| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_lib.h" |
| |
| /** |
| * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF |
| * @pf: pointer to the PF structure |
| * @v_opcode: operation code |
| * @v_retval: return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| */ |
| static void |
| ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, |
| enum ice_status v_retval, u8 *msg, u16 msglen) |
| { |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf = pf->vf; |
| int i; |
| |
| for (i = 0; i < pf->num_alloc_vfs; i++, vf++) { |
| /* Not all vfs are enabled so skip the ones that are not */ |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| continue; |
| |
| /* Ignore return value on purpose - a given VF may fail, but |
| * we need to keep going and send to all of them |
| */ |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, |
| msglen, NULL); |
| } |
| } |
| |
| /** |
| * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event |
| * @vf: pointer to the VF structure |
| * @pfe: pointer to the virtchnl_pf_event to set link speed/status for |
| * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* |
| * @link_up: whether or not to set the link up/down |
| */ |
| static void |
| ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, |
| int ice_link_speed, bool link_up) |
| { |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { |
| pfe->event_data.link_event_adv.link_status = link_up; |
| /* Speed in Mbps */ |
| pfe->event_data.link_event_adv.link_speed = |
| ice_conv_link_speed_to_virtchnl(true, ice_link_speed); |
| } else { |
| pfe->event_data.link_event.link_status = link_up; |
| /* Legacy method for virtchnl link speeds */ |
| pfe->event_data.link_event.link_speed = |
| (enum virtchnl_link_speed) |
| ice_conv_link_speed_to_virtchnl(false, ice_link_speed); |
| } |
| } |
| |
| /** |
| * ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status |
| * @vf: pointer to the VF structure |
| * @pfe: pointer to the virtchnl_pf_event to set link speed/status for |
| * @link_up: whether or not to set the link up/down |
| */ |
| static void |
| ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe, |
| bool link_up) |
| { |
| u16 link_speed; |
| |
| if (link_up) |
| link_speed = ICE_AQ_LINK_SPEED_40GB; |
| else |
| link_speed = ICE_AQ_LINK_SPEED_UNKNOWN; |
| |
| ice_set_pfe_link(vf, pfe, link_speed, link_up); |
| } |
| |
| /** |
| * ice_vc_notify_vf_link_state - Inform a VF of link status |
| * @vf: pointer to the VF structure |
| * |
| * send a link status message to a single VF |
| */ |
| static void ice_vc_notify_vf_link_state(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe = { 0 }; |
| struct ice_link_status *ls; |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| ls = &hw->port_info->phy.link_info; |
| |
| pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; |
| pfe.severity = PF_EVENT_SEVERITY_INFO; |
| |
| if (vf->link_forced) |
| ice_set_pfe_link_forced(vf, &pfe, vf->link_up); |
| else |
| ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info & |
| ICE_AQ_LINK_UP); |
| |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, |
| sizeof(pfe), NULL); |
| } |
| |
| /** |
| * ice_get_vf_vector - get VF interrupt vector register offset |
| * @vf_msix: number of MSIx vector per VF on a PF |
| * @vf_id: VF identifier |
| * @i: index of MSIx vector |
| */ |
| static u32 ice_get_vf_vector(int vf_msix, int vf_id, int i) |
| { |
| return ((i == 0) ? VFINT_DYN_CTLN(vf_id) : |
| VFINT_DYN_CTLN(((vf_msix - 1) * (vf_id)) + (i - 1))); |
| } |
| |
| /** |
| * ice_free_vf_res - Free a VF's resources |
| * @vf: pointer to the VF info |
| */ |
| static void ice_free_vf_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| int i, pf_vf_msix; |
| |
| /* First, disable VF's configuration API to prevent OS from |
| * accessing the VF's VSI after it's freed or invalidated. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* free vsi & disconnect it from the parent uplink */ |
| if (vf->lan_vsi_idx) { |
| ice_vsi_release(pf->vsi[vf->lan_vsi_idx]); |
| vf->lan_vsi_idx = 0; |
| vf->lan_vsi_num = 0; |
| vf->num_mac = 0; |
| } |
| |
| pf_vf_msix = pf->num_vf_msix; |
| /* Disable interrupts so that VF starts in a known state */ |
| for (i = 0; i < pf_vf_msix; i++) { |
| u32 reg_idx; |
| |
| reg_idx = ice_get_vf_vector(pf_vf_msix, vf->vf_id, i); |
| wr32(&pf->hw, reg_idx, VFINT_DYN_CTLN_CLEARPBA_M); |
| ice_flush(&pf->hw); |
| } |
| /* reset some of the state variables keeping track of the resources */ |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| } |
| |
| /***********************enable_vf routines*****************************/ |
| |
| /** |
| * ice_dis_vf_mappings |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int first, last, v; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| wr32(hw, VPINT_ALLOC(vf->vf_id), 0); |
| |
| first = vf->first_vector_idx; |
| last = first + pf->num_vf_msix - 1; |
| for (v = first; v <= last; v++) { |
| u32 reg; |
| |
| reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & |
| GLINT_VECT2FUNC_IS_PF_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(&pf->pdev->dev, |
| "Scattered mode for VF Tx queues is not yet implemented\n"); |
| |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(&pf->pdev->dev, |
| "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| |
| /** |
| * ice_free_vfs - Free all VFs |
| * @pf: pointer to the PF structure |
| */ |
| void ice_free_vfs(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int tmp, i; |
| |
| if (!pf->vf) |
| return; |
| |
| while (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| usleep_range(1000, 2000); |
| |
| /* Avoid wait time by stopping all VFs at the same time */ |
| for (i = 0; i < pf->num_alloc_vfs; i++) { |
| if (!test_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states)) |
| continue; |
| |
| /* stop rings without wait time */ |
| ice_vsi_stop_tx_rings(pf->vsi[pf->vf[i].lan_vsi_idx], |
| ICE_NO_RESET, i); |
| ice_vsi_stop_rx_rings(pf->vsi[pf->vf[i].lan_vsi_idx]); |
| |
| clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states); |
| } |
| |
| /* Disable IOV before freeing resources. This lets any VF drivers |
| * running in the host get themselves cleaned up before we yank |
| * the carpet out from underneath their feet. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) |
| pci_disable_sriov(pf->pdev); |
| else |
| dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n"); |
| |
| tmp = pf->num_alloc_vfs; |
| pf->num_vf_qps = 0; |
| pf->num_alloc_vfs = 0; |
| for (i = 0; i < tmp; i++) { |
| if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) { |
| /* disable VF qp mappings */ |
| ice_dis_vf_mappings(&pf->vf[i]); |
| |
| /* Set this state so that assigned VF vectors can be |
| * reclaimed by PF for reuse in ice_vsi_release(). No |
| * need to clear this bit since pf->vf array is being |
| * freed anyways after this for loop |
| */ |
| set_bit(ICE_VF_STATE_CFG_INTR, pf->vf[i].vf_states); |
| ice_free_vf_res(&pf->vf[i]); |
| } |
| } |
| |
| devm_kfree(&pf->pdev->dev, pf->vf); |
| pf->vf = NULL; |
| |
| /* This check is for when the driver is unloaded while VFs are |
| * assigned. Setting the number of VFs to 0 through sysfs is caught |
| * before this function ever gets called. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) { |
| int vf_id; |
| |
| /* Acknowledge VFLR for all VFs. Without this, VFs will fail to |
| * work correctly when SR-IOV gets re-enabled. |
| */ |
| for (vf_id = 0; vf_id < tmp; vf_id++) { |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| } |
| } |
| clear_bit(__ICE_VF_DIS, pf->state); |
| clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| } |
| |
| /** |
| * ice_trigger_vf_reset - Reset a VF on HW |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * Trigger hardware to start a reset for a particular VF. Expects the caller |
| * to wait the proper amount of time to allow hardware to reset the VF before |
| * it cleans up and restores VF functionality. |
| */ |
| static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr) |
| { |
| struct ice_pf *pf = vf->pf; |
| u32 reg, reg_idx, bit_idx; |
| struct ice_hw *hw; |
| int vf_abs_id, i; |
| |
| hw = &pf->hw; |
| vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* Inform VF that it is no longer active, as a warning */ |
| clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| /* Disable VF's configuration API during reset. The flag is re-enabled |
| * in ice_alloc_vf_res(), when it's safe again to access VF's VSI. |
| * It's normally disabled in ice_free_vf_res(), but it's safer |
| * to do it earlier to give some time to finish to any VF config |
| * functions that may still be running at this point. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* In the case of a VFLR, the HW has already reset the VF and we |
| * just need to clean up, so don't hit the VFRTRIG register. |
| */ |
| if (!is_vflr) { |
| /* reset VF using VPGEN_VFRTRIG reg */ |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg |= VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| } |
| /* clear the VFLR bit in GLGEN_VFLRSTAT */ |
| reg_idx = (vf_abs_id) / 32; |
| bit_idx = (vf_abs_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| ice_flush(hw); |
| |
| wr32(hw, PF_PCI_CIAA, |
| VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); |
| for (i = 0; i < 100; i++) { |
| reg = rd32(hw, PF_PCI_CIAD); |
| if ((reg & VF_TRANS_PENDING_M) != 0) |
| dev_err(&pf->pdev->dev, |
| "VF %d PCI transactions stuck\n", vf->vf_id); |
| udelay(1); |
| } |
| } |
| |
| /** |
| * ice_vsi_set_pvid - Set port VLAN id for the VSI |
| * @vsi: the VSI being changed |
| * @vid: the VLAN id to set as a PVID |
| */ |
| static int ice_vsi_set_pvid(struct ice_vsi *vsi, u16 vid) |
| { |
| struct device *dev = &vsi->back->pdev->dev; |
| struct ice_hw *hw = &vsi->back->hw; |
| struct ice_vsi_ctx ctxt = { 0 }; |
| enum ice_status status; |
| |
| ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_TAGGED | |
| ICE_AQ_VSI_PVLAN_INSERT_PVID | |
| ICE_AQ_VSI_VLAN_EMOD_STR; |
| ctxt.info.pvid = cpu_to_le16(vid); |
| ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); |
| |
| status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); |
| if (status) { |
| dev_info(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", |
| status, hw->adminq.sq_last_status); |
| return -EIO; |
| } |
| |
| vsi->info.pvid = ctxt.info.pvid; |
| vsi->info.vlan_flags = ctxt.info.vlan_flags; |
| return 0; |
| } |
| |
| /** |
| * ice_vsi_kill_pvid - Remove port VLAN id from the VSI |
| * @vsi: the VSI being changed |
| */ |
| static int ice_vsi_kill_pvid(struct ice_vsi *vsi) |
| { |
| struct ice_pf *pf = vsi->back; |
| |
| if (ice_vsi_manage_vlan_stripping(vsi, false)) { |
| dev_err(&pf->pdev->dev, "Error removing Port VLAN on VSI %i\n", |
| vsi->vsi_num); |
| return -ENODEV; |
| } |
| |
| vsi->info.pvid = 0; |
| return 0; |
| } |
| |
| /** |
| * ice_vf_vsi_setup - Set up a VF VSI |
| * @pf: board private structure |
| * @pi: pointer to the port_info instance |
| * @vf_id: defines VF id to which this VSI connects. |
| * |
| * Returns pointer to the successfully allocated VSI struct on success, |
| * otherwise returns NULL on failure. |
| */ |
| static struct ice_vsi * |
| ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id) |
| { |
| return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id); |
| } |
| |
| /** |
| * ice_alloc_vsi_res - Setup VF VSI and its resources |
| * @vf: pointer to the VF structure |
| * |
| * Returns 0 on success, negative value on failure |
| */ |
| static int ice_alloc_vsi_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| LIST_HEAD(tmp_add_list); |
| u8 broadcast[ETH_ALEN]; |
| struct ice_vsi *vsi; |
| int status = 0; |
| |
| vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id); |
| |
| if (!vsi) { |
| dev_err(&pf->pdev->dev, "Failed to create VF VSI\n"); |
| return -ENOMEM; |
| } |
| |
| vf->lan_vsi_idx = vsi->idx; |
| vf->lan_vsi_num = vsi->vsi_num; |
| |
| /* first vector index is the VFs OICR index */ |
| vf->first_vector_idx = vsi->hw_base_vector; |
| /* Since hw_base_vector holds the vector where data queue interrupts |
| * starts, increment by 1 since VFs allocated vectors include OICR intr |
| * as well. |
| */ |
| vsi->hw_base_vector += 1; |
| |
| /* Check if port VLAN exist before, and restore it accordingly */ |
| if (vf->port_vlan_id) |
| ice_vsi_set_pvid(vsi, vf->port_vlan_id); |
| |
| eth_broadcast_addr(broadcast); |
| |
| status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); |
| if (status) |
| goto ice_alloc_vsi_res_exit; |
| |
| if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) { |
| status = ice_add_mac_to_list(vsi, &tmp_add_list, |
| vf->dflt_lan_addr.addr); |
| if (status) |
| goto ice_alloc_vsi_res_exit; |
| } |
| |
| status = ice_add_mac(&pf->hw, &tmp_add_list); |
| if (status) |
| dev_err(&pf->pdev->dev, "could not add mac filters\n"); |
| |
| /* Clear this bit after VF initialization since we shouldn't reclaim |
| * and reassign interrupts for synchronous or asynchronous VFR events. |
| * We don't want to reconfigure interrupts since AVF driver doesn't |
| * expect vector assignment to be changed unless there is a request for |
| * more vectors. |
| */ |
| clear_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states); |
| ice_alloc_vsi_res_exit: |
| ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); |
| return status; |
| } |
| |
| /** |
| * ice_alloc_vf_res - Allocate VF resources |
| * @vf: pointer to the VF structure |
| */ |
| static int ice_alloc_vf_res(struct ice_vf *vf) |
| { |
| int status; |
| |
| /* setup VF VSI and necessary resources */ |
| status = ice_alloc_vsi_res(vf); |
| if (status) |
| goto ice_alloc_vf_res_exit; |
| |
| if (vf->trusted) |
| set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| else |
| clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| |
| /* VF is now completely initialized */ |
| set_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| return status; |
| |
| ice_alloc_vf_res_exit: |
| ice_free_vf_res(vf); |
| return status; |
| } |
| |
| /** |
| * ice_ena_vf_mappings |
| * @vf: pointer to the VF structure |
| * |
| * Enable VF vectors and queues allocation by writing the details into |
| * respective registers. |
| */ |
| static void ice_ena_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int first, last, v; |
| struct ice_hw *hw; |
| int abs_vf_id; |
| u32 reg; |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| first = vf->first_vector_idx; |
| last = (first + pf->num_vf_msix) - 1; |
| abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* VF Vector allocation */ |
| reg = (((first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) | |
| ((last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) | |
| VPINT_ALLOC_VALID_M); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), reg); |
| |
| /* map the interrupts to its functions */ |
| for (v = first; v <= last; v++) { |
| reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & |
| GLINT_VECT2FUNC_VF_NUM_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| /* VF Tx queues allocation */ |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), |
| VPLAN_TXQ_MAPENA_TX_ENA_M); |
| /* set the VF PF Tx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & |
| VPLAN_TX_QBASE_VFFIRSTQ_M) | |
| (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & |
| VPLAN_TX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(&pf->pdev->dev, |
| "Scattered mode for VF Tx queues is not yet implemented\n"); |
| } |
| |
| /* VF Rx queues allocation */ |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), |
| VPLAN_RXQ_MAPENA_RX_ENA_M); |
| /* set the VF PF Rx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & |
| VPLAN_RX_QBASE_VFFIRSTQ_M) | |
| (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & |
| VPLAN_RX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(&pf->pdev->dev, |
| "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| } |
| |
| /** |
| * ice_determine_res |
| * @pf: pointer to the PF structure |
| * @avail_res: available resources in the PF structure |
| * @max_res: maximum resources that can be given per VF |
| * @min_res: minimum resources that can be given per VF |
| * |
| * Returns non-zero value if resources (queues/vectors) are available or |
| * returns zero if PF cannot accommodate for all num_alloc_vfs. |
| */ |
| static int |
| ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res) |
| { |
| bool checked_min_res = false; |
| int res; |
| |
| /* start by checking if PF can assign max number of resources for |
| * all num_alloc_vfs. |
| * if yes, return number per VF |
| * If no, divide by 2 and roundup, check again |
| * repeat the loop till we reach a point where even minimum resources |
| * are not available, in that case return 0 |
| */ |
| res = max_res; |
| while ((res >= min_res) && !checked_min_res) { |
| int num_all_res; |
| |
| num_all_res = pf->num_alloc_vfs * res; |
| if (num_all_res <= avail_res) |
| return res; |
| |
| if (res == min_res) |
| checked_min_res = true; |
| |
| res = DIV_ROUND_UP(res, 2); |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_check_avail_res - check if vectors and queues are available |
| * @pf: pointer to the PF structure |
| * |
| * This function is where we calculate actual number of resources for VF VSIs, |
| * we don't reserve ahead of time during probe. Returns success if vectors and |
| * queues resources are available, otherwise returns error code |
| */ |
| static int ice_check_avail_res(struct ice_pf *pf) |
| { |
| u16 num_msix, num_txq, num_rxq; |
| |
| if (!pf->num_alloc_vfs) |
| return -EINVAL; |
| |
| /* Grab from HW interrupts common pool |
| * Note: By the time the user decides it needs more vectors in a VF |
| * its already too late since one must decide this prior to creating the |
| * VF interface. So the best we can do is take a guess as to what the |
| * user might want. |
| * |
| * We have two policies for vector allocation: |
| * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small |
| * number of NFV VFs used for NFV appliances, since this is a special |
| * case, we try to assign maximum vectors per VF (65) as much as |
| * possible, based on determine_resources algorithm. |
| * 2. if num_alloc_vfs is from 17 to 256, then its large number of |
| * regular VFs which are not used for any special purpose. Hence try to |
| * grab default interrupt vectors (5 as supported by AVF driver). |
| */ |
| if (pf->num_alloc_vfs <= 16) { |
| num_msix = ice_determine_res(pf, pf->num_avail_hw_msix, |
| ICE_MAX_INTR_PER_VF, |
| ICE_MIN_INTR_PER_VF); |
| } else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) { |
| num_msix = ice_determine_res(pf, pf->num_avail_hw_msix, |
| ICE_DFLT_INTR_PER_VF, |
| ICE_MIN_INTR_PER_VF); |
| } else { |
| dev_err(&pf->pdev->dev, |
| "Number of VFs %d exceeds max VF count %d\n", |
| pf->num_alloc_vfs, ICE_MAX_VF_COUNT); |
| return -EIO; |
| } |
| |
| if (!num_msix) |
| return -EIO; |
| |
| /* Grab from the common pool |
| * start by requesting Default queues (4 as supported by AVF driver), |
| * Note that, the main difference between queues and vectors is, latter |
| * can only be reserved at init time but queues can be requested by VF |
| * at runtime through Virtchnl, that is the reason we start by reserving |
| * few queues. |
| */ |
| num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF, |
| ICE_MIN_QS_PER_VF); |
| |
| num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF, |
| ICE_MIN_QS_PER_VF); |
| |
| if (!num_txq || !num_rxq) |
| return -EIO; |
| |
| /* since AVF driver works with only queue pairs which means, it expects |
| * to have equal number of Rx and Tx queues, so take the minimum of |
| * available Tx or Rx queues |
| */ |
| pf->num_vf_qps = min_t(int, num_txq, num_rxq); |
| pf->num_vf_msix = num_msix; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset |
| * @vf: pointer to the VF structure |
| * |
| * Cleanup a VF after the hardware reset is finished. Expects the caller to |
| * have verified whether the reset is finished properly, and ensure the |
| * minimum amount of wait time has passed. Reallocate VF resources back to make |
| * VF state active |
| */ |
| static void ice_cleanup_and_realloc_vf(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw; |
| u32 reg; |
| |
| hw = &pf->hw; |
| |
| /* PF software completes the flow by notifying VF that reset flow is |
| * completed. This is done by enabling hardware by clearing the reset |
| * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT |
| * register to VFR completed (done at the end of this function) |
| * By doing this we allow HW to access VF memory at any point. If we |
| * did it any sooner, HW could access memory while it was being freed |
| * in ice_free_vf_res(), causing an IOMMU fault. |
| * |
| * On the other hand, this needs to be done ASAP, because the VF driver |
| * is waiting for this to happen and may report a timeout. It's |
| * harmless, but it gets logged into Guest OS kernel log, so best avoid |
| * it. |
| */ |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg &= ~VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| |
| /* reallocate VF resources to finish resetting the VSI state */ |
| if (!ice_alloc_vf_res(vf)) { |
| ice_ena_vf_mappings(vf); |
| set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| clear_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| vf->num_vlan = 0; |
| } |
| |
| /* Tell the VF driver the reset is done. This needs to be done only |
| * after VF has been fully initialized, because the VF driver may |
| * request resources immediately after setting this flag. |
| */ |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| } |
| |
| /** |
| * ice_reset_all_vfs - reset all allocated VFs in one go |
| * @pf: pointer to the PF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * First, tell the hardware to reset each VF, then do all the waiting in one |
| * chunk, and finally finish restoring each VF after the wait. This is useful |
| * during PF routines which need to reset all VFs, as otherwise it must perform |
| * these resets in a serialized fashion. |
| * |
| * Returns true if any VFs were reset, and false otherwise. |
| */ |
| bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int v, i; |
| |
| /* If we don't have any VFs, then there is nothing to reset */ |
| if (!pf->num_alloc_vfs) |
| return false; |
| |
| /* If VFs have been disabled, there is no need to reset */ |
| if (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| return false; |
| |
| /* Begin reset on all VFs at once */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) |
| ice_trigger_vf_reset(&pf->vf[v], is_vflr); |
| |
| /* Call Disable LAN Tx queue AQ call with VFR bit set and 0 |
| * queues to inform Firmware about VF reset. |
| */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) |
| ice_dis_vsi_txq(pf->vsi[0]->port_info, 0, NULL, NULL, |
| ICE_VF_RESET, v, NULL); |
| |
| /* HW requires some time to make sure it can flush the FIFO for a VF |
| * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in |
| * sequence to make sure that it has completed. We'll keep track of |
| * the VFs using a simple iterator that increments once that VF has |
| * finished resetting. |
| */ |
| for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { |
| usleep_range(10000, 20000); |
| |
| /* Check each VF in sequence */ |
| while (v < pf->num_alloc_vfs) { |
| struct ice_vf *vf = &pf->vf[v]; |
| u32 reg; |
| |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (!(reg & VPGEN_VFRSTAT_VFRD_M)) |
| break; |
| |
| /* If the current VF has finished resetting, move on |
| * to the next VF in sequence. |
| */ |
| v++; |
| } |
| } |
| |
| /* Display a warning if at least one VF didn't manage to reset in |
| * time, but continue on with the operation. |
| */ |
| if (v < pf->num_alloc_vfs) |
| dev_warn(&pf->pdev->dev, "VF reset check timeout\n"); |
| usleep_range(10000, 20000); |
| |
| /* free VF resources to begin resetting the VSI state */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) |
| ice_free_vf_res(&pf->vf[v]); |
| |
| if (ice_check_avail_res(pf)) { |
| dev_err(&pf->pdev->dev, |
| "Cannot allocate VF resources, try with fewer number of VFs\n"); |
| return false; |
| } |
| |
| /* Finish the reset on each VF */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) |
| ice_cleanup_and_realloc_vf(&pf->vf[v]); |
| |
| ice_flush(hw); |
| clear_bit(__ICE_VF_DIS, pf->state); |
| |
| return true; |
| } |
| |
| /** |
| * ice_reset_vf - Reset a particular VF |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * Returns true if the VF is reset, false otherwise. |
| */ |
| static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw = &pf->hw; |
| bool rsd = false; |
| u32 reg; |
| int i; |
| |
| /* If the VFs have been disabled, this means something else is |
| * resetting the VF, so we shouldn't continue. |
| */ |
| if (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| return false; |
| |
| ice_trigger_vf_reset(vf, is_vflr); |
| |
| if (test_bit(ICE_VF_STATE_ENA, vf->vf_states)) { |
| ice_vsi_stop_tx_rings(pf->vsi[vf->lan_vsi_idx], ICE_VF_RESET, |
| vf->vf_id); |
| ice_vsi_stop_rx_rings(pf->vsi[vf->lan_vsi_idx]); |
| clear_bit(ICE_VF_STATE_ENA, vf->vf_states); |
| } else { |
| /* Call Disable LAN Tx queue AQ call even when queues are not |
| * enabled. This is needed for successful completiom of VFR |
| */ |
| ice_dis_vsi_txq(pf->vsi[vf->lan_vsi_idx]->port_info, 0, |
| NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL); |
| } |
| |
| /* poll VPGEN_VFRSTAT reg to make sure |
| * that reset is complete |
| */ |
| for (i = 0; i < 10; i++) { |
| /* VF reset requires driver to first reset the VF and then |
| * poll the status register to make sure that the reset |
| * completed successfully. |
| */ |
| usleep_range(10000, 20000); |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (reg & VPGEN_VFRSTAT_VFRD_M) { |
| rsd = true; |
| break; |
| } |
| } |
| |
| /* Display a warning if VF didn't manage to reset in time, but need to |
| * continue on with the operation. |
| */ |
| if (!rsd) |
| dev_warn(&pf->pdev->dev, "VF reset check timeout on VF %d\n", |
| vf->vf_id); |
| |
| usleep_range(10000, 20000); |
| |
| /* free VF resources to begin resetting the VSI state */ |
| ice_free_vf_res(vf); |
| |
| ice_cleanup_and_realloc_vf(vf); |
| |
| ice_flush(hw); |
| clear_bit(__ICE_VF_DIS, pf->state); |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_notify_link_state - Inform all VFs on a PF of link status |
| * @pf: pointer to the PF structure |
| */ |
| void ice_vc_notify_link_state(struct ice_pf *pf) |
| { |
| int i; |
| |
| for (i = 0; i < pf->num_alloc_vfs; i++) |
| ice_vc_notify_vf_link_state(&pf->vf[i]); |
| } |
| |
| /** |
| * ice_vc_notify_reset - Send pending reset message to all VFs |
| * @pf: pointer to the PF structure |
| * |
| * indicate a pending reset to all VFs on a given PF |
| */ |
| void ice_vc_notify_reset(struct ice_pf *pf) |
| { |
| struct virtchnl_pf_event pfe; |
| |
| if (!pf->num_alloc_vfs) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, ICE_SUCCESS, |
| (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); |
| } |
| |
| /** |
| * ice_vc_notify_vf_reset - Notify VF of a reset event |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_vc_notify_vf_reset(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe; |
| |
| /* validate the request */ |
| if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs) |
| return; |
| |
| /* verify if the VF is in either init or active before proceeding */ |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_aq_send_msg_to_vf(&vf->pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, |
| (u8 *)&pfe, sizeof(pfe), NULL); |
| } |
| |
| /** |
| * ice_alloc_vfs - Allocate and set up VFs resources |
| * @pf: pointer to the PF structure |
| * @num_alloc_vfs: number of VFs to allocate |
| */ |
| static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs) |
| { |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vfs; |
| int i, ret; |
| |
| /* Disable global interrupt 0 so we don't try to handle the VFLR. */ |
| wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx), |
| ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); |
| |
| ice_flush(hw); |
| |
| ret = pci_enable_sriov(pf->pdev, num_alloc_vfs); |
| if (ret) { |
| pf->num_alloc_vfs = 0; |
| goto err_unroll_intr; |
| } |
| /* allocate memory */ |
| vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs), |
| GFP_KERNEL); |
| if (!vfs) { |
| ret = -ENOMEM; |
| goto err_unroll_sriov; |
| } |
| pf->vf = vfs; |
| |
| /* apply default profile */ |
| for (i = 0; i < num_alloc_vfs; i++) { |
| vfs[i].pf = pf; |
| vfs[i].vf_sw_id = pf->first_sw; |
| vfs[i].vf_id = i; |
| |
| /* assign default capabilities */ |
| set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps); |
| vfs[i].spoofchk = true; |
| |
| /* Set this state so that PF driver does VF vector assignment */ |
| set_bit(ICE_VF_STATE_CFG_INTR, vfs[i].vf_states); |
| } |
| pf->num_alloc_vfs = num_alloc_vfs; |
| |
| /* VF resources get allocated during reset */ |
| if (!ice_reset_all_vfs(pf, false)) |
| goto err_unroll_sriov; |
| |
| goto err_unroll_intr; |
| |
| err_unroll_sriov: |
| pci_disable_sriov(pf->pdev); |
| err_unroll_intr: |
| /* rearm interrupts here */ |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| return ret; |
| } |
| |
| /** |
| * ice_pf_state_is_nominal - checks the pf for nominal state |
| * @pf: pointer to pf to check |
| * |
| * Check the PF's state for a collection of bits that would indicate |
| * the PF is in a state that would inhibit normal operation for |
| * driver functionality. |
| * |
| * Returns true if PF is in a nominal state. |
| * Returns false otherwise |
| */ |
| static bool ice_pf_state_is_nominal(struct ice_pf *pf) |
| { |
| DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; |
| |
| if (!pf) |
| return false; |
| |
| bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); |
| if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_pci_sriov_ena - Enable or change number of VFs |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to allocate |
| */ |
| static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) |
| { |
| int pre_existing_vfs = pci_num_vf(pf->pdev); |
| struct device *dev = &pf->pdev->dev; |
| int err; |
| |
| if (!ice_pf_state_is_nominal(pf)) { |
| dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); |
| return -EBUSY; |
| } |
| |
| if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { |
| dev_err(dev, "This device is not capable of SR-IOV\n"); |
| return -ENODEV; |
| } |
| |
| if (pre_existing_vfs && pre_existing_vfs != num_vfs) |
| ice_free_vfs(pf); |
| else if (pre_existing_vfs && pre_existing_vfs == num_vfs) |
| return num_vfs; |
| |
| if (num_vfs > pf->num_vfs_supported) { |
| dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", |
| num_vfs, pf->num_vfs_supported); |
| return -ENOTSUPP; |
| } |
| |
| dev_info(dev, "Allocating %d VFs\n", num_vfs); |
| err = ice_alloc_vfs(pf, num_vfs); |
| if (err) { |
| dev_err(dev, "Failed to enable SR-IOV: %d\n", err); |
| return err; |
| } |
| |
| set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| return num_vfs; |
| } |
| |
| /** |
| * ice_sriov_configure - Enable or change number of VFs via sysfs |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * This function is called when the user updates the number of VFs in sysfs. |
| */ |
| int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| struct ice_pf *pf = pci_get_drvdata(pdev); |
| |
| if (num_vfs) |
| return ice_pci_sriov_ena(pf, num_vfs); |
| |
| if (!pci_vfs_assigned(pdev)) { |
| ice_free_vfs(pf); |
| } else { |
| dev_err(&pf->pdev->dev, |
| "can't free VFs because some are assigned to VMs.\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_process_vflr_event - Free VF resources via IRQ calls |
| * @pf: pointer to the PF structure |
| * |
| * called from the VLFR IRQ handler to |
| * free up VF resources and state variables |
| */ |
| void ice_process_vflr_event(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int vf_id; |
| u32 reg; |
| |
| if (!test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || |
| !pf->num_alloc_vfs) |
| return; |
| |
| /* Re-enable the VFLR interrupt cause here, before looking for which |
| * VF got reset. Otherwise, if another VF gets a reset while the |
| * first one is being processed, that interrupt will be lost, and |
| * that VF will be stuck in reset forever. |
| */ |
| reg = rd32(hw, PFINT_OICR_ENA); |
| reg |= PFINT_OICR_VFLR_M; |
| wr32(hw, PFINT_OICR_ENA, reg); |
| ice_flush(hw); |
| |
| clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state); |
| for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) { |
| struct ice_vf *vf = &pf->vf[vf_id]; |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| /* read GLGEN_VFLRSTAT register to find out the flr VFs */ |
| reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); |
| if (reg & BIT(bit_idx)) |
| /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ |
| ice_reset_vf(vf, true); |
| } |
| } |
| |
| /** |
| * ice_vc_dis_vf - Disable a given VF via SW reset |
| * @vf: pointer to the VF info |
| * |
| * Disable the VF through a SW reset |
| */ |
| static void ice_vc_dis_vf(struct ice_vf *vf) |
| { |
| ice_vc_notify_vf_reset(vf); |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_vc_send_msg_to_vf - Send message to VF |
| * @vf: pointer to the VF info |
| * @v_opcode: virtual channel opcode |
| * @v_retval: virtual channel return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| * |
| * send msg to VF |
| */ |
| static int ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, |
| enum ice_status v_retval, u8 *msg, u16 msglen) |
| { |
| enum ice_status aq_ret; |
| struct ice_pf *pf; |
| |
| /* validate the request */ |
| if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| |
| /* single place to detect unsuccessful return values */ |
| if (v_retval) { |
| vf->num_inval_msgs++; |
| dev_info(&pf->pdev->dev, "VF %d failed opcode %d, retval: %d\n", |
| vf->vf_id, v_opcode, v_retval); |
| if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) { |
| dev_err(&pf->pdev->dev, |
| "Number of invalid messages exceeded for VF %d\n", |
| vf->vf_id); |
| dev_err(&pf->pdev->dev, "Use PF Control I/F to enable the VF\n"); |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| return -EIO; |
| } |
| } else { |
| vf->num_valid_msgs++; |
| /* reset the invalid counter, if a valid message is received. */ |
| vf->num_inval_msgs = 0; |
| } |
| |
| aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, |
| msg, msglen, NULL); |
| if (aq_ret) { |
| dev_info(&pf->pdev->dev, |
| "Unable to send the message to VF %d aq_err %d\n", |
| vf->vf_id, pf->hw.mailboxq.sq_last_status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vc_get_ver_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request the API version used by the PF |
| */ |
| static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_version_info info = { |
| VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR |
| }; |
| |
| vf->vf_ver = *(struct virtchnl_version_info *)msg; |
| /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ |
| if (VF_IS_V10(&vf->vf_ver)) |
| info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; |
| |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, ICE_SUCCESS, |
| (u8 *)&info, |
| sizeof(struct virtchnl_version_info)); |
| } |
| |
| /** |
| * ice_vc_get_vf_res_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request its resources |
| */ |
| static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_vf_resource *vfres = NULL; |
| enum ice_status aq_ret = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int len = 0; |
| int ret; |
| |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto err; |
| } |
| |
| len = sizeof(struct virtchnl_vf_resource); |
| |
| vfres = devm_kzalloc(&pf->pdev->dev, len, GFP_KERNEL); |
| if (!vfres) { |
| aq_ret = ICE_ERR_NO_MEMORY; |
| len = 0; |
| goto err; |
| } |
| if (VF_IS_V11(&vf->vf_ver)) |
| vf->driver_caps = *(u32 *)msg; |
| else |
| vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | |
| VIRTCHNL_VF_OFFLOAD_RSS_REG | |
| VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi->info.pvid) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; |
| } else { |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; |
| else |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; |
| } |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; |
| |
| vfres->num_vsis = 1; |
| /* Tx and Rx queue are equal for VF */ |
| vfres->num_queue_pairs = vsi->num_txq; |
| vfres->max_vectors = pf->num_vf_msix; |
| vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; |
| vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; |
| |
| vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; |
| vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; |
| vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; |
| ether_addr_copy(vfres->vsi_res[0].default_mac_addr, |
| vf->dflt_lan_addr.addr); |
| |
| set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| err: |
| /* send the response back to the VF */ |
| ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, aq_ret, |
| (u8 *)vfres, len); |
| |
| devm_kfree(&pf->pdev->dev, vfres); |
| return ret; |
| } |
| |
| /** |
| * ice_vc_reset_vf_msg |
| * @vf: pointer to the VF info |
| * |
| * called from the VF to reset itself, |
| * unlike other virtchnl messages, PF driver |
| * doesn't send the response back to the VF |
| */ |
| static void ice_vc_reset_vf_msg(struct ice_vf *vf) |
| { |
| if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_find_vsi_from_id |
| * @pf: the pf structure to search for the VSI |
| * @id: id of the VSI it is searching for |
| * |
| * searches for the VSI with the given id |
| */ |
| static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) |
| { |
| int i; |
| |
| for (i = 0; i < pf->num_alloc_vsi; i++) |
| if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) |
| return pf->vsi[i]; |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_vc_isvalid_vsi_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VF relative VSI id |
| * |
| * check for the valid VSI id |
| */ |
| static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = ice_find_vsi_from_id(pf, vsi_id); |
| |
| return (vsi && (vsi->vf_id == vf->vf_id)); |
| } |
| |
| /** |
| * ice_vc_isvalid_q_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VSI id |
| * @qid: VSI relative queue id |
| * |
| * check for the valid queue id |
| */ |
| static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) |
| { |
| struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); |
| /* allocated Tx and Rx queues should be always equal for VF VSI */ |
| return (vsi && (qid < vsi->alloc_txq)); |
| } |
| |
| /** |
| * ice_vc_config_rss_key |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS key |
| */ |
| static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_rss_key *vrk = |
| (struct virtchnl_rss_key *)msg; |
| struct ice_vsi *vsi = NULL; |
| enum ice_status aq_ret; |
| int ret; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vrk->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| ret = ice_set_rss(vsi, vrk->key, NULL, 0); |
| aq_ret = ret ? ICE_ERR_PARAM : ICE_SUCCESS; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_config_rss_lut |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS LUT |
| */ |
| static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; |
| struct ice_vsi *vsi = NULL; |
| enum ice_status aq_ret; |
| int ret; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vrl->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| ret = ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE); |
| aq_ret = ret ? ICE_ERR_PARAM : ICE_SUCCESS; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_get_stats_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to get VSI stats |
| */ |
| static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| enum ice_status aq_ret = 0; |
| struct ice_eth_stats stats; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| memset(&stats, 0, sizeof(struct ice_eth_stats)); |
| ice_update_eth_stats(vsi); |
| |
| stats = vsi->eth_stats; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, aq_ret, |
| (u8 *)&stats, sizeof(stats)); |
| } |
| |
| /** |
| * ice_vc_ena_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to enable all or specific queue(s) |
| */ |
| static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| enum ice_status aq_ret = 0; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!vqs->rx_queues && !vqs->tx_queues) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Enable only Rx rings, Tx rings were enabled by the FW when the |
| * Tx queue group list was configured and the context bits were |
| * programmed using ice_vsi_cfg_txqs |
| */ |
| if (ice_vsi_start_rx_rings(vsi)) |
| aq_ret = ICE_ERR_PARAM; |
| |
| /* Set flag to indicate that queues are enabled */ |
| if (!aq_ret) |
| set_bit(ICE_VF_STATE_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to disable all or specific |
| * queue(s) |
| */ |
| static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| enum ice_status aq_ret = 0; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ENA, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!vqs->rx_queues && !vqs->tx_queues) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, vf->vf_id)) { |
| dev_err(&vsi->back->pdev->dev, |
| "Failed to stop tx rings on VSI %d\n", |
| vsi->vsi_num); |
| aq_ret = ICE_ERR_PARAM; |
| } |
| |
| if (ice_vsi_stop_rx_rings(vsi)) { |
| dev_err(&vsi->back->pdev->dev, |
| "Failed to stop rx rings on VSI %d\n", |
| vsi->vsi_num); |
| aq_ret = ICE_ERR_PARAM; |
| } |
| |
| /* Clear enabled queues flag */ |
| if (!aq_ret) |
| clear_bit(ICE_VF_STATE_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_cfg_irq_map_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the IRQ to queue map |
| */ |
| static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_irq_map_info *irqmap_info = |
| (struct virtchnl_irq_map_info *)msg; |
| u16 vsi_id, vsi_q_id, vector_id; |
| struct virtchnl_vector_map *map; |
| struct ice_vsi *vsi = NULL; |
| struct ice_pf *pf = vf->pf; |
| enum ice_status aq_ret = 0; |
| unsigned long qmap; |
| int i; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < irqmap_info->num_vectors; i++) { |
| map = &irqmap_info->vecmap[i]; |
| |
| vector_id = map->vector_id; |
| vsi_id = map->vsi_id; |
| /* validate msg params */ |
| if (!(vector_id < pf->hw.func_caps.common_cap |
| .num_msix_vectors) || !ice_vc_isvalid_vsi_id(vf, vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* lookout for the invalid queue index */ |
| qmap = map->rxq_map; |
| for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { |
| struct ice_q_vector *q_vector; |
| |
| if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| q_vector = vsi->q_vectors[i]; |
| q_vector->num_ring_rx++; |
| q_vector->rx.itr_idx = map->rxitr_idx; |
| vsi->rx_rings[vsi_q_id]->q_vector = q_vector; |
| } |
| |
| qmap = map->txq_map; |
| for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { |
| struct ice_q_vector *q_vector; |
| |
| if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| q_vector = vsi->q_vectors[i]; |
| q_vector->num_ring_tx++; |
| q_vector->tx.itr_idx = map->txitr_idx; |
| vsi->tx_rings[vsi_q_id]->q_vector = q_vector; |
| } |
| } |
| |
| if (vsi) |
| ice_vsi_cfg_msix(vsi); |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_cfg_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the Rx/Tx queues |
| */ |
| static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_vsi_queue_config_info *qci = |
| (struct virtchnl_vsi_queue_config_info *)msg; |
| struct virtchnl_queue_pair_info *qpi; |
| enum ice_status aq_ret = 0; |
| struct ice_vsi *vsi; |
| int i; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, qci->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < qci->num_queue_pairs; i++) { |
| qpi = &qci->qpair[i]; |
| if (qpi->txq.vsi_id != qci->vsi_id || |
| qpi->rxq.vsi_id != qci->vsi_id || |
| qpi->rxq.queue_id != qpi->txq.queue_id || |
| !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| /* copy Tx queue info from VF into VSI */ |
| vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; |
| vsi->tx_rings[i]->count = qpi->txq.ring_len; |
| /* copy Rx queue info from VF into vsi */ |
| vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; |
| vsi->rx_rings[i]->count = qpi->rxq.ring_len; |
| if (qpi->rxq.databuffer_size > ((16 * 1024) - 128)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| vsi->rx_buf_len = qpi->rxq.databuffer_size; |
| if (qpi->rxq.max_pkt_size >= (16 * 1024) || |
| qpi->rxq.max_pkt_size < 64) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| vsi->max_frame = qpi->rxq.max_pkt_size; |
| } |
| |
| /* VF can request to configure less than allocated queues |
| * or default allocated queues. So update the VSI with new number |
| */ |
| vsi->num_txq = qci->num_queue_pairs; |
| vsi->num_rxq = qci->num_queue_pairs; |
| |
| if (!ice_vsi_cfg_txqs(vsi) && !ice_vsi_cfg_rxqs(vsi)) |
| aq_ret = 0; |
| else |
| aq_ret = ICE_ERR_PARAM; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_is_vf_trusted |
| * @vf: pointer to the VF info |
| */ |
| static bool ice_is_vf_trusted(struct ice_vf *vf) |
| { |
| return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| } |
| |
| /** |
| * ice_can_vf_change_mac |
| * @vf: pointer to the VF info |
| * |
| * Return true if the VF is allowed to change its MAC filters, false otherwise |
| */ |
| static bool ice_can_vf_change_mac(struct ice_vf *vf) |
| { |
| /* If the VF MAC address has been set administratively (via the |
| * ndo_set_vf_mac command), then deny permission to the VF to |
| * add/delete unicast MAC addresses, unless the VF is trusted |
| */ |
| if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_handle_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @set: true if mac filters are being set, false otherwise |
| * |
| * add guest mac address filter |
| */ |
| static int |
| ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) |
| { |
| struct virtchnl_ether_addr_list *al = |
| (struct virtchnl_ether_addr_list *)msg; |
| struct ice_pf *pf = vf->pf; |
| enum virtchnl_ops vc_op; |
| enum ice_status ret; |
| LIST_HEAD(mac_list); |
| struct ice_vsi *vsi; |
| int mac_count = 0; |
| int i; |
| |
| if (set) |
| vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; |
| else |
| vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || |
| !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { |
| ret = ICE_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| if (set && !ice_is_vf_trusted(vf) && |
| (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { |
| dev_err(&pf->pdev->dev, |
| "Can't add more MAC addresses, because VF is not trusted, switch the VF to trusted mode in order to add more functionalities\n"); |
| ret = ICE_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| for (i = 0; i < al->num_elements; i++) { |
| u8 *maddr = al->list[i].addr; |
| |
| if (ether_addr_equal(maddr, vf->dflt_lan_addr.addr) || |
| is_broadcast_ether_addr(maddr)) { |
| if (set) { |
| /* VF is trying to add filters that the PF |
| * already added. Just continue. |
| */ |
| dev_info(&pf->pdev->dev, |
| "mac %pM already set for VF %d\n", |
| maddr, vf->vf_id); |
| continue; |
| } else { |
| /* VF can't remove dflt_lan_addr/bcast mac */ |
| dev_err(&pf->pdev->dev, |
| "can't remove mac %pM for VF %d\n", |
| maddr, vf->vf_id); |
| ret = ICE_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| } |
| |
| /* check for the invalid cases and bail if necessary */ |
| if (is_zero_ether_addr(maddr)) { |
| dev_err(&pf->pdev->dev, |
| "invalid mac %pM provided for VF %d\n", |
| maddr, vf->vf_id); |
| ret = ICE_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| if (is_unicast_ether_addr(maddr) && |
| !ice_can_vf_change_mac(vf)) { |
| dev_err(&pf->pdev->dev, |
| "can't change unicast mac for untrusted VF %d\n", |
| vf->vf_id); |
| ret = ICE_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| /* get here if maddr is multicast or if VF can change mac */ |
| if (ice_add_mac_to_list(vsi, &mac_list, al->list[i].addr)) { |
| ret = ICE_ERR_NO_MEMORY; |
| goto handle_mac_exit; |
| } |
| mac_count++; |
| } |
| |
| /* program the updated filter list */ |
| if (set) |
| ret = ice_add_mac(&pf->hw, &mac_list); |
| else |
| ret = ice_remove_mac(&pf->hw, &mac_list); |
| |
| if (ret) { |
| dev_err(&pf->pdev->dev, |
| "can't update mac filters for VF %d, error %d\n", |
| vf->vf_id, ret); |
| } else { |
| if (set) |
| vf->num_mac += mac_count; |
| else |
| vf->num_mac -= mac_count; |
| } |
| |
| handle_mac_exit: |
| ice_free_fltr_list(&pf->pdev->dev, &mac_list); |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, vc_op, ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * add guest MAC address filter |
| */ |
| static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_del_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove guest MAC address filter |
| */ |
| static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_request_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * VFs get a default number of queues but can use this message to request a |
| * different number. If the request is successful, PF will reset the VF and |
| * return 0. If unsuccessful, PF will send message informing VF of number of |
| * available queue pairs via virtchnl message response to VF. |
| */ |
| static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_vf_res_request *vfres = |
| (struct virtchnl_vf_res_request *)msg; |
| int req_queues = vfres->num_queue_pairs; |
| enum ice_status aq_ret = 0; |
| struct ice_pf *pf = vf->pf; |
| int tx_rx_queue_left; |
| int cur_queues; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| cur_queues = pf->num_vf_qps; |
| tx_rx_queue_left = min_t(int, pf->q_left_tx, pf->q_left_rx); |
| if (req_queues <= 0) { |
| dev_err(&pf->pdev->dev, |
| "VF %d tried to request %d queues. Ignoring.\n", |
| vf->vf_id, req_queues); |
| } else if (req_queues > ICE_MAX_QS_PER_VF) { |
| dev_err(&pf->pdev->dev, |
| "VF %d tried to request more than %d queues.\n", |
| vf->vf_id, ICE_MAX_QS_PER_VF); |
| vfres->num_queue_pairs = ICE_MAX_QS_PER_VF; |
| } else if (req_queues - cur_queues > tx_rx_queue_left) { |
| dev_warn(&pf->pdev->dev, |
| "VF %d requested %d more queues, but only %d left.\n", |
| vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); |
| vfres->num_queue_pairs = tx_rx_queue_left + cur_queues; |
| } else { |
| /* request is successful, then reset VF */ |
| vf->num_req_qs = req_queues; |
| ice_vc_dis_vf(vf); |
| dev_info(&pf->pdev->dev, |
| "VF %d granted request of %d queues.\n", |
| vf->vf_id, req_queues); |
| return 0; |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, |
| aq_ret, (u8 *)vfres, sizeof(*vfres)); |
| } |
| |
| /** |
| * ice_set_vf_port_vlan |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @vlan_id: VLAN id being set |
| * @qos: priority setting |
| * @vlan_proto: VLAN protocol |
| * |
| * program VF Port VLAN id and/or qos |
| */ |
| int |
| ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, |
| __be16 vlan_proto) |
| { |
| u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S); |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_pf *pf = np->vsi->back; |
| struct ice_vsi *vsi; |
| struct ice_vf *vf; |
| int ret = 0; |
| |
| /* validate the request */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| if (vlan_id > ICE_MAX_VLANID || qos > 7) { |
| dev_err(&pf->pdev->dev, "Invalid VF Parameters\n"); |
| return -EINVAL; |
| } |
| |
| if (vlan_proto != htons(ETH_P_8021Q)) { |
| dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n"); |
| return -EPROTONOSUPPORT; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| if (le16_to_cpu(vsi->info.pvid) == vlanprio) { |
| /* duplicate request, so just return success */ |
| dev_info(&pf->pdev->dev, |
| "Duplicate pvid %d request\n", vlanprio); |
| return ret; |
| } |
| |
| /* If pvid, then remove all filters on the old VLAN */ |
| if (vsi->info.pvid) |
| ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) & |
| VLAN_VID_MASK)); |
| |
| if (vlan_id || qos) { |
| ret = ice_vsi_set_pvid(vsi, vlanprio); |
| if (ret) |
| goto error_set_pvid; |
| } else { |
| ice_vsi_kill_pvid(vsi); |
| } |
| |
| if (vlan_id) { |
| dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n", |
| vlan_id, qos, vf_id); |
| |
| /* add new VLAN filter for each MAC */ |
| ret = ice_vsi_add_vlan(vsi, vlan_id); |
| if (ret) |
| goto error_set_pvid; |
| } |
| |
| /* The Port VLAN needs to be saved across resets the same as the |
| * default LAN MAC address. |
| */ |
| vf->port_vlan_id = le16_to_cpu(vsi->info.pvid); |
| |
| error_set_pvid: |
| return ret; |
| } |
| |
| /** |
| * ice_vc_process_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @add_v: Add VLAN if true, otherwise delete VLAN |
| * |
| * Process virtchnl op to add or remove programmed guest VLAN id |
| */ |
| static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) |
| { |
| struct virtchnl_vlan_filter_list *vfl = |
| (struct virtchnl_vlan_filter_list *)msg; |
| enum ice_status aq_ret = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int i; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (add_v && !ice_is_vf_trusted(vf) && |
| vf->num_vlan >= ICE_MAX_VLAN_PER_VF) { |
| dev_info(&pf->pdev->dev, |
| "VF is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n"); |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < vfl->num_elements; i++) { |
| if (vfl->vlan_id[i] > ICE_MAX_VLANID) { |
| aq_ret = ICE_ERR_PARAM; |
| dev_err(&pf->pdev->dev, |
| "invalid VF VLAN id %d\n", vfl->vlan_id[i]); |
| goto error_param; |
| } |
| } |
| |
| vsi = ice_find_vsi_from_id(vf->pf, vfl->vsi_id); |
| if (!vsi) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vsi->info.pvid) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_vsi_manage_vlan_stripping(vsi, add_v)) { |
| dev_err(&pf->pdev->dev, |
| "%sable VLAN stripping failed for VSI %i\n", |
| add_v ? "en" : "dis", vsi->vsi_num); |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (add_v) { |
| for (i = 0; i < vfl->num_elements; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| if (!ice_vsi_add_vlan(vsi, vid)) { |
| vf->num_vlan++; |
| set_bit(vid, vsi->active_vlans); |
| |
| /* Enable VLAN pruning when VLAN 0 is added */ |
| if (unlikely(!vid)) |
| if (ice_cfg_vlan_pruning(vsi, true)) |
| aq_ret = ICE_ERR_PARAM; |
| } else { |
| aq_ret = ICE_ERR_PARAM; |
| } |
| } |
| } else { |
| for (i = 0; i < vfl->num_elements; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| /* Make sure ice_vsi_kill_vlan is successful before |
| * updating VLAN information |
| */ |
| if (!ice_vsi_kill_vlan(vsi, vid)) { |
| vf->num_vlan--; |
| clear_bit(vid, vsi->active_vlans); |
| |
| /* Disable VLAN pruning when removing VLAN 0 */ |
| if (unlikely(!vid)) |
| ice_cfg_vlan_pruning(vsi, false); |
| } |
| } |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| if (add_v) |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, aq_ret, |
| NULL, 0); |
| else |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, aq_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Add and program guest VLAN id |
| */ |
| static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_remove_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove programmed guest VLAN id |
| */ |
| static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_ena_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Enable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) |
| { |
| enum ice_status aq_ret = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vsi_manage_vlan_stripping(vsi, true)) |
| aq_ret = ICE_ERR_AQ_ERROR; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, |
| aq_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Disable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) |
| { |
| enum ice_status aq_ret = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| aq_ret = ICE_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vsi_manage_vlan_stripping(vsi, false)) |
| aq_ret = ICE_ERR_AQ_ERROR; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, |
| aq_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_process_vf_msg - Process request from VF |
| * @pf: pointer to the PF structure |
| * @event: pointer to the AQ event |
| * |
| * called from the common asq/arq handler to |
| * process request from VF |
| */ |
| void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) |
| { |
| u32 v_opcode = le32_to_cpu(event->desc.cookie_high); |
| s16 vf_id = le16_to_cpu(event->desc.retval); |
| u16 msglen = event->msg_len; |
| u8 *msg = event->msg_buf; |
| struct ice_vf *vf = NULL; |
| int err = 0; |
| |
| if (vf_id >= pf->num_alloc_vfs) { |
| err = -EINVAL; |
| goto error_handler; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| |
| /* Check if VF is disabled. */ |
| if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { |
| err = -EPERM; |
| goto error_handler; |
| } |
| |
| /* Perform basic checks on the msg */ |
| err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); |
| if (err) { |
| if (err == VIRTCHNL_ERR_PARAM) |
| err = -EPERM; |
| else |
| err = -EINVAL; |
| goto error_handler; |
| } |
| |
| /* Perform additional checks specific to RSS and Virtchnl */ |
| if (v_opcode == VIRTCHNL_OP_CONFIG_RSS_KEY) { |
| struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; |
| |
| if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) |
| err = -EINVAL; |
| } else if (v_opcode == VIRTCHNL_OP_CONFIG_RSS_LUT) { |
| struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; |
| |
| if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) |
| err = -EINVAL; |
| } |
| |
| error_handler: |
| if (err) { |
| ice_vc_send_msg_to_vf(vf, v_opcode, ICE_ERR_PARAM, NULL, 0); |
| dev_err(&pf->pdev->dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", |
| vf_id, v_opcode, msglen, err); |
| return; |
| } |
| |
| switch (v_opcode) { |
| case VIRTCHNL_OP_VERSION: |
| err = ice_vc_get_ver_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_VF_RESOURCES: |
| err = ice_vc_get_vf_res_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_RESET_VF: |
| ice_vc_reset_vf_msg(vf); |
| break; |
| case VIRTCHNL_OP_ADD_ETH_ADDR: |
| err = ice_vc_add_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_ETH_ADDR: |
| err = ice_vc_del_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_VSI_QUEUES: |
| err = ice_vc_cfg_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_QUEUES: |
| err = ice_vc_ena_qs_msg(vf, msg); |
| ice_vc_notify_vf_link_state(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_QUEUES: |
| err = ice_vc_dis_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_REQUEST_QUEUES: |
| err = ice_vc_request_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_IRQ_MAP: |
| err = ice_vc_cfg_irq_map_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_KEY: |
| err = ice_vc_config_rss_key(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_LUT: |
| err = ice_vc_config_rss_lut(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_STATS: |
| err = ice_vc_get_stats_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ADD_VLAN: |
| err = ice_vc_add_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_VLAN: |
| err = ice_vc_remove_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: |
| err = ice_vc_ena_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: |
| err = ice_vc_dis_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_UNKNOWN: |
| default: |
| dev_err(&pf->pdev->dev, "Unsupported opcode %d from VF %d\n", |
| v_opcode, vf_id); |
| err = ice_vc_send_msg_to_vf(vf, v_opcode, ICE_ERR_NOT_IMPL, |
| NULL, 0); |
| break; |
| } |
| if (err) { |
| /* Helper function cares less about error return values here |
| * as it is busy with pending work. |
| */ |
| dev_info(&pf->pdev->dev, |
| "PF failed to honor VF %d, opcode %d\n, error %d\n", |
| vf_id, v_opcode, err); |
| } |
| } |
| |
| /** |
| * ice_get_vf_cfg |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ivi: VF configuration structure |
| * |
| * return VF configuration |
| */ |
| int ice_get_vf_cfg(struct net_device *netdev, int vf_id, |
| struct ifla_vf_info *ivi) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| struct ice_vf *vf; |
| |
| /* validate the request */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| netdev_err(netdev, "invalid VF id: %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| ivi->vf = vf_id; |
| ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr); |
| |
| /* VF configuration for VLAN and applicable QoS */ |
| ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M; |
| ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >> |
| ICE_VLAN_PRIORITY_S; |
| |
| ivi->trusted = vf->trusted; |
| ivi->spoofchk = vf->spoofchk; |
| if (!vf->link_forced) |
| ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; |
| else if (vf->link_up) |
| ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; |
| else |
| ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; |
| ivi->max_tx_rate = vf->tx_rate; |
| ivi->min_tx_rate = 0; |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_spoofchk |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ena: flag to enable or disable feature |
| * |
| * Enable or disable VF spoof checking |
| */ |
| int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi_ctx ctx = { 0 }; |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| struct ice_vf *vf; |
| int status; |
| |
| /* validate the request */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| netdev_err(netdev, "invalid VF id: %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| if (ena == vf->spoofchk) { |
| dev_dbg(&pf->pdev->dev, "VF spoofchk already %s\n", |
| ena ? "ON" : "OFF"); |
| return 0; |
| } |
| |
| ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); |
| |
| if (ena) { |
| ctx.info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; |
| ctx.info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M; |
| } |
| |
| status = ice_update_vsi(&pf->hw, vsi->idx, &ctx, NULL); |
| if (status) { |
| dev_dbg(&pf->pdev->dev, |
| "Error %d, failed to update VSI* parameters\n", status); |
| return -EIO; |
| } |
| |
| vf->spoofchk = ena; |
| vsi->info.sec_flags = ctx.info.sec_flags; |
| vsi->info.sw_flags2 = ctx.info.sw_flags2; |
| |
| return status; |
| } |
| |
| /** |
| * ice_set_vf_mac |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @mac: mac address |
| * |
| * program VF mac address |
| */ |
| int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| struct ice_vf *vf; |
| int ret = 0; |
| |
| /* validate the request */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| netdev_err(netdev, "invalid VF id: %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) { |
| netdev_err(netdev, "%pM not a valid unicast address\n", mac); |
| return -EINVAL; |
| } |
| |
| /* copy mac into dflt_lan_addr and trigger a VF reset. The reset |
| * flow will use the updated dflt_lan_addr and add a MAC filter |
| * using ice_add_mac. Also set pf_set_mac to indicate that the PF has |
| * set the MAC address for this VF. |
| */ |
| ether_addr_copy(vf->dflt_lan_addr.addr, mac); |
| vf->pf_set_mac = true; |
| netdev_info(netdev, |
| "mac on VF %d set to %pM\n. VF driver will be reinitialized\n", |
| vf_id, mac); |
| |
| ice_vc_dis_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_set_vf_trust |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @trusted: Boolean value to enable/disable trusted VF |
| * |
| * Enable or disable a given VF as trusted |
| */ |
| int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| struct ice_vf *vf; |
| |
| /* validate the request */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| /* Check if already trusted */ |
| if (trusted == vf->trusted) |
| return 0; |
| |
| vf->trusted = trusted; |
| ice_vc_dis_vf(vf); |
| dev_info(&pf->pdev->dev, "VF %u is now %strusted\n", |
| vf_id, trusted ? "" : "un"); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_link_state |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @link_state: required link state |
| * |
| * Set VF's link state, irrespective of physical link state status |
| */ |
| int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_pf *pf = np->vsi->back; |
| struct virtchnl_pf_event pfe = { 0 }; |
| struct ice_link_status *ls; |
| struct ice_vf *vf; |
| struct ice_hw *hw; |
| |
| if (vf_id >= pf->num_alloc_vfs) { |
| dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| hw = &pf->hw; |
| ls = &pf->hw.port_info->phy.link_info; |
| |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| dev_err(&pf->pdev->dev, "vf %d in reset. Try again.\n", vf_id); |
| return -EBUSY; |
| } |
| |
| pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; |
| pfe.severity = PF_EVENT_SEVERITY_INFO; |
| |
| switch (link_state) { |
| case IFLA_VF_LINK_STATE_AUTO: |
| vf->link_forced = false; |
| vf->link_up = ls->link_info & ICE_AQ_LINK_UP; |
| break; |
| case IFLA_VF_LINK_STATE_ENABLE: |
| vf->link_forced = true; |
| vf->link_up = true; |
| break; |
| case IFLA_VF_LINK_STATE_DISABLE: |
| vf->link_forced = true; |
| vf->link_up = false; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (vf->link_forced) |
| ice_set_pfe_link_forced(vf, &pfe, vf->link_up); |
| else |
| ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up); |
| |
| /* Notify the VF of its new link state */ |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, |
| sizeof(pfe), NULL); |
| |
| return 0; |
| } |