Entry point to file defragmentation. |
| * |
| * @inode: inode to be defragged |
| * @ra: readahead state (can be NUL) |
| * @range: defrag options including range and flags |
| * @newer_than: minimum transid to defrag |
| * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode |
| * will be defragged. |
| * |
| * Return <0 for error. |
| * Return >=0 for the number of sectors defragged, and range->start will be updated |
| * to indicate the file offset where next defrag should be started at. |
| * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without |
| * defragging all the range). |
| */ |
| int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, |
| struct btrfs_ioctl_defrag_range_args *range, |
| u64 newer_than, unsigned long max_to_defrag) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| unsigned long sectors_defragged = 0; |
| u64 isize = i_size_read(inode); |
| u64 cur; |
| u64 last_byte; |
| bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; |
| bool ra_allocated = false; |
| int compress_type = BTRFS_COMPRESS_ZLIB; |
| int ret = 0; |
| u32 extent_thresh = range->extent_thresh; |
| pgoff_t start_index; |
| |
| if (isize == 0) |
| return 0; |
| |
| if (range->start >= isize) |
| return -EINVAL; |
| |
| if (do_compress) { |
| if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) |
| return -EINVAL; |
| if (range->compress_type) |
| compress_type = range->compress_type; |
| } |
| |
| if (extent_thresh == 0) |
| extent_thresh = SZ_256K; |
| |
| if (range->start + range->len > range->start) { |
| /* Got a specific range */ |
| last_byte = min(isize, range->start + range->len); |
| } else { |
| /* Defrag until file end */ |
| last_byte = isize; |
| } |
| |
| /* Align the range */ |
| cur = round_down(range->start, fs_info->sectorsize); |
| last_byte = round_up(last_byte, fs_info->sectorsize) - 1; |
| |
| /* |
| * If we were not given a ra, allocate a readahead context. As |
| * readahead is just an optimization, defrag will work without it so |
| * we don't error out. |
| */ |
| if (!ra) { |
| ra_allocated = true; |
| ra = kzalloc(sizeof(*ra), GFP_KERNEL); |
| if (ra) |
| file_ra_state_init(ra, inode->i_mapping); |
| } |
| |
| /* |
| * Make writeback start from the beginning of the range, so that the |
| * defrag range can be written sequentially. |
| */ |
| start_index = cur >> PAGE_SHIFT; |
| if (start_index < inode->i_mapping->writeback_index) |
| inode->i_mapping->writeback_index = start_index; |
| |
| while (cur < last_byte) { |
| const unsigned long prev_sectors_defragged = sectors_defragged; |
| u64 last_scanned = cur; |
| u64 cluster_end; |
| |
| if (btrfs_defrag_cancelled(fs_info)) { |
| ret = -EAGAIN; |
| break; |
| } |
| |
| /* We want the cluster end at page boundary when possible */ |
| cluster_end = (((cur >> PAGE_SHIFT) + |
| (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; |
| cluster_end = min(cluster_end, last_byte); |
| |
| btrfs_inode_lock(inode, 0); |
| if (IS_SWAPFILE(inode)) { |
| ret = -ETXTBSY; |
| btrfs_inode_unlock(inode, 0); |
| break; |
| } |
| if (!(inode->i_sb->s_flags & SB_ACTIVE)) { |
| btrfs_inode_unlock(inode, 0); |
| break; |
| } |
| if (do_compress) |
| BTRFS_I(inode)->defrag_compress = compress_type; |
| ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, |
| cluster_end + 1 - cur, extent_thresh, |
| newer_than, do_compress, §ors_defragged, |
| max_to_defrag, &last_scanned); |
| |
| if (sectors_defragged > prev_sectors_defragged) |
| balance_dirty_pages_ratelimited(inode->i_mapping); |
| |
| btrfs_inode_unlock(inode, 0); |
| if (ret < 0) |
| break; |
| cur = max(cluster_end + 1, last_scanned); |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| cond_resched(); |
| } |
| |
| if (ra_allocated) |
| kfree(ra); |
| /* |
| * Update range.start for autodefrag, this will indicate where to start |
| * in next run. |
| */ |
| range->start = cur; |
| if (sectors_defragged) { |
| /* |
| * We have defragged some sectors, for compression case they |
| * need to be written back immediately. |
| */ |
| if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| } |
| if (range->compress_type == BTRFS_COMPRESS_LZO) |
| btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); |
| else if (range->compress_type == BTRFS_COMPRESS_ZSTD) |
| btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); |
| ret = sectors_defragged; |
| } |
| if (do_compress) { |
| btrfs_inode_lock(inode, 0); |
| BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; |
| btrfs_inode_unlock(inode, 0); |
| } |
| return ret; |
| } |
| |
| /* |
| * Try to start exclusive operation @type or cancel it if it's running. |
| * |
| * Return: |
| * 0 - normal mode, newly claimed op started |
| * >0 - normal mode, something else is running, |
| * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space |
| * ECANCELED - cancel mode, successful cancel |
| * ENOTCONN - cancel mode, operation not running anymore |
| */ |
| static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, |
| enum btrfs_exclusive_operation type, bool cancel) |
| { |
| if (!cancel) { |
| /* Start normal op */ |
| if (!btrfs_exclop_start(fs_info, type)) |
| return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| /* Exclusive operation is now claimed */ |
| return 0; |
| } |
| |
| /* Cancel running op */ |
| if (btrfs_exclop_start_try_lock(fs_info, type)) { |
| /* |
| * This blocks any exclop finish from setting it to NONE, so we |
| * request cancellation. Either it runs and we will wait for it, |
| * or it has finished and no waiting will happen. |
| */ |
| atomic_inc(&fs_info->reloc_cancel_req); |
| btrfs_exclop_start_unlock(fs_info); |
| |
| if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) |
| wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, |
| TASK_INTERRUPTIBLE); |
| |
| return -ECANCELED; |
| } |
| |
| /* Something else is running or none */ |
| return -ENOTCONN; |
| } |
| |
| static noinline int btrfs_ioctl_resize(struct file *file, |
| void __user *arg) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| u64 new_size; |
| u64 old_size; |
| u64 devid = 1; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_vol_args *vol_args; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device = NULL; |
| char *sizestr; |
| char *retptr; |
| char *devstr = NULL; |
| int ret = 0; |
| int mod = 0; |
| bool cancel; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| /* |
| * Read the arguments before checking exclusivity to be able to |
| * distinguish regular resize and cancel |
| */ |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto out_drop; |
| } |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| sizestr = vol_args->name; |
| cancel = (strcmp("cancel", sizestr) == 0); |
| ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); |
| if (ret) |
| goto out_free; |
| /* Exclusive operation is now claimed */ |
| |
| devstr = strchr(sizestr, ':'); |
| if (devstr) { |
| sizestr = devstr + 1; |
| *devstr = '\0'; |
| devstr = vol_args->name; |
| ret = kstrtoull(devstr, 10, &devid); |
| if (ret) |
| goto out_finish; |
| if (!devid) { |
| ret = -EINVAL; |
| goto out_finish; |
| } |
| btrfs_info(fs_info, "resizing devid %llu", devid); |
| } |
| |
| args.devid = devid; |
| device = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!device) { |
| btrfs_info(fs_info, "resizer unable to find device %llu", |
| devid); |
| ret = -ENODEV; |
| goto out_finish; |
| } |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| btrfs_info(fs_info, |
| "resizer unable to apply on readonly device %llu", |
| devid); |
| ret = -EPERM; |
| goto out_finish; |
| } |
| |
| if (!strcmp(sizestr, "max")) |
| new_size = bdev_nr_bytes(device->bdev); |
| else { |
| if (sizestr[0] == '-') { |
| mod = -1; |
| sizestr++; |
| } else if (sizestr[0] == '+') { |
| mod = 1; |
| sizestr++; |
| } |
| new_size = memparse(sizestr, &retptr); |
| if (*retptr != '\0' || new_size == 0) { |
| ret = -EINVAL; |
| goto out_finish; |
| } |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = -EPERM; |
| goto out_finish; |
| } |
| |
| old_size = btrfs_device_get_total_bytes(device); |
| |
| if (mod < 0) { |
| if (new_size > old_size) { |
| ret = -EINVAL; |
| goto out_finish; |
| } |
| new_size = old_size - new_size; |
| } else if (mod > 0) { |
| if (new_size > ULLONG_MAX - old_size) { |
| ret = -ERANGE; |
| goto out_finish; |
| } |
| new_size = old_size + new_size; |
| } |
| |
| if (new_size < SZ_256M) { |
| ret = -EINVAL; |
| goto out_finish; |
| } |
| if (new_size > bdev_nr_bytes(device->bdev)) { |
| ret = -EFBIG; |
| goto out_finish; |
| } |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| |
| if (new_size > old_size) { |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_finish; |
| } |
| ret = btrfs_grow_device(trans, device, new_size); |
| btrfs_commit_transaction(trans); |
| } else if (new_size < old_size) { |
| ret = btrfs_shrink_device(device, new_size); |
| } /* equal, nothing need to do */ |
| |
| if (ret == 0 && new_size != old_size) |
| btrfs_info_in_rcu(fs_info, |
| "resize device %s (devid %llu) from %llu to %llu", |
| rcu_str_deref(device->name), device->devid, |
| old_size, new_size); |
| out_finish: |
| btrfs_exclop_finish(fs_info); |
| out_free: |
| kfree(vol_args); |
| out_drop: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static noinline int __btrfs_ioctl_snap_create(struct file *file, |
| struct user_namespace *mnt_userns, |
| const char *name, unsigned long fd, int subvol, |
| bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| int namelen; |
| int ret = 0; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| namelen = strlen(name); |
| if (strchr(name, '/')) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| if (name[0] == '.' && |
| (namelen == 1 || (name[1] == '.' && namelen == 2))) { |
| ret = -EEXIST; |
| goto out_drop_write; |
| } |
| |
| if (subvol) { |
| ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, |
| namelen, NULL, readonly, inherit); |
| } else { |
| struct fd src = fdget(fd); |
| struct inode *src_inode; |
| if (!src.file) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| src_inode = file_inode(src.file); |
| if (src_inode->i_sb != file_inode(file)->i_sb) { |
| btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, |
| "Snapshot src from another FS"); |
| ret = -EXDEV; |
| } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { |
| /* |
| * Subvolume creation is not restricted, but snapshots |
| * are limited to own subvolumes only |
| */ |
| ret = -EPERM; |
| } else { |
| ret = btrfs_mksnapshot(&file->f_path, mnt_userns, |
| name, namelen, |
| BTRFS_I(src_inode)->root, |
| readonly, inherit); |
| } |
| fdput(src); |
| } |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_create(struct file *file, |
| void __user *arg, int subvol) |
| { |
| struct btrfs_ioctl_vol_args *vol_args; |
| int ret; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| |
| ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), |
| vol_args->name, vol_args->fd, subvol, |
| false, NULL); |
| |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_create_v2(struct file *file, |
| void __user *arg, int subvol) |
| { |
| struct btrfs_ioctl_vol_args_v2 *vol_args; |
| int ret; |
| bool readonly = false; |
| struct btrfs_qgroup_inherit *inherit = NULL; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; |
| |
| if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { |
| ret = -EOPNOTSUPP; |
| goto free_args; |
| } |
| |
| if (vol_args->flags & BTRFS_SUBVOL_RDONLY) |
| readonly = true; |
| if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { |
| u64 nums; |
| |
| if (vol_args->size < sizeof(*inherit) || |
| vol_args->size > PAGE_SIZE) { |
| ret = -EINVAL; |
| goto free_args; |
| } |
| inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); |
| if (IS_ERR(inherit)) { |
| ret = PTR_ERR(inherit); |
| goto free_args; |
| } |
| |
| if (inherit->num_qgroups > PAGE_SIZE || |
| inherit->num_ref_copies > PAGE_SIZE || |
| inherit->num_excl_copies > PAGE_SIZE) { |
| ret = -EINVAL; |
| goto free_inherit; |
| } |
| |
| nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + |
| 2 * inherit->num_excl_copies; |
| if (vol_args->size != struct_size(inherit, qgroups, nums)) { |
| ret = -EINVAL; |
| goto free_inherit; |
| } |
| } |
| |
| ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), |
| vol_args->name, vol_args->fd, subvol, |
| readonly, inherit); |
| if (ret) |
| goto free_inherit; |
| free_inherit: |
| kfree(inherit); |
| free_args: |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, |
| void __user *arg) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret = 0; |
| u64 flags = 0; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) |
| return -EINVAL; |
| |
| down_read(&fs_info->subvol_sem); |
| if (btrfs_root_readonly(root)) |
| flags |= BTRFS_SUBVOL_RDONLY; |
| up_read(&fs_info->subvol_sem); |
| |
| if (copy_to_user(arg, &flags, sizeof(flags))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_subvol_setflags(struct file *file, |
| void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| u64 root_flags; |
| u64 flags; |
| int ret = 0; |
| |
| if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| if (copy_from_user(&flags, arg, sizeof(flags))) { |
| ret = -EFAULT; |
| goto out_drop_write; |
| } |
| |
| if (flags & ~BTRFS_SUBVOL_RDONLY) { |
| ret = -EOPNOTSUPP; |
| goto out_drop_write; |
| } |
| |
| down_write(&fs_info->subvol_sem); |
| |
| /* nothing to do */ |
| if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) |
| goto out_drop_sem; |
| |
| root_flags = btrfs_root_flags(&root->root_item); |
| if (flags & BTRFS_SUBVOL_RDONLY) { |
| btrfs_set_root_flags(&root->root_item, |
| root_flags | BTRFS_ROOT_SUBVOL_RDONLY); |
| } else { |
| /* |
| * Block RO -> RW transition if this subvolume is involved in |
| * send |
| */ |
| spin_lock(&root->root_item_lock); |
| if (root->send_in_progress == 0) { |
| btrfs_set_root_flags(&root->root_item, |
| root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); |
| spin_unlock(&root->root_item_lock); |
| } else { |
| spin_unlock(&root->root_item_lock); |
| btrfs_warn(fs_info, |
| "Attempt to set subvolume %llu read-write during send", |
| root->root_key.objectid); |
| ret = -EPERM; |
| goto out_drop_sem; |
| } |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_reset; |
| } |
| |
| ret = btrfs_update_root(trans, fs_info->tree_root, |
| &root->root_key, &root->root_item); |
| if (ret < 0) { |
| btrfs_end_transaction(trans); |
| goto out_reset; |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| out_reset: |
| if (ret) |
| btrfs_set_root_flags(&root->root_item, root_flags); |
| out_drop_sem: |
| up_write(&fs_info->subvol_sem); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| return ret; |
| } |
| |
| static noinline int key_in_sk(struct btrfs_key *key, |
| struct btrfs_ioctl_search_key *sk) |
| { |
| struct btrfs_key test; |
| int ret; |
| |
| test.objectid = sk->min_objectid; |
| test.type = sk->min_type; |
| test.offset = sk->min_offset; |
| |
| ret = btrfs_comp_cpu_keys(key, &test); |
| if (ret < 0) |
| return 0; |
| |
| test.objectid = sk->max_objectid; |
| test.type = sk->max_type; |
| test.offset = sk->max_offset; |
| |
| ret = btrfs_comp_cpu_keys(key, &test); |
| if (ret > 0) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int copy_to_sk(struct btrfs_path *path, |
| struct btrfs_key *key, |
| struct btrfs_ioctl_search_key *sk, |
| size_t *buf_size, |
| char __user *ubuf, |
| unsigned long *sk_offset, |
| int *num_found) |
| { |
| u64 found_transid; |
| struct extent_buffer *leaf; |
| struct btrfs_ioctl_search_header sh; |
| struct btrfs_key test; |
| unsigned long item_off; |
| unsigned long item_len; |
| int nritems; |
| int i; |
| int slot; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| if (btrfs_header_generation(leaf) > sk->max_transid) { |
| i = nritems; |
| goto advance_key; |
| } |
| found_transid = btrfs_header_generation(leaf); |
| |
| for (i = slot; i < nritems; i++) { |
| item_off = btrfs_item_ptr_offset(leaf, i); |
| item_len = btrfs_item_size(leaf, i); |
| |
| btrfs_item_key_to_cpu(leaf, key, i); |
| if (!key_in_sk(key, sk)) |
| continue; |
| |
| if (sizeof(sh) + item_len > *buf_size) { |
| if (*num_found) { |
| ret = 1; |
| goto out; |
| } |
| |
| /* |
| * return one empty item back for v1, which does not |
| * handle -EOVERFLOW |
| */ |
| |
| *buf_size = sizeof(sh) + item_len; |
| item_len = 0; |
| ret = -EOVERFLOW; |
| } |
| |
| if (sizeof(sh) + item_len + *sk_offset > *buf_size) { |
| ret = 1; |
| goto out; |
| } |
| |
| sh.objectid = key->objectid; |
| sh.offset = key->offset; |
| sh.type = key->type; |
| sh.len = item_len; |
| sh.transid = found_transid; |
| |
| /* |
| * Copy search result header. If we fault then loop again so we |
| * can fault in the pages and -EFAULT there if there's a |
| * problem. Otherwise we'll fault and then copy the buffer in |
| * properly this next time through |
| */ |
| if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { |
| ret = 0; |
| goto out; |
| } |
| |
| *sk_offset += sizeof(sh); |
| |
| if (item_len) { |
| char __user *up = ubuf + *sk_offset; |
| /* |
| * Copy the item, same behavior as above, but reset the |
| * * sk_offset so we copy the full thing again. |
| */ |
| if (read_extent_buffer_to_user_nofault(leaf, up, |
| item_off, item_len)) { |
| ret = 0; |
| *sk_offset -= sizeof(sh); |
| goto out; |
| } |
| |
| *sk_offset += item_len; |
| } |
| (*num_found)++; |
| |
| if (ret) /* -EOVERFLOW from above */ |
| goto out; |
| |
| if (*num_found >= sk->nr_items) { |
| ret = 1; |
| goto out; |
| } |
| } |
| advance_key: |
| ret = 0; |
| test.objectid = sk->max_objectid; |
| test.type = sk->max_type; |
| test.offset = sk->max_offset; |
| if (btrfs_comp_cpu_keys(key, &test) >= 0) |
| ret = 1; |
| else if (key->offset < (u64)-1) |
| key->offset++; |
| else if (key->type < (u8)-1) { |
| key->offset = 0; |
| key->type++; |
| } else if (key->objectid < (u64)-1) { |
| key->offset = 0; |
| key->type = 0; |
| key->objectid++; |
| } else |
| ret = 1; |
| out: |
| /* |
| * 0: all items from this leaf copied, continue with next |
| * 1: * more items can be copied, but unused buffer is too small |
| * * all items were found |
| * Either way, it will stops the loop which iterates to the next |
| * leaf |
| * -EOVERFLOW: item was to large for buffer |
| * -EFAULT: could not copy extent buffer back to userspace |
| */ |
| return ret; |
| } |
| |
| static noinline int search_ioctl(struct inode *inode, |
| struct btrfs_ioctl_search_key *sk, |
| size_t *buf_size, |
| char __user *ubuf) |
| { |
| struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| int ret; |
| int num_found = 0; |
| unsigned long sk_offset = 0; |
| |
| if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { |
| *buf_size = sizeof(struct btrfs_ioctl_search_header); |
| return -EOVERFLOW; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (sk->tree_id == 0) { |
| /* search the root of the inode that was passed */ |
| root = btrfs_grab_root(BTRFS_I(inode)->root); |
| } else { |
| root = btrfs_get_fs_root(info, sk->tree_id, true); |
| if (IS_ERR(root)) { |
| btrfs_free_path(path); |
| return PTR_ERR(root); |
| } |
| } |
| |
| key.objectid = sk->min_objectid; |
| key.type = sk->min_type; |
| key.offset = sk->min_offset; |
| |
| while (1) { |
| ret = -EFAULT; |
| /* |
| * Ensure that the whole user buffer is faulted in at sub-page |
| * granularity, otherwise the loop may live-lock. |
| */ |
| if (fault_in_subpage_writeable(ubuf + sk_offset, |
| *buf_size - sk_offset)) |
| break; |
| |
| ret = btrfs_search_forward(root, &key, path, sk->min_transid); |
| if (ret != 0) { |
| if (ret > 0) |
| ret = 0; |
| goto err; |
| } |
| ret = copy_to_sk(path, &key, sk, buf_size, ubuf, |
| &sk_offset, &num_found); |
| btrfs_release_path(path); |
| if (ret) |
| break; |
| |
| } |
| if (ret > 0) |
| ret = 0; |
| err: |
| sk->nr_items = num_found; |
| btrfs_put_root(root); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_tree_search(struct inode *inode, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_search_args __user *uargs = argp; |
| struct btrfs_ioctl_search_key sk; |
| int ret; |
| size_t buf_size; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(&sk, &uargs->key, sizeof(sk))) |
| return -EFAULT; |
| |
| buf_size = sizeof(uargs->buf); |
| |
| ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); |
| |
| /* |
| * In the origin implementation an overflow is handled by returning a |
| * search header with a len of zero, so reset ret. |
| */ |
| if (ret == -EOVERFLOW) |
| ret = 0; |
| |
| if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_search_args_v2 __user *uarg = argp; |
| struct btrfs_ioctl_search_args_v2 args; |
| int ret; |
| size_t buf_size; |
| const size_t buf_limit = SZ_16M; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| /* copy search header and buffer size */ |
| if (copy_from_user(&args, uarg, sizeof(args))) |
| return -EFAULT; |
| |
| buf_size = args.buf_size; |
| |
| /* limit result size to 16MB */ |
| if (buf_size > buf_limit) |
| buf_size = buf_limit; |
| |
| ret = search_ioctl(inode, &args.key, &buf_size, |
| (char __user *)(&uarg->buf[0])); |
| if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) |
| ret = -EFAULT; |
| else if (ret == -EOVERFLOW && |
| copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| /* |
| * Search INODE_REFs to identify path name of 'dirid' directory |
| * in a 'tree_id' tree. and sets path name to 'name'. |
| */ |
| static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, |
| u64 tree_id, u64 dirid, char *name) |
| { |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| char *ptr; |
| int ret = -1; |
| int slot; |
| int len; |
| int total_len = 0; |
| struct btrfs_inode_ref *iref; |
| struct extent_buffer *l; |
| struct btrfs_path *path; |
| |
| if (dirid == BTRFS_FIRST_FREE_OBJECTID) { |
| name[0]='\0'; |
| return 0; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; |
| |
| root = btrfs_get_fs_root(info, tree_id, true); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| root = NULL; |
| goto out; |
| } |
| |
| key.objectid = dirid; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_backwards(root, &key, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); |
| len = btrfs_inode_ref_name_len(l, iref); |
| ptr -= len + 1; |
| total_len += len + 1; |
| if (ptr < name) { |
| ret = -ENAMETOOLONG; |
| goto out; |
| } |
| |
| *(ptr + len) = '/'; |
| read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); |
| |
| if (key.offset == BTRFS_FIRST_FREE_OBJECTID) |
| break; |
| |
| btrfs_release_path(path); |
| key.objectid = key.offset; |
| key.offset = (u64)-1; |
| dirid = key.objectid; |
| } |
| memmove(name, ptr, total_len); |
| name[total_len] = '\0'; |
| ret = 0; |
| out: |
| btrfs_put_root(root); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, |
| struct inode *inode, |
| struct btrfs_ioctl_ino_lookup_user_args *args) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct super_block *sb = inode->i_sb; |
| struct btrfs_key upper_limit = BTRFS_I(inode)->location; |
| u64 treeid = BTRFS_I(inode)->root->root_key.objectid; |
| u64 dirid = args->dirid; |
| unsigned long item_off; |
| unsigned long item_len; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_root_ref *rref; |
| struct btrfs_root *root = NULL; |
| struct btrfs_path *path; |
| struct btrfs_key key, key2; |
| struct extent_buffer *leaf; |
| struct inode *temp_inode; |
| char *ptr; |
| int slot; |
| int len; |
| int total_len = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * If the bottom subvolume does not exist directly under upper_limit, |
| * construct the path in from the bottom up. |
| */ |
| if (dirid != upper_limit.objectid) { |
| ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; |
| |
| root = btrfs_get_fs_root(fs_info, treeid, true); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| |
| key.objectid = dirid; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| while (1) { |
| ret = btrfs_search_backwards(root, &key, path); |
| if (ret < 0) |
| goto out_put; |
| else if (ret > 0) { |
| ret = -ENOENT; |
| goto out_put; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); |
| len = btrfs_inode_ref_name_len(leaf, iref); |
| ptr -= len + 1; |
| total_len += len + 1; |
| if (ptr < args->path) { |
| ret = -ENAMETOOLONG; |
| goto out_put; |
| } |
| |
| *(ptr + len) = '/'; |
| read_extent_buffer(leaf, ptr, |
| (unsigned long)(iref + 1), len); |
| |
| /* Check the read+exec permission of this directory */ |
| ret = btrfs_previous_item(root, path, dirid, |
| BTRFS_INODE_ITEM_KEY); |
| if (ret < 0) { |
| goto out_put; |
| } else if (ret > 0) { |
| ret = -ENOENT; |
| goto out_put; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key2, slot); |
| if (key2.objectid != dirid) { |
| ret = -ENOENT; |
| goto out_put; |
| } |
| |
| temp_inode = btrfs_iget(sb, key2.objectid, root); |
| if (IS_ERR(temp_inode)) { |
| ret = PTR_ERR(temp_inode); |
| goto out_put; |
| } |
| ret = inode_permission(mnt_userns, temp_inode, |
| MAY_READ | MAY_EXEC); |
| iput(temp_inode); |
| if (ret) { |
| ret = -EACCES; |
| goto out_put; |
| } |
| |
| if (key.offset == upper_limit.objectid) |
| break; |
| if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EACCES; |
| goto out_put; |
| } |
| |
| btrfs_release_path(path); |
| key.objectid = key.offset; |
| key.offset = (u64)-1; |
| dirid = key.objectid; |
| } |
| |
| memmove(args->path, ptr, total_len); |
| args->path[total_len] = '\0'; |
| btrfs_put_root(root); |
| root = NULL; |
| btrfs_release_path(path); |
| } |
| |
| /* Get the bottom subvolume's name from ROOT_REF */ |
| key.objectid = treeid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = args->treeid; |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| item_off = btrfs_item_ptr_offset(leaf, slot); |
| item_len = btrfs_item_size(leaf, slot); |
| /* Check if dirid in ROOT_REF corresponds to passed dirid */ |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Copy subvolume's name */ |
| item_off += sizeof(struct btrfs_root_ref); |
| item_len -= sizeof(struct btrfs_root_ref); |
| read_extent_buffer(leaf, args->name, item_off, item_len); |
| args->name[item_len] = 0; |
| |
| out_put: |
| btrfs_put_root(root); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_ino_lookup_args *args; |
| int ret = 0; |
| |
| args = memdup_user(argp, sizeof(*args)); |
| if (IS_ERR(args)) |
| return PTR_ERR(args); |
| |
| /* |
| * Unprivileged query to obtain the containing subvolume root id. The |
| * path is reset so it's consistent with btrfs_search_path_in_tree. |
| */ |
| if (args->treeid == 0) |
| args->treeid = root->root_key.objectid; |
| |
| if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { |
| args->name[0] = 0; |
| goto out; |
| } |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| ret = btrfs_search_path_in_tree(root->fs_info, |
| args->treeid, args->objectid, |
| args->name); |
| |
| out: |
| if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) |
| ret = -EFAULT; |
| |
| kfree(args); |
| return ret; |
| } |
| |
| /* |
| * Version of ino_lookup ioctl (unprivileged) |
| * |
| * The main differences from ino_lookup ioctl are: |
| * |
| * 1. Read + Exec permission will be checked using inode_permission() during |
| * path construction. -EACCES will be returned in case of failure. |
| * 2. Path construction will be stopped at the inode number which corresponds |
| * to the fd with which this ioctl is called. If constructed path does not |
| * exist under fd's inode, -EACCES will be returned. |
| * 3. The name of bottom subvolume is also searched and filled. |
| */ |
| static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) |
| { |
| struct btrfs_ioctl_ino_lookup_user_args *args; |
| struct inode *inode; |
| int ret; |
| |
| args = memdup_user(argp, sizeof(*args)); |
| if (IS_ERR(args)) |
| return PTR_ERR(args); |
| |
| inode = file_inode(file); |
| |
| if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && |
| BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { |
| /* |
| * The subvolume does not exist under fd with which this is |
| * called |
| */ |
| kfree(args); |
| return -EACCES; |
| } |
| |
| ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); |
| |
| if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) |
| ret = -EFAULT; |
| |
| kfree(args); |
| return ret; |
| } |
| |
| /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ |
| static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) |
| { |
| struct btrfs_ioctl_get_subvol_info_args *subvol_info; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root_item *root_item; |
| struct btrfs_root_ref *rref; |
| struct extent_buffer *leaf; |
| unsigned long item_off; |
| unsigned long item_len; |
| int slot; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); |
| if (!subvol_info) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| fs_info = BTRFS_I(inode)->root->fs_info; |
| |
| /* Get root_item of inode's subvolume */ |
| key.objectid = BTRFS_I(inode)->root->root_key.objectid; |
| root = btrfs_get_fs_root(fs_info, key.objectid, true); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out_free; |
| } |
| root_item = &root->root_item; |
| |
| subvol_info->treeid = key.objectid; |
| |
| subvol_info->generation = btrfs_root_generation(root_item); |
| subvol_info->flags = btrfs_root_flags(root_item); |
| |
| memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); |
| memcpy(subvol_info->parent_uuid, root_item->parent_uuid, |
| BTRFS_UUID_SIZE); |
| memcpy(subvol_info->received_uuid, root_item->received_uuid, |
| BTRFS_UUID_SIZE); |
| |
| subvol_info->ctransid = btrfs_root_ctransid(root_item); |
| subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); |
| subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); |
| |
| subvol_info->otransid = btrfs_root_otransid(root_item); |
| subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); |
| subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); |
| |
| subvol_info->stransid = btrfs_root_stransid(root_item); |
| subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); |
| subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); |
| |
| subvol_info->rtransid = btrfs_root_rtransid(root_item); |
| subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); |
| subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); |
| |
| if (key.objectid != BTRFS_FS_TREE_OBJECTID) { |
| /* Search root tree for ROOT_BACKREF of this subvolume */ |
| key.type = BTRFS_ROOT_BACKREF_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(fs_info->tree_root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid == subvol_info->treeid && |
| key.type == BTRFS_ROOT_BACKREF_KEY) { |
| subvol_info->parent_id = key.offset; |
| |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); |
| |
| item_off = btrfs_item_ptr_offset(leaf, slot) |
| + sizeof(struct btrfs_root_ref); |
| item_len = btrfs_item_size(leaf, slot) |
| - sizeof(struct btrfs_root_ref); |
| read_extent_buffer(leaf, subvol_info->name, |
| item_off, item_len); |
| } else { |
| ret = -ENOENT; |
| goto out; |
| } |
| } |
| |
| if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) |
| ret = -EFAULT; |
| |
| out: |
| btrfs_put_root(root); |
| out_free: |
| btrfs_free_path(path); |
| kfree(subvol_info); |
| return ret; |
| } |
| |
| /* |
| * Return ROOT_REF information of the subvolume containing this inode |
| * except the subvolume name. |
| */ |
| static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; |
| struct btrfs_root_ref *rref; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| u64 objectid; |
| int slot; |
| int ret; |
| u8 found; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| rootrefs = memdup_user(argp, sizeof(*rootrefs)); |
| if (IS_ERR(rootrefs)) { |
| btrfs_free_path(path); |
| return PTR_ERR(rootrefs); |
| } |
| |
| objectid = root->root_key.objectid; |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = rootrefs->min_treeid; |
| found = 0; |
| |
| root = root->fs_info->tree_root; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { |
| ret = -EOVERFLOW; |
| goto out; |
| } |
| |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| rootrefs->rootref[found].treeid = key.offset; |
| rootrefs->rootref[found].dirid = |
| btrfs_root_ref_dirid(leaf, rref); |
| found++; |
| |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| |
| out: |
| if (!ret || ret == -EOVERFLOW) { |
| rootrefs->num_items = found; |
| /* update min_treeid for next search */ |
| if (found) |
| rootrefs->min_treeid = |
| rootrefs->rootref[found - 1].treeid + 1; |
| if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) |
| ret = -EFAULT; |
| } |
| |
| kfree(rootrefs); |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_destroy(struct file *file, |
| void __user *arg, |
| bool destroy_v2) |
| { |
| struct dentry *parent = file->f_path.dentry; |
| struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); |
| struct dentry *dentry; |
| struct inode *dir = d_inode(parent); |
| struct inode *inode; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *dest = NULL; |
| struct btrfs_ioctl_vol_args *vol_args = NULL; |
| struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; |
| struct user_namespace *mnt_userns = file_mnt_user_ns(file); |
| char *subvol_name, *subvol_name_ptr = NULL; |
| int subvol_namelen; |
| int err = 0; |
| bool destroy_parent = false; |
| |
| /* We don't support snapshots with extent tree v2 yet. */ |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, |
| "extent tree v2 doesn't support snapshot deletion yet"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (destroy_v2) { |
| vol_args2 = memdup_user(arg, sizeof(*vol_args2)); |
| if (IS_ERR(vol_args2)) |
| return PTR_ERR(vol_args2); |
| |
| if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| /* |
| * If SPEC_BY_ID is not set, we are looking for the subvolume by |
| * name, same as v1 currently does. |
| */ |
| if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { |
| vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; |
| subvol_name = vol_args2->name; |
| |
| err = mnt_want_write_file(file); |
| if (err) |
| goto out; |
| } else { |
| struct inode *old_dir; |
| |
| if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = mnt_want_write_file(file); |
| if (err) |
| goto out; |
| |
| dentry = btrfs_get_dentry(fs_info->sb, |
| BTRFS_FIRST_FREE_OBJECTID, |
| vol_args2->subvolid, 0, 0); |
| if (IS_ERR(dentry)) { |
| err = PTR_ERR(dentry); |
| goto out_drop_write; |
| } |
| |
| /* |
| * Change the default parent since the subvolume being |
| * deleted can be outside of the current mount point. |
| */ |
| parent = btrfs_get_parent(dentry); |
| |
| /* |
| * At this point dentry->d_name can point to '/' if the |
| * subvolume we want to destroy is outsite of the |
| * current mount point, so we need to release the |
| * current dentry and execute the lookup to return a new |
| * one with ->d_name pointing to the |
| * <mount point>/subvol_name. |
| */ |
| dput(dentry); |
| if (IS_ERR(parent)) { |
| err = PTR_ERR(parent); |
| goto out_drop_write; |
| } |
| old_dir = dir; |
| dir = d_inode(parent); |
| |
| /* |
| * If v2 was used with SPEC_BY_ID, a new parent was |
| * allocated since the subvolume can be outside of the |
| * current mount point. Later on we need to release this |
| * new parent dentry. |
| */ |
| destroy_parent = true; |
| |
| /* |
| * On idmapped mounts, deletion via subvolid is |
| * restricted to subvolumes that are immediate |
| * ancestors of the inode referenced by the file |
| * descriptor in the ioctl. Otherwise the idmapping |
| * could potentially be abused to delete subvolumes |
| * anywhere in the filesystem the user wouldn't be able |
| * to delete without an idmapped mount. |
| */ |
| if (old_dir != dir && mnt_userns != &init_user_ns) { |
| err = -EOPNOTSUPP; |
| goto free_parent; |
| } |
| |
| subvol_name_ptr = btrfs_get_subvol_name_from_objectid( |
| fs_info, vol_args2->subvolid); |
| if (IS_ERR(subvol_name_ptr)) { |
| err = PTR_ERR(subvol_name_ptr); |
| goto free_parent; |
| } |
| /* subvol_name_ptr is already nul terminated */ |
| subvol_name = (char *)kbasename(subvol_name_ptr); |
| } |
| } else { |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = 0; |
| subvol_name = vol_args->name; |
| |
| err = mnt_want_write_file(file); |
| if (err) |
| goto out; |
| } |
| |
| subvol_namelen = strlen(subvol_name); |
| |
| if (strchr(subvol_name, '/') || |
| strncmp(subvol_name, "..", subvol_namelen) == 0) { |
| err = -EINVAL; |
| goto free_subvol_name; |
| } |
| |
| if (!S_ISDIR(dir->i_mode)) { |
| err = -ENOTDIR; |
| goto free_subvol_name; |
| } |
| |
| err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); |
| if (err == -EINTR) |
| goto free_subvol_name; |
| dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); |
| if (IS_ERR(dentry)) { |
| err = PTR_ERR(dentry); |
| goto out_unlock_dir; |
| } |
| |
| if (d_really_is_negative(dentry)) { |
| err = -ENOENT; |
| goto out_dput; |
| } |
| |
| inode = d_inode(dentry); |
| dest = BTRFS_I(inode)->root; |
| if (!capable(CAP_SYS_ADMIN)) { |
| /* |
| * Regular user. Only allow this with a special mount |
| * option, when the user has write+exec access to the |
| * subvol root, and when rmdir(2) would have been |
| * allowed. |
| * |
| * Note that this is _not_ check that the subvol is |
| * empty or doesn't contain data that we wouldn't |
| * otherwise be able to delete. |
| * |
| * Users who want to delete empty subvols should try |
| * rmdir(2). |
| */ |
| err = -EPERM; |
| if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) |
| goto out_dput; |
| |
| /* |
| * Do not allow deletion if the parent dir is the same |
| * as the dir to be deleted. That means the ioctl |
| * must be called on the dentry referencing the root |
| * of the subvol, not a random directory contained |
| * within it. |
| */ |
| err = -EINVAL; |
| if (root == dest) |
| goto out_dput; |
| |
| err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); |
| if (err) |
| goto out_dput; |
| } |
| |
| /* check if subvolume may be deleted by a user */ |
| err = btrfs_may_delete(mnt_userns, dir, dentry, 1); |
| if (err) |
| goto out_dput; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| err = -EINVAL; |
| goto out_dput; |
| } |
| |
| btrfs_inode_lock(inode, 0); |
| err = btrfs_delete_subvolume(dir, dentry); |
| btrfs_inode_unlock(inode, 0); |
| if (!err) |
| d_delete_notify(dir, dentry); |
| |
| out_dput: |
| dput(dentry); |
| out_unlock_dir: |
| btrfs_inode_unlock(dir, 0); |
| free_subvol_name: |
| kfree(subvol_name_ptr); |
| free_parent: |
| if (destroy_parent) |
| dput(parent); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| kfree(vol_args2); |
| kfree(vol_args); |
| return err; |
| } |
| |
| static int btrfs_ioctl_defrag(struct file *file, void __user *argp) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_defrag_range_args range = {0}; |
| int ret; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (btrfs_root_readonly(root)) { |
| ret = -EROFS; |
| goto out; |
| } |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFDIR: |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out; |
| } |
| ret = btrfs_defrag_root(root); |
| break; |
| case S_IFREG: |
| /* |
| * Note that this does not check the file descriptor for write |
| * access. This prevents defragmenting executables that are |
| * running and allows defrag on files open in read-only mode. |
| */ |
| if (!capable(CAP_SYS_ADMIN) && |
| inode_permission(&init_user_ns, inode, MAY_WRITE)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| if (argp) { |
| if (copy_from_user(&range, argp, sizeof(range))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| /* compression requires us to start the IO */ |
| if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { |
| range.flags |= BTRFS_DEFRAG_RANGE_START_IO; |
| range.extent_thresh = (u32)-1; |
| } |
| } else { |
| /* the rest are all set to zero by kzalloc */ |
| range.len = (u64)-1; |
| } |
| ret = btrfs_defrag_file(file_inode(file), &file->f_ra, |
| &range, BTRFS_OLDEST_GENERATION, 0); |
| if (ret > 0) |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| out: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) |
| { |
| struct btrfs_ioctl_vol_args *vol_args; |
| bool restore_op = false; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); |
| return -EINVAL; |
| } |
| |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { |
| if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) |
| return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| |
| /* |
| * We can do the device add because we have a paused balanced, |
| * change the exclusive op type and remember we should bring |
| * back the paused balance |
| */ |
| fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; |
| btrfs_exclop_start_unlock(fs_info); |
| restore_op = true; |
| } |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto out; |
| } |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| ret = btrfs_init_new_device(fs_info, vol_args->name); |
| |
| if (!ret) |
| btrfs_info(fs_info, "disk added %s", vol_args->name); |
| |
| kfree(vol_args); |
| out: |
| if (restore_op) |
| btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); |
| else |
| btrfs_exclop_finish(fs_info); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_vol_args_v2 *vol_args; |
| struct block_device *bdev = NULL; |
| fmode_t mode; |
| int ret; |
| bool cancel = false; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| |
| if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; |
| if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { |
| args.devid = vol_args->devid; |
| } else if (!strcmp("cancel", vol_args->name)) { |
| cancel = true; |
| } else { |
| ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); |
| if (ret) |
| goto out; |
| } |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, |
| cancel); |
| if (ret) |
| goto err_drop; |
| |
| /* Exclusive operation is now claimed */ |
| ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); |
| |
| btrfs_exclop_finish(fs_info); |
| |
| if (!ret) { |
| if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) |
| btrfs_info(fs_info, "device deleted: id %llu", |
| vol_args->devid); |
| else |
| btrfs_info(fs_info, "device deleted: %s", |
| vol_args->name); |
| } |
| err_drop: |
| mnt_drop_write_file(file); |
| if (bdev) |
| blkdev_put(bdev, mode); |
| out: |
| btrfs_put_dev_args_from_path(&args); |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_vol_args *vol_args; |
| struct block_device *bdev = NULL; |
| fmode_t mode; |
| int ret; |
| bool cancel = false; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| if (!strcmp("cancel", vol_args->name)) { |
| cancel = true; |
| } else { |
| ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); |
| if (ret) |
| goto out; |
| } |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, |
| cancel); |
| if (ret == 0) { |
| ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); |
| if (!ret) |
| btrfs_info(fs_info, "disk deleted %s", vol_args->name); |
| btrfs_exclop_finish(fs_info); |
| } |
| |
| mnt_drop_write_file(file); |
| if (bdev) |
| blkdev_put(bdev, mode); |
| out: |
| btrfs_put_dev_args_from_path(&args); |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_fs_info_args *fi_args; |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 flags_in; |
| int ret = 0; |
| |
| fi_args = memdup_user(arg, sizeof(*fi_args)); |
| if (IS_ERR(fi_args)) |
| return PTR_ERR(fi_args); |
| |
| flags_in = fi_args->flags; |
| memset(fi_args, 0, sizeof(*fi_args)); |
| |
| rcu_read_lock(); |
| fi_args->num_devices = fs_devices->num_devices; |
| |
| list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { |
| if (device->devid > fi_args->max_id) |
| fi_args->max_id = device->devid; |
| } |
| rcu_read_unlock(); |
| |
| memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); |
| fi_args->nodesize = fs_info->nodesize; |
| fi_args->sectorsize = fs_info->sectorsize; |
| fi_args->clone_alignment = fs_info->sectorsize; |
| |
| if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { |
| fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); |
| fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; |
| } |
| |
| if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { |
| fi_args->generation = fs_info->generation; |
| fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; |
| } |
| |
| if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { |
| memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, |
| sizeof(fi_args->metadata_uuid)); |
| fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; |
| } |
| |
| if (copy_to_user(arg, fi_args, sizeof(*fi_args))) |
| ret = -EFAULT; |
| |
| kfree(fi_args); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_ioctl_dev_info_args *di_args; |
| struct btrfs_device *dev; |
| int ret = 0; |
| |
| di_args = memdup_user(arg, sizeof(*di_args)); |
| if (IS_ERR(di_args)) |
| return PTR_ERR(di_args); |
| |
| args.devid = di_args->devid; |
| if (!btrfs_is_empty_uuid(di_args->uuid)) |
| args.uuid = di_args->uuid; |
| |
| rcu_read_lock(); |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!dev) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| di_args->devid = dev->devid; |
| di_args->bytes_used = btrfs_device_get_bytes_used(dev); |
| di_args->total_bytes = btrfs_device_get_total_bytes(dev); |
| memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); |
| if (dev->name) { |
| strncpy(di_args->path, rcu_str_deref(dev->name), |
| sizeof(di_args->path) - 1); |
| di_args->path[sizeof(di_args->path) - 1] = 0; |
| } else { |
| di_args->path[0] = '\0'; |
| } |
| |
| out: |
| rcu_read_unlock(); |
| if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) |
| ret = -EFAULT; |
| |
| kfree(di_args); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_root *new_root; |
| struct btrfs_dir_item *di; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path = NULL; |
| struct btrfs_disk_key disk_key; |
| u64 objectid = 0; |
| u64 dir_id; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (copy_from_user(&objectid, argp, sizeof(objectid))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| if (!objectid) |
| objectid = BTRFS_FS_TREE_OBJECTID; |
| |
| new_root = btrfs_get_fs_root(fs_info, objectid, true); |
| if (IS_ERR(new_root)) { |
| ret = PTR_ERR(new_root); |
| goto out; |
| } |
| if (!is_fstree(new_root->root_key.objectid)) { |
| ret = -ENOENT; |
| goto out_free; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out_free; |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_free; |
| } |
| |
| dir_id = btrfs_super_root_dir(fs_info->super_copy); |
| di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, |
| dir_id, "default", 7, 1); |
| if (IS_ERR_OR_NULL(di)) { |
| btrfs_release_path(path); |
| btrfs_end_transaction(trans); |
| btrfs_err(fs_info, |
| "Umm, you don't have the default diritem, this isn't going to work"); |
| ret = -ENOENT; |
| goto out_free; |
| } |
| |
| btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); |
| btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_release_path(path); |
| |
| btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); |
| btrfs_end_transaction(trans); |
| out_free: |
| btrfs_put_root(new_root); |
| btrfs_free_path(path); |
| out: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static void get_block_group_info(struct list_head *groups_list, |
| struct btrfs_ioctl_space_info *space) |
| { |
| struct btrfs_block_group *block_group; |
| |
| space->total_bytes = 0; |
| space->used_bytes = 0; |
| space->flags = 0; |
| list_for_each_entry(block_group, groups_list, list) { |
| space->flags = block_group->flags; |
| space->total_bytes += block_group->length; |
| space->used_bytes += block_group->used; |
| } |
| } |
| |
| static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_space_args space_args; |
| struct btrfs_ioctl_space_info space; |
| struct btrfs_ioctl_space_info *dest; |
| struct btrfs_ioctl_space_info *dest_orig; |
| struct btrfs_ioctl_space_info __user *user_dest; |
| struct btrfs_space_info *info; |
| static const u64 types[] = { |
| BTRFS_BLOCK_GROUP_DATA, |
| BTRFS_BLOCK_GROUP_SYSTEM, |
| BTRFS_BLOCK_GROUP_METADATA, |
| BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA |
| }; |
| int num_types = 4; |
| int alloc_size; |
| int ret = 0; |
| u64 slot_count = 0; |
| int i, c; |
| |
| if (copy_from_user(&space_args, |
| (struct btrfs_ioctl_space_args __user *)arg, |
| sizeof(space_args))) |
| return -EFAULT; |
| |
| for (i = 0; i < num_types; i++) { |
| struct btrfs_space_info *tmp; |
| |
| info = NULL; |
| list_for_each_entry(tmp, &fs_info->space_info, list) { |
| if (tmp->flags == types[i]) { |
| info = tmp; |
| break; |
| } |
| } |
| |
| if (!info) |
| continue; |
| |
| down_read(&info->groups_sem); |
| for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { |
| if (!list_empty(&info->block_groups[c])) |
| slot_count++; |
| } |
| up_read(&info->groups_sem); |
| } |
| |
| /* |
| * Global block reserve, exported as a space_info |
| */ |
| slot_count++; |
| |
| /* space_slots == 0 means they are asking for a count */ |
| if (space_args.space_slots == 0) { |
| space_args.total_spaces = slot_count; |
| goto out; |
| } |
| |
| slot_count = min_t(u64, space_args.space_slots, slot_count); |
| |
| alloc_size = sizeof(*dest) * slot_count; |
| |
| /* we generally have at most 6 or so space infos, one for each raid |
| * level. So, a whole page should be more than enough for everyone |
| */ |
| if (alloc_size > PAGE_SIZE) |
| return -ENOMEM; |
| |
| space_args.total_spaces = 0; |
| dest = kmalloc(alloc_size, GFP_KERNEL); |
| if (!dest) |
| return -ENOMEM; |
| dest_orig = dest; |
| |
| /* now we have a buffer to copy into */ |
| for (i = 0; i < num_types; i++) { |
| struct btrfs_space_info *tmp; |
| |
| if (!slot_count) |
| break; |
| |
| info = NULL; |
| list_for_each_entry(tmp, &fs_info->space_info, list) { |
| if (tmp->flags == types[i]) { |
| info = tmp; |
| break; |
| } |
| } |
| |
| if (!info) |
| continue; |
| down_read(&info->groups_sem); |
| for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { |
| if (!list_empty(&info->block_groups[c])) { |
| get_block_group_info(&info->block_groups[c], |
| &space); |
| memcpy(dest, &space, sizeof(space)); |
| dest++; |
| space_args.total_spaces++; |
| slot_count--; |
| } |
| if (!slot_count) |
| break; |
| } |
| up_read(&info->groups_sem); |
| } |
| |
| /* |
| * Add global block reserve |
| */ |
| if (slot_count) { |
| struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| |
| spin_lock(&block_rsv->lock); |
| space.total_bytes = block_rsv->size; |
| space.used_bytes = block_rsv->size - block_rsv->reserved; |
| spin_unlock(&block_rsv->lock); |
| space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; |
| memcpy(dest, &space, sizeof(space)); |
| space_args.total_spaces++; |
| } |
| |
| user_dest = (struct btrfs_ioctl_space_info __user *) |
| (arg + sizeof(struct btrfs_ioctl_space_args)); |
| |
| if (copy_to_user(user_dest, dest_orig, alloc_size)) |
| ret = -EFAULT; |
| |
| kfree(dest_orig); |
| out: |
| if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, |
| void __user *argp) |
| { |
| struct btrfs_trans_handle *trans; |
| u64 transid; |
| |
| trans = btrfs_attach_transaction_barrier(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT) |
| return PTR_ERR(trans); |
| |
| /* No running transaction, don't bother */ |
| transid = root->fs_info->last_trans_committed; |
| goto out; |
| } |
| transid = trans->transid; |
| btrfs_commit_transaction_async(trans); |
| out: |
| if (argp) |
| if (copy_to_user(argp, &transid, sizeof(transid))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, |
| void __user *argp) |
| { |
| u64 transid; |
| |
| if (argp) { |
| if (copy_from_user(&transid, argp, sizeof(transid))) |
| return -EFAULT; |
| } else { |
| transid = 0; /* current trans */ |
| } |
| return btrfs_wait_for_commit(fs_info, transid); |
| } |
| |
| static long btrfs_ioctl_scrub(struct file *file, void __user *arg) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); |
| struct btrfs_ioctl_scrub_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); |
| return -EINVAL; |
| } |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| if (!(sa->flags & BTRFS_SCRUB_READONLY)) { |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| } |
| |
| ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, |
| &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, |
| 0); |
| |
| /* |
| * Copy scrub args to user space even if btrfs_scrub_dev() returned an |
| * error. This is important as it allows user space to know how much |
| * progress scrub has done. For example, if scrub is canceled we get |
| * -ECANCELED from btrfs_scrub_dev() and return that error back to user |
| * space. Later user space can inspect the progress from the structure |
| * btrfs_ioctl_scrub_args and resume scrub from where it left off |
| * previously (btrfs-progs does this). |
| * If we fail to copy the btrfs_ioctl_scrub_args structure to user space |
| * then return -EFAULT to signal the structure was not copied or it may |
| * be corrupt and unreliable due to a partial copy. |
| */ |
| if (copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| if (!(sa->flags & BTRFS_SCRUB_READONLY)) |
| mnt_drop_write_file(file); |
| out: |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) |
| { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| return btrfs_scrub_cancel(fs_info); |
| } |
| |
| static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_scrub_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); |
| |
| if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_get_dev_stats *sa; |
| int ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { |
| kfree(sa); |
| return -EPERM; |
| } |
| |
| ret = btrfs_get_dev_stats(fs_info, sa); |
| |
| if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_dev_replace_args *p; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); |
| return -EINVAL; |
| } |
| |
| p = memdup_user(arg, sizeof(*p)); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| switch (p->cmd) { |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_START: |
| if (sb_rdonly(fs_info->sb)) { |
| ret = -EROFS; |
| goto out; |
| } |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| } else { |
| ret = btrfs_dev_replace_by_ioctl(fs_info, p); |
| btrfs_exclop_finish(fs_info); |
| } |
| break; |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: |
| btrfs_dev_replace_status(fs_info, p); |
| ret = 0; |
| break; |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: |
| p->result = btrfs_dev_replace_cancel(fs_info); |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) |
| ret = -EFAULT; |
| out: |
| kfree(p); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) |
| { |
| int ret = 0; |
| int i; |
| u64 rel_ptr; |
| int size; |
| struct btrfs_ioctl_ino_path_args *ipa = NULL; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_path *path; |
| |
| if (!capable(CAP_DAC_READ_SEARCH)) |
| return -EPERM; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ipa = memdup_user(arg, sizeof(*ipa)); |
| if (IS_ERR(ipa)) { |
| ret = PTR_ERR(ipa); |
| ipa = NULL; |
| goto out; |
| } |
| |
| size = min_t(u32, ipa->size, 4096); |
| ipath = init_ipath(size, root, path); |
| if (IS_ERR(ipath)) { |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto out; |
| } |
| |
| ret = paths_from_inode(ipa->inum, ipath); |
| if (ret < 0) |
| goto out; |
| |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) { |
| rel_ptr = ipath->fspath->val[i] - |
| (u64)(unsigned long)ipath->fspath->val; |
| ipath->fspath->val[i] = rel_ptr; |
| } |
| |
| ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, |
| ipath->fspath, size); |
| if (ret) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| out: |
| btrfs_free_path(path); |
| free_ipath(ipath); |
| kfree(ipa); |
| |
| return ret; |
| } |
| |
| static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, |
| void __user *arg, int version) |
| { |
| int ret = 0; |
| int size; |
| struct btrfs_ioctl_logical_ino_args *loi; |
| struct btrfs_data_container *inodes = NULL; |
| struct btrfs_path *path = NULL; |
| bool ignore_offset; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| loi = memdup_user(arg, sizeof(*loi)); |
| if (IS_ERR(loi)) |
| return PTR_ERR(loi); |
| |
| if (version == 1) { |
| ignore_offset = false; |
| size = min_t(u32, loi->size, SZ_64K); |
| } else { |
| /* All reserved bits must be 0 for now */ |
| if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { |
| ret = -EINVAL; |
| goto out_loi; |
| } |
| /* Only accept flags we have defined so far */ |
| if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { |
| ret = -EINVAL; |
| goto out_loi; |
| } |
| ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; |
| size = min_t(u32, loi->size, SZ_16M); |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| inodes = init_data_container(size); |
| if (IS_ERR(inodes)) { |
| ret = PTR_ERR(inodes); |
| inodes = NULL; |
| goto out; |
| } |
| |
| ret = iterate_inodes_from_logical(loi->logical, fs_info, path, |
| inodes, ignore_offset); |
| if (ret == -EINVAL) |
| ret = -ENOENT; |
| if (ret < 0) |
| goto out; |
| |
| ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, |
| size); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| btrfs_free_path(path); |
| kvfree(inodes); |
| out_loi: |
| kfree(loi); |
| |
| return ret; |
| } |
| |
| void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, |
| struct btrfs_ioctl_balance_args *bargs) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| |
| bargs->flags = bctl->flags; |
| |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) |
| bargs->state |= BTRFS_BALANCE_STATE_RUNNING; |
| if (atomic_read(&fs_info->balance_pause_req)) |
| bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; |
| if (atomic_read(&fs_info->balance_cancel_req)) |
| bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; |
| |
| memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); |
| memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); |
| memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); |
| |
| spin_lock(&fs_info->balance_lock); |
| memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| /** |
| * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as |
| * required. |
| * |
| * @fs_info: the filesystem |
| * @excl_acquired: ptr to boolean value which is set to false in case balance |
| * is being resumed |
| * |
| * Return 0 on success in which case both fs_info::balance is acquired as well |
| * as exclusive ops are blocked. In case of failure return an error code. |
| */ |
| static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) |
| { |
| int ret; |
| |
| /* |
| * Exclusive operation is locked. Three possibilities: |
| * (1) some other op is running |
| * (2) balance is running |
| * (3) balance is paused -- special case (think resume) |
| */ |
| while (1) { |
| if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { |
| *excl_acquired = true; |
| mutex_lock(&fs_info->balance_mutex); |
| return 0; |
| } |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (fs_info->balance_ctl) { |
| /* This is either (2) or (3) */ |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| /* This is (2) */ |
| ret = -EINPROGRESS; |
| goto out_failure; |
| |
| } else { |
| mutex_unlock(&fs_info->balance_mutex); |
| /* |
| * Lock released to allow other waiters to |
| * continue, we'll reexamine the status again. |
| */ |
| mutex_lock(&fs_info->balance_mutex); |
| |
| if (fs_info->balance_ctl && |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| /* This is (3) */ |
| *excl_acquired = false; |
| return 0; |
| } |
| } |
| } else { |
| /* This is (1) */ |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| goto out_failure; |
| } |
| |
| mutex_unlock(&fs_info->balance_mutex); |
| } |
| |
| out_failure: |
| mutex_unlock(&fs_info->balance_mutex); |
| *excl_acquired = false; |
| return ret; |
| } |
| |
| static long btrfs_ioctl_balance(struct file *file, void __user *arg) |
| { |
| struct btrfs_root *root = BTRFS_I(file_inode(file))->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_ioctl_balance_args *bargs; |
| struct btrfs_balance_control *bctl; |
| bool need_unlock = true; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| bargs = memdup_user(arg, sizeof(*bargs)); |
| if (IS_ERR(bargs)) { |
| ret = PTR_ERR(bargs); |
| bargs = NULL; |
| goto out; |
| } |
| |
| ret = btrfs_try_lock_balance(fs_info, &need_unlock); |
| if (ret) |
| goto out; |
| |
| lockdep_assert_held(&fs_info->balance_mutex); |
| |
| if (bargs->flags & BTRFS_BALANCE_RESUME) { |
| if (!fs_info->balance_ctl) { |
| ret = -ENOTCONN; |
| goto out_unlock; |
| } |
| |
| bctl = fs_info->balance_ctl; |
| spin_lock(&fs_info->balance_lock); |
| bctl->flags |= BTRFS_BALANCE_RESUME; |
| spin_unlock(&fs_info->balance_lock); |
| btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); |
| |
| goto do_balance; |
| } |
| |
| if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| if (fs_info->balance_ctl) { |
| ret = -EINPROGRESS; |
| goto out_unlock; |
| } |
| |
| bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); |
| if (!bctl) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); |
| memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); |
| memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); |
| |
| bctl->flags = bargs->flags; |
| do_balance: |
| /* |
| * Ownership of bctl and exclusive operation goes to btrfs_balance. |
| * bctl is freed in reset_balance_state, or, if restriper was paused |
| * all the way until unmount, in free_fs_info. The flag should be |
| * cleared after reset_balance_state. |
| */ |
| need_unlock = false; |
| |
| ret = btrfs_balance(fs_info, bctl, bargs); |
| bctl = NULL; |
| |
| if (ret == 0 || ret == -ECANCELED) { |
| if (copy_to_user(arg, bargs, sizeof(*bargs))) |
| ret = -EFAULT; |
| } |
| |
| kfree(bctl); |
| out_unlock: |
| mutex_unlock(&fs_info->balance_mutex); |
| if (need_unlock) |
| btrfs_exclop_finish(fs_info); |
| out: |
| mnt_drop_write_file(file); |
| kfree(bargs); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) |
| { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| switch (cmd) { |
| case BTRFS_BALANCE_CTL_PAUSE: |
| return btrfs_pause_balance(fs_info); |
| case BTRFS_BALANCE_CTL_CANCEL: |
| return btrfs_cancel_balance(fs_info); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_balance_args *bargs; |
| int ret = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| ret = -ENOTCONN; |
| goto out; |
| } |
| |
| bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); |
| if (!bargs) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| btrfs_update_ioctl_balance_args(fs_info, bargs); |
| |
| if (copy_to_user(arg, bargs, sizeof(*bargs))) |
| ret = -EFAULT; |
| |
| kfree(bargs); |
| out: |
| mutex_unlock(&fs_info->balance_mutex); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_quota_ctl_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| down_write(&fs_info->subvol_sem); |
| |
| switch (sa->cmd) { |
| case BTRFS_QUOTA_CTL_ENABLE: |
| ret = btrfs_quota_enable(fs_info); |
| break; |
| case BTRFS_QUOTA_CTL_DISABLE: |
| ret = btrfs_quota_disable(fs_info); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| kfree(sa); |
| up_write(&fs_info->subvol_sem); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_assign_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| if (sa->assign) { |
| ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); |
| } else { |
| ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); |
| } |
| |
| /* update qgroup status and info */ |
| err = btrfs_run_qgroups(trans); |
| if (err < 0) |
| btrfs_handle_fs_error(fs_info, err, |
| "failed to update qgroup status and info"); |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_create_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| if (!sa->qgroupid) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| if (sa->create) { |
| ret = btrfs_create_qgroup(trans, sa->qgroupid); |
| } else { |
| ret = btrfs_remove_qgroup(trans, sa->qgroupid); |
| } |
| |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_limit_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| u64 qgroupid; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| qgroupid = sa->qgroupid; |
| if (!qgroupid) { |
| /* take the current subvol as qgroup */ |
| qgroupid = root->root_key.objectid; |
| } |
| |
| ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); |
| |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_quota_rescan_args *qsa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| qsa = memdup_user(arg, sizeof(*qsa)); |
| if (IS_ERR(qsa)) { |
| ret = PTR_ERR(qsa); |
| goto drop_write; |
| } |
| |
| if (qsa->flags) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = btrfs_qgroup_rescan(fs_info); |
| |
| out: |
| kfree(qsa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_quota_rescan_args qsa = {0}; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { |
| qsa.flags = 1; |
| qsa.progress = fs_info->qgroup_rescan_progress.objectid; |
| } |
| |
| if (copy_to_user(arg, &qsa, sizeof(qsa))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| return btrfs_qgroup_wait_for_completion(fs_info, true); |
| } |
| |
| static long _btrfs_ioctl_set_received_subvol(struct file *file, |
| struct user_namespace *mnt_userns, |
| struct btrfs_ioctl_received_subvol_args *sa) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct btrfs_trans_handle *trans; |
| struct timespec64 ct = current_time(inode); |
| int ret = 0; |
| int received_uuid_changed; |
| |
| if (!inode_owner_or_capable(mnt_userns, inode)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret < 0) |
| return ret; |
| |
| down_write(&fs_info->subvol_sem); |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (btrfs_root_readonly(root)) { |
| ret = -EROFS; |
| goto out; |
| } |
| |
| /* |
| * 1 - root item |
| * 2 - uuid items (received uuid + subvol uuid) |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| |
| sa->rtransid = trans->transid; |
| sa->rtime.sec = ct.tv_sec; |
| sa->rtime.nsec = ct.tv_nsec; |
| |
| received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, |
| BTRFS_UUID_SIZE); |
| if (received_uuid_changed && |
| !btrfs_is_empty_uuid(root_item->received_uuid)) { |
| ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| root->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| } |
| memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); |
| btrfs_set_root_stransid(root_item, sa->stransid); |
| btrfs_set_root_rtransid(root_item, sa->rtransid); |
| btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); |
| btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); |
| btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); |
| btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); |
| |
| ret = btrfs_update_root(trans, fs_info->tree_root, |
| &root->root_key, &root->root_item); |
| if (ret < 0) { |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { |
| ret = btrfs_uuid_tree_add(trans, sa->uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| root->root_key.objectid); |
| if (ret < 0 && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| } |
| ret = btrfs_commit_transaction(trans); |
| out: |
| up_write(&fs_info->subvol_sem); |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| #ifdef CONFIG_64BIT |
| static long btrfs_ioctl_set_received_subvol_32(struct file *file, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; |
| struct btrfs_ioctl_received_subvol_args *args64 = NULL; |
| int ret = 0; |
| |
| args32 = memdup_user(arg, sizeof(*args32)); |
| if (IS_ERR(args32)) |
| return PTR_ERR(args32); |
| |
| args64 = kmalloc(sizeof(*args64), GFP_KERNEL); |
| if (!args64) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); |
| args64->stransid = args32->stransid; |
| args64->rtransid = args32->rtransid; |
| args64->stime.sec = args32->stime.sec; |
| args64->stime.nsec = args32->stime.nsec; |
| args64->rtime.sec = args32->rtime.sec; |
| args64->rtime.nsec = args32->rtime.nsec; |
| args64->flags = args32->flags; |
| |
| ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); |
| if (ret) |
| goto out; |
| |
| memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); |
| args32->stransid = args64->stransid; |
| args32->rtransid = args64->rtransid; |
| args32->stime.sec = args64->stime.sec; |
| args32->stime.nsec = args64->stime.nsec; |
| args32->rtime.sec = args64->rtime.sec; |
| args32->rtime.nsec = args64->rtime.nsec; |
| args32->flags = args64->flags; |
| |
| ret = copy_to_user(arg, args32, sizeof(*args32)); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| kfree(args32); |
| kfree(args64); |
| return ret; |
| } |
| #endif |
| |
| static long btrfs_ioctl_set_received_subvol(struct file *file, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_received_subvol_args *sa = NULL; |
| int ret = 0; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); |
| |
| if (ret) |
| goto out; |
| |
| ret = copy_to_user(arg, sa, sizeof(*sa)); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| kfree(sa); |
| return ret; |
| } |
| |
| static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| size_t len; |
| int ret; |
| char label[BTRFS_LABEL_SIZE]; |
| |
| spin_lock(&fs_info->super_lock); |
| memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); |
| spin_unlock(&fs_info->super_lock); |
| |
| len = strnlen(label, BTRFS_LABEL_SIZE); |
| |
| if (len == BTRFS_LABEL_SIZE) { |
| btrfs_warn(fs_info, |
| "label is too long, return the first %zu bytes", |
| --len); |
| } |
| |
| ret = copy_to_user(arg, label, len); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_trans_handle *trans; |
| char label[BTRFS_LABEL_SIZE]; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(label, arg, sizeof(label))) |
| return -EFAULT; |
| |
| if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { |
| btrfs_err(fs_info, |
| "unable to set label with more than %d bytes", |
| BTRFS_LABEL_SIZE - 1); |
| return -EINVAL; |
| } |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_unlock; |
| } |
| |
| spin_lock(&fs_info->super_lock); |
| strcpy(super_block->label, label); |
| spin_unlock(&fs_info->super_lock); |
| ret = btrfs_commit_transaction(trans); |
| |
| out_unlock: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| #define INIT_FEATURE_FLAGS(suffix) \ |
| { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ |
| .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ |
| .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } |
| |
| int btrfs_ioctl_get_supported_features(void __user *arg) |
| { |
| static const struct btrfs_ioctl_feature_flags features[3] = { |
| INIT_FEATURE_FLAGS(SUPP), |
| INIT_FEATURE_FLAGS(SAFE_SET), |
| INIT_FEATURE_FLAGS(SAFE_CLEAR) |
| }; |
| |
| if (copy_to_user(arg, &features, sizeof(features))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_ioctl_feature_flags features; |
| |
| features.compat_flags = btrfs_super_compat_flags(super_block); |
| features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); |
| features.incompat_flags = btrfs_super_incompat_flags(super_block); |
| |
| if (copy_to_user(arg, &features, sizeof(features))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int check_feature_bits(struct btrfs_fs_info *fs_info, |
| enum btrfs_feature_set set, |
| u64 change_mask, u64 flags, u64 supported_flags, |
| u64 safe_set, u64 safe_clear) |
| { |
| const char *type = btrfs_feature_set_name(set); |
| char *names; |
| u64 disallowed, unsupported; |
| u64 set_mask = flags & change_mask; |
| u64 clear_mask = ~flags & change_mask; |
| |
| unsupported = set_mask & ~supported_flags; |
| if (unsupported) { |
| names = btrfs_printable_features(set, unsupported); |
| if (names) { |
| btrfs_warn(fs_info, |
| "this kernel does not support the %s feature bit%s", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "this kernel does not support %s bits 0x%llx", |
| type, unsupported); |
| return -EOPNOTSUPP; |
| } |
| |
| disallowed = set_mask & ~safe_set; |
| if (disallowed) { |
| names = btrfs_printable_features(set, disallowed); |
| if (names) { |
| btrfs_warn(fs_info, |
| "can't set the %s feature bit%s while mounted", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "can't set %s bits 0x%llx while mounted", |
| type, disallowed); |
| return -EPERM; |
| } |
| |
| disallowed = clear_mask & ~safe_clear; |
| if (disallowed) { |
| names = btrfs_printable_features(set, disallowed); |
| if (names) { |
| btrfs_warn(fs_info, |
| "can't clear the %s feature bit%s while mounted", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "can't clear %s bits 0x%llx while mounted", |
| type, disallowed); |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| #define check_feature(fs_info, change_mask, flags, mask_base) \ |
| check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ |
| BTRFS_FEATURE_ ## mask_base ## _SUPP, \ |
| BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ |
| BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) |
| |
| static int btrfs_ioctl_set_features(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_ioctl_feature_flags flags[2]; |
| struct btrfs_trans_handle *trans; |
| u64 newflags; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(flags, arg, sizeof(flags))) |
| return -EFAULT; |
| |
| /* Nothing to do */ |
| if (!flags[0].compat_flags && !flags[0].compat_ro_flags && |
| !flags[0].incompat_flags) |
| return 0; |
| |
| ret = check_feature(fs_info, flags[0].compat_flags, |
| flags[1].compat_flags, COMPAT); |
| if (ret) |
| return ret; |
| |
| ret = check_feature(fs_info, flags[0].compat_ro_flags, |
| flags[1].compat_ro_flags, COMPAT_RO); |
| if (ret) |
| return ret; |
| |
| ret = check_feature(fs_info, flags[0].incompat_flags, |
| flags[1].incompat_flags, INCOMPAT); |
| if (ret) |
| return ret; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_drop_write; |
| } |
| |
| spin_lock(&fs_info->super_lock); |
| newflags = btrfs_super_compat_flags(super_block); |
| newflags |= flags[0].compat_flags & flags[1].compat_flags; |
| newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); |
| btrfs_set_super_compat_flags(super_block, newflags); |
| |
| newflags = btrfs_super_compat_ro_flags(super_block); |
| newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; |
| newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); |
| btrfs_set_super_compat_ro_flags(super_block, newflags); |
| |
| newflags = btrfs_super_incompat_flags(super_block); |
| newflags |= flags[0].incompat_flags & flags[1].incompat_flags; |
| newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); |
| btrfs_set_super_incompat_flags(super_block, newflags); |
| spin_unlock(&fs_info->super_lock); |
| |
| ret = btrfs_commit_transaction(trans); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| |
| return ret; |
| } |
| |
| static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) |
| { |
| struct btrfs_ioctl_send_args *arg; |
| int ret; |
| |
| if (compat) { |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_send_args_32 args32; |
| |
| ret = copy_from_user(&args32, argp, sizeof(args32)); |
| if (ret) |
| return -EFAULT; |
| arg = kzalloc(sizeof(*arg), GFP_KERNEL); |
| if (!arg) |
| return -ENOMEM; |
| arg->send_fd = args32.send_fd; |
| arg->clone_sources_count = args32.clone_sources_count; |
| arg->clone_sources = compat_ptr(args32.clone_sources); |
| arg->parent_root = args32.parent_root; |
| arg->flags = args32.flags; |
| memcpy(arg->reserved, args32.reserved, |
| sizeof(args32.reserved)); |
| #else |
| return -ENOTTY; |
| #endif |
| } else { |
| arg = memdup_user(argp, sizeof(*arg)); |
| if (IS_ERR(arg)) |
| return PTR_ERR(arg); |
| } |
| ret = btrfs_ioctl_send(inode, arg); |
| kfree(arg); |
| return ret; |
| } |
| |
| static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, |
| bool compat) |
| { |
| struct btrfs_ioctl_encoded_io_args args = { 0 }; |
| size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, |
| flags); |
| size_t copy_end; |
| struct iovec iovstack[UIO_FASTIOV]; |
| struct iovec *iov = iovstack; |
| struct iov_iter iter; |
| loff_t pos; |
| struct kiocb kiocb; |
| ssize_t ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out_acct; |
| } |
| |
| if (compat) { |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_encoded_io_args_32 args32; |
| |
| copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, |
| flags); |
| if (copy_from_user(&args32, argp, copy_end)) { |
| ret = -EFAULT; |
| goto out_acct; |
| } |
| args.iov = compat_ptr(args32.iov); |
| args.iovcnt = args32.iovcnt; |
| args.offset = args32.offset; |
| args.flags = args32.flags; |
| #else |
| return -ENOTTY; |
| #endif |
| } else { |
| copy_end = copy_end_kernel; |
| if (copy_from_user(&args, argp, copy_end)) { |
| ret = -EFAULT; |
| goto out_acct; |
| } |
| } |
| if (args.flags != 0) { |
| ret = -EINVAL; |
| goto out_acct; |
| } |
| |
| ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), |
| &iov, &iter); |
| if (ret < 0) |
| goto out_acct; |
| |
| if (iov_iter_count(&iter) == 0) { |
| ret = 0; |
| goto out_iov; |
| } |
| pos = args.offset; |
| ret = rw_verify_area(READ, file, &pos, args.len); |
| if (ret < 0) |
| goto out_iov; |
| |
| init_sync_kiocb(&kiocb, file); |
| kiocb.ki_pos = pos; |
| |
| ret = btrfs_encoded_read(&kiocb, &iter, &args); |
| if (ret >= 0) { |
| fsnotify_access(file); |
| if (copy_to_user(argp + copy_end, |
| (char *)&args + copy_end_kernel, |
| sizeof(args) - copy_end_kernel)) |
| ret = -EFAULT; |
| } |
| |
| out_iov: |
| kfree(iov); |
| out_acct: |
| if (ret > 0) |
| add_rchar(current, ret); |
| inc_syscr(current); |
| return ret; |
| } |
| |
| static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) |
| { |
| struct btrfs_ioctl_encoded_io_args args; |
| struct iovec iovstack[UIO_FASTIOV]; |
| struct iovec *iov = iovstack; |
| struct iov_iter iter; |
| loff_t pos; |
| struct kiocb kiocb; |
| ssize_t ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out_acct; |
| } |
| |
| if (!(file->f_mode & FMODE_WRITE)) { |
| ret = -EBADF; |
| goto out_acct; |
| } |
| |
| if (compat) { |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_encoded_io_args_32 args32; |
| |
| if (copy_from_user(&args32, argp, sizeof(args32))) { |
| ret = -EFAULT; |
| goto out_acct; |
| } |
| args.iov = compat_ptr(args32.iov); |
| args.iovcnt = args32.iovcnt; |
| args.offset = args32.offset; |
| args.flags = args32.flags; |
| args.len = args32.len; |
| args.unencoded_len = args32.unencoded_len; |
| args.unencoded_offset = args32.unencoded_offset; |
| args.compression = args32.compression; |
| args.encryption = args32.encryption; |
| memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); |
| #else |
| return -ENOTTY; |
| #endif |
| } else { |
| if (copy_from_user(&args, argp, sizeof(args))) { |
| ret = -EFAULT; |
| goto out_acct; |
| } |
| } |
| |
| ret = -EINVAL; |
| if (args.flags != 0) |
| goto out_acct; |
| if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) |
| goto out_acct; |
| if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && |
| args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) |
| goto out_acct; |
| if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || |
| args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) |
| goto out_acct; |
| if (args.unencoded_offset > args.unencoded_len) |
| goto out_acct; |
| if (args.len > args.unencoded_len - args.unencoded_offset) |
| goto out_acct; |
| |
| ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), |
| &iov, &iter); |
| if (ret < 0) |
| goto out_acct; |
| |
| file_start_write(file); |
| |
| if (iov_iter_count(&iter) == 0) { |
| ret = 0; |
| goto out_end_write; |
| } |
| pos = args.offset; |
| ret = rw_verify_area(WRITE, file, &pos, args.len); |
| if (ret < 0) |
| goto out_end_write; |
| |
| init_sync_kiocb(&kiocb, file); |
| ret = kiocb_set_rw_flags(&kiocb, 0); |
| if (ret) |
| goto out_end_write; |
| kiocb.ki_pos = pos; |
| |
| ret = btrfs_do_write_iter(&kiocb, &iter, &args); |
| if (ret > 0) |
| fsnotify_modify(file); |
| |
| out_end_write: |
| file_end_write(file); |
| kfree(iov); |
| out_acct: |
| if (ret > 0) |
| add_wchar(current, ret); |
| inc_syscw(current); |
| return ret; |
| } |
| |
| long btrfs_ioctl(struct file *file, unsigned int |
| cmd, unsigned long arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| void __user *argp = (void __user *)arg; |
| |
| switch (cmd) { |
| case FS_IOC_GETVERSION: |
| return btrfs_ioctl_getversion(inode, argp); |
| case FS_IOC_GETFSLABEL: |
| return btrfs_ioctl_get_fslabel(fs_info, argp); |
| case FS_IOC_SETFSLABEL: |
| return btrfs_ioctl_set_fslabel(file, argp); |
| case FITRIM: |
| return btrfs_ioctl_fitrim(fs_info, argp); |
| case BTRFS_IOC_SNAP_CREATE: |
| return btrfs_ioctl_snap_create(file, argp, 0); |
| case BTRFS_IOC_SNAP_CREATE_V2: |
| return btrfs_ioctl_snap_create_v2(file, argp, 0); |
| case BTRFS_IOC_SUBVOL_CREATE: |
| return btrfs_ioctl_snap_create(file, argp, 1); |
| case BTRFS_IOC_SUBVOL_CREATE_V2: |
| return btrfs_ioctl_snap_create_v2(file, argp, 1); |
| case BTRFS_IOC_SNAP_DESTROY: |
| return btrfs_ioctl_snap_destroy(file, argp, false); |
| case BTRFS_IOC_SNAP_DESTROY_V2: |
| return btrfs_ioctl_snap_destroy(file, argp, true); |
| case BTRFS_IOC_SUBVOL_GETFLAGS: |
| return btrfs_ioctl_subvol_getflags(inode, argp); |
| case BTRFS_IOC_SUBVOL_SETFLAGS: |
| return btrfs_ioctl_subvol_setflags(file, argp); |
| case BTRFS_IOC_DEFAULT_SUBVOL: |
| return btrfs_ioctl_default_subvol(file, argp); |
| case BTRFS_IOC_DEFRAG: |
| return btrfs_ioctl_defrag(file, NULL); |
| case BTRFS_IOC_DEFRAG_RANGE: |
| return btrfs_ioctl_defrag(file, argp); |
| case BTRFS_IOC_RESIZE: |
| return btrfs_ioctl_resize(file, argp); |
| case BTRFS_IOC_ADD_DEV: |
| return btrfs_ioctl_add_dev(fs_info, argp); |
| case BTRFS_IOC_RM_DEV: |
| return btrfs_ioctl_rm_dev(file, argp); |
| case BTRFS_IOC_RM_DEV_V2: |
| return btrfs_ioctl_rm_dev_v2(file, argp); |
| case BTRFS_IOC_FS_INFO: |
| return btrfs_ioctl_fs_info(fs_info, argp); |
| case BTRFS_IOC_DEV_INFO: |
| return btrfs_ioctl_dev_info(fs_info, argp); |
| case BTRFS_IOC_TREE_SEARCH: |
| return btrfs_ioctl_tree_search(inode, argp); |
| case BTRFS_IOC_TREE_SEARCH_V2: |
| return btrfs_ioctl_tree_search_v2(inode, argp); |
| case BTRFS_IOC_INO_LOOKUP: |
| return btrfs_ioctl_ino_lookup(root, argp); |
| case BTRFS_IOC_INO_PATHS: |
| return btrfs_ioctl_ino_to_path(root, argp); |
| case BTRFS_IOC_LOGICAL_INO: |
| return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); |
| case BTRFS_IOC_LOGICAL_INO_V2: |
| return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); |
| case BTRFS_IOC_SPACE_INFO: |
| return btrfs_ioctl_space_info(fs_info, argp); |
| case BTRFS_IOC_SYNC: { |
| int ret; |
| |
| ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); |
| if (ret) |
| return ret; |
| ret = btrfs_sync_fs(inode->i_sb, 1); |
| /* |
| * The transaction thread may want to do more work, |
| * namely it pokes the cleaner kthread that will start |
| * processing uncleaned subvols. |
| */ |
| wake_up_process(fs_info->transaction_kthread); |
| return ret; |
| } |
| case BTRFS_IOC_START_SYNC: |
| return btrfs_ioctl_start_sync(root, argp); |
| case BTRFS_IOC_WAIT_SYNC: |
| return btrfs_ioctl_wait_sync(fs_info, argp); |
| case BTRFS_IOC_SCRUB: |
| return btrfs_ioctl_scrub(file, argp); |
| case BTRFS_IOC_SCRUB_CANCEL: |
| return btrfs_ioctl_scrub_cancel(fs_info); |
| case BTRFS_IOC_SCRUB_PROGRESS: |
| return btrfs_ioctl_scrub_progress(fs_info, argp); |
| case BTRFS_IOC_BALANCE_V2: |
| return btrfs_ioctl_balance(file, argp); |
| case BTRFS_IOC_BALANCE_CTL: |
| return btrfs_ioctl_balance_ctl(fs_info, arg); |
| case BTRFS_IOC_BALANCE_PROGRESS: |
| return btrfs_ioctl_balance_progress(fs_info, argp); |
| case BTRFS_IOC_SET_RECEIVED_SUBVOL: |
| return btrfs_ioctl_set_received_subvol(file, argp); |
| #ifdef CONFIG_64BIT |
| case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: |
| return btrfs_ioctl_set_received_subvol_32(file, argp); |
| #endif |
| case BTRFS_IOC_SEND: |
| return _btrfs_ioctl_send(inode, argp, false); |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| case BTRFS_IOC_SEND_32: |
| return _btrfs_ioctl_send(inode, argp, true); |
| #endif |
| case BTRFS_IOC_GET_DEV_STATS: |
| return btrfs_ioctl_get_dev_stats(fs_info, argp); |
| case BTRFS_IOC_QUOTA_CTL: |
| return btrfs_ioctl_quota_ctl(file, argp); |
| case BTRFS_IOC_QGROUP_ASSIGN: |
| return btrfs_ioctl_qgroup_assign(file, argp); |
| case BTRFS_IOC_QGROUP_CREATE: |
| return btrfs_ioctl_qgroup_create(file, argp); |
| case BTRFS_IOC_QGROUP_LIMIT: |
| return btrfs_ioctl_qgroup_limit(file, argp); |
| case BTRFS_IOC_QUOTA_RESCAN: |
| return btrfs_ioctl_quota_rescan(file, argp); |
| case BTRFS_IOC_QUOTA_RESCAN_STATUS: |
| return btrfs_ioctl_quota_rescan_status(fs_info, argp); |
| case BTRFS_IOC_QUOTA_RESCAN_WAIT: |
| return btrfs_ioctl_quota_rescan_wait(fs_info, argp); |
| case BTRFS_IOC_DEV_REPLACE: |
| return btrfs_ioctl_dev_replace(fs_info, argp); |
| case BTRFS_IOC_GET_SUPPORTED_FEATURES: |
| return btrfs_ioctl_get_supported_features(argp); |
| case BTRFS_IOC_GET_FEATURES: |
| return btrfs_ioctl_get_features(fs_info, argp); |
| case BTRFS_IOC_SET_FEATURES: |
| return btrfs_ioctl_set_features(file, argp); |
| case BTRFS_IOC_GET_SUBVOL_INFO: |
| return btrfs_ioctl_get_subvol_info(inode, argp); |
| case BTRFS_IOC_GET_SUBVOL_ROOTREF: |
| return btrfs_ioctl_get_subvol_rootref(root, argp); |
| case BTRFS_IOC_INO_LOOKUP_USER: |
| return btrfs_ioctl_ino_lookup_user(file, argp); |
| case FS_IOC_ENABLE_VERITY: |
| return fsverity_ioctl_enable(file, (const void __user *)argp); |
| case FS_IOC_MEASURE_VERITY: |
| return fsverity_ioctl_measure(file, argp); |
| case BTRFS_IOC_ENCODED_READ: |
| return btrfs_ioctl_encoded_read(file, argp, false); |
| case BTRFS_IOC_ENCODED_WRITE: |
| return btrfs_ioctl_encoded_write(file, argp, false); |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| case BTRFS_IOC_ENCODED_READ_32: |
| return btrfs_ioctl_encoded_read(file, argp, true); |
| case BTRFS_IOC_ENCODED_WRITE_32: |
| return btrfs_ioctl_encoded_write(file, argp, true); |
| #endif |
| } |
| |
| return -ENOTTY; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| /* |
| * These all access 32-bit values anyway so no further |
| * handling is necessary. |
| */ |
| switch (cmd) { |
| case FS_IOC32_GETVERSION: |
| cmd = FS_IOC_GETVERSION; |
| break; |
| } |
| |
| return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); |
| } |
| #endif |