| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Pressure stall information for CPU, memory and IO | 
 |  * | 
 |  * Copyright (c) 2018 Facebook, Inc. | 
 |  * Author: Johannes Weiner <hannes@cmpxchg.org> | 
 |  * | 
 |  * Polling support by Suren Baghdasaryan <surenb@google.com> | 
 |  * Copyright (c) 2018 Google, Inc. | 
 |  * | 
 |  * When CPU, memory and IO are contended, tasks experience delays that | 
 |  * reduce throughput and introduce latencies into the workload. Memory | 
 |  * and IO contention, in addition, can cause a full loss of forward | 
 |  * progress in which the CPU goes idle. | 
 |  * | 
 |  * This code aggregates individual task delays into resource pressure | 
 |  * metrics that indicate problems with both workload health and | 
 |  * resource utilization. | 
 |  * | 
 |  *			Model | 
 |  * | 
 |  * The time in which a task can execute on a CPU is our baseline for | 
 |  * productivity. Pressure expresses the amount of time in which this | 
 |  * potential cannot be realized due to resource contention. | 
 |  * | 
 |  * This concept of productivity has two components: the workload and | 
 |  * the CPU. To measure the impact of pressure on both, we define two | 
 |  * contention states for a resource: SOME and FULL. | 
 |  * | 
 |  * In the SOME state of a given resource, one or more tasks are | 
 |  * delayed on that resource. This affects the workload's ability to | 
 |  * perform work, but the CPU may still be executing other tasks. | 
 |  * | 
 |  * In the FULL state of a given resource, all non-idle tasks are | 
 |  * delayed on that resource such that nobody is advancing and the CPU | 
 |  * goes idle. This leaves both workload and CPU unproductive. | 
 |  * | 
 |  *	SOME = nr_delayed_tasks != 0 | 
 |  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 | 
 |  * | 
 |  * What it means for a task to be productive is defined differently | 
 |  * for each resource. For IO, productive means a running task. For | 
 |  * memory, productive means a running task that isn't a reclaimer. For | 
 |  * CPU, productive means an oncpu task. | 
 |  * | 
 |  * Naturally, the FULL state doesn't exist for the CPU resource at the | 
 |  * system level, but exist at the cgroup level. At the cgroup level, | 
 |  * FULL means all non-idle tasks in the cgroup are delayed on the CPU | 
 |  * resource which is being used by others outside of the cgroup or | 
 |  * throttled by the cgroup cpu.max configuration. | 
 |  * | 
 |  * The percentage of wallclock time spent in those compound stall | 
 |  * states gives pressure numbers between 0 and 100 for each resource, | 
 |  * where the SOME percentage indicates workload slowdowns and the FULL | 
 |  * percentage indicates reduced CPU utilization: | 
 |  * | 
 |  *	%SOME = time(SOME) / period | 
 |  *	%FULL = time(FULL) / period | 
 |  * | 
 |  *			Multiple CPUs | 
 |  * | 
 |  * The more tasks and available CPUs there are, the more work can be | 
 |  * performed concurrently. This means that the potential that can go | 
 |  * unrealized due to resource contention *also* scales with non-idle | 
 |  * tasks and CPUs. | 
 |  * | 
 |  * Consider a scenario where 257 number crunching tasks are trying to | 
 |  * run concurrently on 256 CPUs. If we simply aggregated the task | 
 |  * states, we would have to conclude a CPU SOME pressure number of | 
 |  * 100%, since *somebody* is waiting on a runqueue at all | 
 |  * times. However, that is clearly not the amount of contention the | 
 |  * workload is experiencing: only one out of 256 possible execution | 
 |  * threads will be contended at any given time, or about 0.4%. | 
 |  * | 
 |  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any | 
 |  * given time *one* of the tasks is delayed due to a lack of memory. | 
 |  * Again, looking purely at the task state would yield a memory FULL | 
 |  * pressure number of 0%, since *somebody* is always making forward | 
 |  * progress. But again this wouldn't capture the amount of execution | 
 |  * potential lost, which is 1 out of 4 CPUs, or 25%. | 
 |  * | 
 |  * To calculate wasted potential (pressure) with multiple processors, | 
 |  * we have to base our calculation on the number of non-idle tasks in | 
 |  * conjunction with the number of available CPUs, which is the number | 
 |  * of potential execution threads. SOME becomes then the proportion of | 
 |  * delayed tasks to possible threads, and FULL is the share of possible | 
 |  * threads that are unproductive due to delays: | 
 |  * | 
 |  *	threads = min(nr_nonidle_tasks, nr_cpus) | 
 |  *	   SOME = min(nr_delayed_tasks / threads, 1) | 
 |  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads | 
 |  * | 
 |  * For the 257 number crunchers on 256 CPUs, this yields: | 
 |  * | 
 |  *	threads = min(257, 256) | 
 |  *	   SOME = min(1 / 256, 1)             = 0.4% | 
 |  *	   FULL = (256 - min(256, 256)) / 256 = 0% | 
 |  * | 
 |  * For the 1 out of 4 memory-delayed tasks, this yields: | 
 |  * | 
 |  *	threads = min(4, 4) | 
 |  *	   SOME = min(1 / 4, 1)               = 25% | 
 |  *	   FULL = (4 - min(3, 4)) / 4         = 25% | 
 |  * | 
 |  * [ Substitute nr_cpus with 1, and you can see that it's a natural | 
 |  *   extension of the single-CPU model. ] | 
 |  * | 
 |  *			Implementation | 
 |  * | 
 |  * To assess the precise time spent in each such state, we would have | 
 |  * to freeze the system on task changes and start/stop the state | 
 |  * clocks accordingly. Obviously that doesn't scale in practice. | 
 |  * | 
 |  * Because the scheduler aims to distribute the compute load evenly | 
 |  * among the available CPUs, we can track task state locally to each | 
 |  * CPU and, at much lower frequency, extrapolate the global state for | 
 |  * the cumulative stall times and the running averages. | 
 |  * | 
 |  * For each runqueue, we track: | 
 |  * | 
 |  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) | 
 |  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) | 
 |  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) | 
 |  * | 
 |  * and then periodically aggregate: | 
 |  * | 
 |  *	tNONIDLE = sum(tNONIDLE[i]) | 
 |  * | 
 |  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE | 
 |  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE | 
 |  * | 
 |  *	   %SOME = tSOME / period | 
 |  *	   %FULL = tFULL / period | 
 |  * | 
 |  * This gives us an approximation of pressure that is practical | 
 |  * cost-wise, yet way more sensitive and accurate than periodic | 
 |  * sampling of the aggregate task states would be. | 
 |  */ | 
 |  | 
 | static int psi_bug __read_mostly; | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(psi_disabled); | 
 | DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); | 
 |  | 
 | #ifdef CONFIG_PSI_DEFAULT_DISABLED | 
 | static bool psi_enable; | 
 | #else | 
 | static bool psi_enable = true; | 
 | #endif | 
 | static int __init setup_psi(char *str) | 
 | { | 
 | 	return kstrtobool(str, &psi_enable) == 0; | 
 | } | 
 | __setup("psi=", setup_psi); | 
 |  | 
 | /* Running averages - we need to be higher-res than loadavg */ | 
 | #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */ | 
 | #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */ | 
 | #define EXP_60s		1981		/* 1/exp(2s/60s) */ | 
 | #define EXP_300s	2034		/* 1/exp(2s/300s) */ | 
 |  | 
 | /* PSI trigger definitions */ | 
 | #define WINDOW_MIN_US 500000	/* Min window size is 500ms */ | 
 | #define WINDOW_MAX_US 10000000	/* Max window size is 10s */ | 
 | #define UPDATES_PER_WINDOW 10	/* 10 updates per window */ | 
 |  | 
 | /* Sampling frequency in nanoseconds */ | 
 | static u64 psi_period __read_mostly; | 
 |  | 
 | /* System-level pressure and stall tracking */ | 
 | static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); | 
 | struct psi_group psi_system = { | 
 | 	.pcpu = &system_group_pcpu, | 
 | }; | 
 |  | 
 | static void psi_avgs_work(struct work_struct *work); | 
 |  | 
 | static void poll_timer_fn(struct timer_list *t); | 
 |  | 
 | static void group_init(struct psi_group *group) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); | 
 | 	group->avg_last_update = sched_clock(); | 
 | 	group->avg_next_update = group->avg_last_update + psi_period; | 
 | 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); | 
 | 	mutex_init(&group->avgs_lock); | 
 | 	/* Init trigger-related members */ | 
 | 	mutex_init(&group->trigger_lock); | 
 | 	INIT_LIST_HEAD(&group->triggers); | 
 | 	group->poll_min_period = U32_MAX; | 
 | 	group->polling_next_update = ULLONG_MAX; | 
 | 	init_waitqueue_head(&group->poll_wait); | 
 | 	timer_setup(&group->poll_timer, poll_timer_fn, 0); | 
 | 	rcu_assign_pointer(group->poll_task, NULL); | 
 | } | 
 |  | 
 | void __init psi_init(void) | 
 | { | 
 | 	if (!psi_enable) { | 
 | 		static_branch_enable(&psi_disabled); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!cgroup_psi_enabled()) | 
 | 		static_branch_disable(&psi_cgroups_enabled); | 
 |  | 
 | 	psi_period = jiffies_to_nsecs(PSI_FREQ); | 
 | 	group_init(&psi_system); | 
 | } | 
 |  | 
 | static bool test_state(unsigned int *tasks, enum psi_states state) | 
 | { | 
 | 	switch (state) { | 
 | 	case PSI_IO_SOME: | 
 | 		return unlikely(tasks[NR_IOWAIT]); | 
 | 	case PSI_IO_FULL: | 
 | 		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); | 
 | 	case PSI_MEM_SOME: | 
 | 		return unlikely(tasks[NR_MEMSTALL]); | 
 | 	case PSI_MEM_FULL: | 
 | 		return unlikely(tasks[NR_MEMSTALL] && | 
 | 			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); | 
 | 	case PSI_CPU_SOME: | 
 | 		return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]); | 
 | 	case PSI_CPU_FULL: | 
 | 		return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]); | 
 | 	case PSI_NONIDLE: | 
 | 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || | 
 | 			tasks[NR_RUNNING]; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static void get_recent_times(struct psi_group *group, int cpu, | 
 | 			     enum psi_aggregators aggregator, u32 *times, | 
 | 			     u32 *pchanged_states) | 
 | { | 
 | 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); | 
 | 	u64 now, state_start; | 
 | 	enum psi_states s; | 
 | 	unsigned int seq; | 
 | 	u32 state_mask; | 
 |  | 
 | 	*pchanged_states = 0; | 
 |  | 
 | 	/* Snapshot a coherent view of the CPU state */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&groupc->seq); | 
 | 		now = cpu_clock(cpu); | 
 | 		memcpy(times, groupc->times, sizeof(groupc->times)); | 
 | 		state_mask = groupc->state_mask; | 
 | 		state_start = groupc->state_start; | 
 | 	} while (read_seqcount_retry(&groupc->seq, seq)); | 
 |  | 
 | 	/* Calculate state time deltas against the previous snapshot */ | 
 | 	for (s = 0; s < NR_PSI_STATES; s++) { | 
 | 		u32 delta; | 
 | 		/* | 
 | 		 * In addition to already concluded states, we also | 
 | 		 * incorporate currently active states on the CPU, | 
 | 		 * since states may last for many sampling periods. | 
 | 		 * | 
 | 		 * This way we keep our delta sampling buckets small | 
 | 		 * (u32) and our reported pressure close to what's | 
 | 		 * actually happening. | 
 | 		 */ | 
 | 		if (state_mask & (1 << s)) | 
 | 			times[s] += now - state_start; | 
 |  | 
 | 		delta = times[s] - groupc->times_prev[aggregator][s]; | 
 | 		groupc->times_prev[aggregator][s] = times[s]; | 
 |  | 
 | 		times[s] = delta; | 
 | 		if (delta) | 
 | 			*pchanged_states |= (1 << s); | 
 | 	} | 
 | } | 
 |  | 
 | static void calc_avgs(unsigned long avg[3], int missed_periods, | 
 | 		      u64 time, u64 period) | 
 | { | 
 | 	unsigned long pct; | 
 |  | 
 | 	/* Fill in zeroes for periods of no activity */ | 
 | 	if (missed_periods) { | 
 | 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); | 
 | 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); | 
 | 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); | 
 | 	} | 
 |  | 
 | 	/* Sample the most recent active period */ | 
 | 	pct = div_u64(time * 100, period); | 
 | 	pct *= FIXED_1; | 
 | 	avg[0] = calc_load(avg[0], EXP_10s, pct); | 
 | 	avg[1] = calc_load(avg[1], EXP_60s, pct); | 
 | 	avg[2] = calc_load(avg[2], EXP_300s, pct); | 
 | } | 
 |  | 
 | static void collect_percpu_times(struct psi_group *group, | 
 | 				 enum psi_aggregators aggregator, | 
 | 				 u32 *pchanged_states) | 
 | { | 
 | 	u64 deltas[NR_PSI_STATES - 1] = { 0, }; | 
 | 	unsigned long nonidle_total = 0; | 
 | 	u32 changed_states = 0; | 
 | 	int cpu; | 
 | 	int s; | 
 |  | 
 | 	/* | 
 | 	 * Collect the per-cpu time buckets and average them into a | 
 | 	 * single time sample that is normalized to wallclock time. | 
 | 	 * | 
 | 	 * For averaging, each CPU is weighted by its non-idle time in | 
 | 	 * the sampling period. This eliminates artifacts from uneven | 
 | 	 * loading, or even entirely idle CPUs. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		u32 times[NR_PSI_STATES]; | 
 | 		u32 nonidle; | 
 | 		u32 cpu_changed_states; | 
 |  | 
 | 		get_recent_times(group, cpu, aggregator, times, | 
 | 				&cpu_changed_states); | 
 | 		changed_states |= cpu_changed_states; | 
 |  | 
 | 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); | 
 | 		nonidle_total += nonidle; | 
 |  | 
 | 		for (s = 0; s < PSI_NONIDLE; s++) | 
 | 			deltas[s] += (u64)times[s] * nonidle; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Integrate the sample into the running statistics that are | 
 | 	 * reported to userspace: the cumulative stall times and the | 
 | 	 * decaying averages. | 
 | 	 * | 
 | 	 * Pressure percentages are sampled at PSI_FREQ. We might be | 
 | 	 * called more often when the user polls more frequently than | 
 | 	 * that; we might be called less often when there is no task | 
 | 	 * activity, thus no data, and clock ticks are sporadic. The | 
 | 	 * below handles both. | 
 | 	 */ | 
 |  | 
 | 	/* total= */ | 
 | 	for (s = 0; s < NR_PSI_STATES - 1; s++) | 
 | 		group->total[aggregator][s] += | 
 | 				div_u64(deltas[s], max(nonidle_total, 1UL)); | 
 |  | 
 | 	if (pchanged_states) | 
 | 		*pchanged_states = changed_states; | 
 | } | 
 |  | 
 | static u64 update_averages(struct psi_group *group, u64 now) | 
 | { | 
 | 	unsigned long missed_periods = 0; | 
 | 	u64 expires, period; | 
 | 	u64 avg_next_update; | 
 | 	int s; | 
 |  | 
 | 	/* avgX= */ | 
 | 	expires = group->avg_next_update; | 
 | 	if (now - expires >= psi_period) | 
 | 		missed_periods = div_u64(now - expires, psi_period); | 
 |  | 
 | 	/* | 
 | 	 * The periodic clock tick can get delayed for various | 
 | 	 * reasons, especially on loaded systems. To avoid clock | 
 | 	 * drift, we schedule the clock in fixed psi_period intervals. | 
 | 	 * But the deltas we sample out of the per-cpu buckets above | 
 | 	 * are based on the actual time elapsing between clock ticks. | 
 | 	 */ | 
 | 	avg_next_update = expires + ((1 + missed_periods) * psi_period); | 
 | 	period = now - (group->avg_last_update + (missed_periods * psi_period)); | 
 | 	group->avg_last_update = now; | 
 |  | 
 | 	for (s = 0; s < NR_PSI_STATES - 1; s++) { | 
 | 		u32 sample; | 
 |  | 
 | 		sample = group->total[PSI_AVGS][s] - group->avg_total[s]; | 
 | 		/* | 
 | 		 * Due to the lockless sampling of the time buckets, | 
 | 		 * recorded time deltas can slip into the next period, | 
 | 		 * which under full pressure can result in samples in | 
 | 		 * excess of the period length. | 
 | 		 * | 
 | 		 * We don't want to report non-sensical pressures in | 
 | 		 * excess of 100%, nor do we want to drop such events | 
 | 		 * on the floor. Instead we punt any overage into the | 
 | 		 * future until pressure subsides. By doing this we | 
 | 		 * don't underreport the occurring pressure curve, we | 
 | 		 * just report it delayed by one period length. | 
 | 		 * | 
 | 		 * The error isn't cumulative. As soon as another | 
 | 		 * delta slips from a period P to P+1, by definition | 
 | 		 * it frees up its time T in P. | 
 | 		 */ | 
 | 		if (sample > period) | 
 | 			sample = period; | 
 | 		group->avg_total[s] += sample; | 
 | 		calc_avgs(group->avg[s], missed_periods, sample, period); | 
 | 	} | 
 |  | 
 | 	return avg_next_update; | 
 | } | 
 |  | 
 | static void psi_avgs_work(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *dwork; | 
 | 	struct psi_group *group; | 
 | 	u32 changed_states; | 
 | 	bool nonidle; | 
 | 	u64 now; | 
 |  | 
 | 	dwork = to_delayed_work(work); | 
 | 	group = container_of(dwork, struct psi_group, avgs_work); | 
 |  | 
 | 	mutex_lock(&group->avgs_lock); | 
 |  | 
 | 	now = sched_clock(); | 
 |  | 
 | 	collect_percpu_times(group, PSI_AVGS, &changed_states); | 
 | 	nonidle = changed_states & (1 << PSI_NONIDLE); | 
 | 	/* | 
 | 	 * If there is task activity, periodically fold the per-cpu | 
 | 	 * times and feed samples into the running averages. If things | 
 | 	 * are idle and there is no data to process, stop the clock. | 
 | 	 * Once restarted, we'll catch up the running averages in one | 
 | 	 * go - see calc_avgs() and missed_periods. | 
 | 	 */ | 
 | 	if (now >= group->avg_next_update) | 
 | 		group->avg_next_update = update_averages(group, now); | 
 |  | 
 | 	if (nonidle) { | 
 | 		schedule_delayed_work(dwork, nsecs_to_jiffies( | 
 | 				group->avg_next_update - now) + 1); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&group->avgs_lock); | 
 | } | 
 |  | 
 | /* Trigger tracking window manipulations */ | 
 | static void window_reset(struct psi_window *win, u64 now, u64 value, | 
 | 			 u64 prev_growth) | 
 | { | 
 | 	win->start_time = now; | 
 | 	win->start_value = value; | 
 | 	win->prev_growth = prev_growth; | 
 | } | 
 |  | 
 | /* | 
 |  * PSI growth tracking window update and growth calculation routine. | 
 |  * | 
 |  * This approximates a sliding tracking window by interpolating | 
 |  * partially elapsed windows using historical growth data from the | 
 |  * previous intervals. This minimizes memory requirements (by not storing | 
 |  * all the intermediate values in the previous window) and simplifies | 
 |  * the calculations. It works well because PSI signal changes only in | 
 |  * positive direction and over relatively small window sizes the growth | 
 |  * is close to linear. | 
 |  */ | 
 | static u64 window_update(struct psi_window *win, u64 now, u64 value) | 
 | { | 
 | 	u64 elapsed; | 
 | 	u64 growth; | 
 |  | 
 | 	elapsed = now - win->start_time; | 
 | 	growth = value - win->start_value; | 
 | 	/* | 
 | 	 * After each tracking window passes win->start_value and | 
 | 	 * win->start_time get reset and win->prev_growth stores | 
 | 	 * the average per-window growth of the previous window. | 
 | 	 * win->prev_growth is then used to interpolate additional | 
 | 	 * growth from the previous window assuming it was linear. | 
 | 	 */ | 
 | 	if (elapsed > win->size) | 
 | 		window_reset(win, now, value, growth); | 
 | 	else { | 
 | 		u32 remaining; | 
 |  | 
 | 		remaining = win->size - elapsed; | 
 | 		growth += div64_u64(win->prev_growth * remaining, win->size); | 
 | 	} | 
 |  | 
 | 	return growth; | 
 | } | 
 |  | 
 | static void init_triggers(struct psi_group *group, u64 now) | 
 | { | 
 | 	struct psi_trigger *t; | 
 |  | 
 | 	list_for_each_entry(t, &group->triggers, node) | 
 | 		window_reset(&t->win, now, | 
 | 				group->total[PSI_POLL][t->state], 0); | 
 | 	memcpy(group->polling_total, group->total[PSI_POLL], | 
 | 		   sizeof(group->polling_total)); | 
 | 	group->polling_next_update = now + group->poll_min_period; | 
 | } | 
 |  | 
 | static u64 update_triggers(struct psi_group *group, u64 now) | 
 | { | 
 | 	struct psi_trigger *t; | 
 | 	bool update_total = false; | 
 | 	u64 *total = group->total[PSI_POLL]; | 
 |  | 
 | 	/* | 
 | 	 * On subsequent updates, calculate growth deltas and let | 
 | 	 * watchers know when their specified thresholds are exceeded. | 
 | 	 */ | 
 | 	list_for_each_entry(t, &group->triggers, node) { | 
 | 		u64 growth; | 
 | 		bool new_stall; | 
 |  | 
 | 		new_stall = group->polling_total[t->state] != total[t->state]; | 
 |  | 
 | 		/* Check for stall activity or a previous threshold breach */ | 
 | 		if (!new_stall && !t->pending_event) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Check for new stall activity, as well as deferred | 
 | 		 * events that occurred in the last window after the | 
 | 		 * trigger had already fired (we want to ratelimit | 
 | 		 * events without dropping any). | 
 | 		 */ | 
 | 		if (new_stall) { | 
 | 			/* | 
 | 			 * Multiple triggers might be looking at the same state, | 
 | 			 * remember to update group->polling_total[] once we've | 
 | 			 * been through all of them. Also remember to extend the | 
 | 			 * polling time if we see new stall activity. | 
 | 			 */ | 
 | 			update_total = true; | 
 |  | 
 | 			/* Calculate growth since last update */ | 
 | 			growth = window_update(&t->win, now, total[t->state]); | 
 | 			if (growth < t->threshold) | 
 | 				continue; | 
 |  | 
 | 			t->pending_event = true; | 
 | 		} | 
 | 		/* Limit event signaling to once per window */ | 
 | 		if (now < t->last_event_time + t->win.size) | 
 | 			continue; | 
 |  | 
 | 		/* Generate an event */ | 
 | 		if (cmpxchg(&t->event, 0, 1) == 0) | 
 | 			wake_up_interruptible(&t->event_wait); | 
 | 		t->last_event_time = now; | 
 | 		/* Reset threshold breach flag once event got generated */ | 
 | 		t->pending_event = false; | 
 | 	} | 
 |  | 
 | 	if (update_total) | 
 | 		memcpy(group->polling_total, total, | 
 | 				sizeof(group->polling_total)); | 
 |  | 
 | 	return now + group->poll_min_period; | 
 | } | 
 |  | 
 | /* Schedule polling if it's not already scheduled. */ | 
 | static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) | 
 | { | 
 | 	struct task_struct *task; | 
 |  | 
 | 	/* | 
 | 	 * Do not reschedule if already scheduled. | 
 | 	 * Possible race with a timer scheduled after this check but before | 
 | 	 * mod_timer below can be tolerated because group->polling_next_update | 
 | 	 * will keep updates on schedule. | 
 | 	 */ | 
 | 	if (timer_pending(&group->poll_timer)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	task = rcu_dereference(group->poll_task); | 
 | 	/* | 
 | 	 * kworker might be NULL in case psi_trigger_destroy races with | 
 | 	 * psi_task_change (hotpath) which can't use locks | 
 | 	 */ | 
 | 	if (likely(task)) | 
 | 		mod_timer(&group->poll_timer, jiffies + delay); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void psi_poll_work(struct psi_group *group) | 
 | { | 
 | 	u32 changed_states; | 
 | 	u64 now; | 
 |  | 
 | 	mutex_lock(&group->trigger_lock); | 
 |  | 
 | 	now = sched_clock(); | 
 |  | 
 | 	collect_percpu_times(group, PSI_POLL, &changed_states); | 
 |  | 
 | 	if (changed_states & group->poll_states) { | 
 | 		/* Initialize trigger windows when entering polling mode */ | 
 | 		if (now > group->polling_until) | 
 | 			init_triggers(group, now); | 
 |  | 
 | 		/* | 
 | 		 * Keep the monitor active for at least the duration of the | 
 | 		 * minimum tracking window as long as monitor states are | 
 | 		 * changing. | 
 | 		 */ | 
 | 		group->polling_until = now + | 
 | 			group->poll_min_period * UPDATES_PER_WINDOW; | 
 | 	} | 
 |  | 
 | 	if (now > group->polling_until) { | 
 | 		group->polling_next_update = ULLONG_MAX; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (now >= group->polling_next_update) | 
 | 		group->polling_next_update = update_triggers(group, now); | 
 |  | 
 | 	psi_schedule_poll_work(group, | 
 | 		nsecs_to_jiffies(group->polling_next_update - now) + 1); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&group->trigger_lock); | 
 | } | 
 |  | 
 | static int psi_poll_worker(void *data) | 
 | { | 
 | 	struct psi_group *group = (struct psi_group *)data; | 
 |  | 
 | 	sched_set_fifo_low(current); | 
 |  | 
 | 	while (true) { | 
 | 		wait_event_interruptible(group->poll_wait, | 
 | 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) || | 
 | 				kthread_should_stop()); | 
 | 		if (kthread_should_stop()) | 
 | 			break; | 
 |  | 
 | 		psi_poll_work(group); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void poll_timer_fn(struct timer_list *t) | 
 | { | 
 | 	struct psi_group *group = from_timer(group, t, poll_timer); | 
 |  | 
 | 	atomic_set(&group->poll_wakeup, 1); | 
 | 	wake_up_interruptible(&group->poll_wait); | 
 | } | 
 |  | 
 | static void record_times(struct psi_group_cpu *groupc, u64 now) | 
 | { | 
 | 	u32 delta; | 
 |  | 
 | 	delta = now - groupc->state_start; | 
 | 	groupc->state_start = now; | 
 |  | 
 | 	if (groupc->state_mask & (1 << PSI_IO_SOME)) { | 
 | 		groupc->times[PSI_IO_SOME] += delta; | 
 | 		if (groupc->state_mask & (1 << PSI_IO_FULL)) | 
 | 			groupc->times[PSI_IO_FULL] += delta; | 
 | 	} | 
 |  | 
 | 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) { | 
 | 		groupc->times[PSI_MEM_SOME] += delta; | 
 | 		if (groupc->state_mask & (1 << PSI_MEM_FULL)) | 
 | 			groupc->times[PSI_MEM_FULL] += delta; | 
 | 	} | 
 |  | 
 | 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) { | 
 | 		groupc->times[PSI_CPU_SOME] += delta; | 
 | 		if (groupc->state_mask & (1 << PSI_CPU_FULL)) | 
 | 			groupc->times[PSI_CPU_FULL] += delta; | 
 | 	} | 
 |  | 
 | 	if (groupc->state_mask & (1 << PSI_NONIDLE)) | 
 | 		groupc->times[PSI_NONIDLE] += delta; | 
 | } | 
 |  | 
 | static void psi_group_change(struct psi_group *group, int cpu, | 
 | 			     unsigned int clear, unsigned int set, u64 now, | 
 | 			     bool wake_clock) | 
 | { | 
 | 	struct psi_group_cpu *groupc; | 
 | 	u32 state_mask = 0; | 
 | 	unsigned int t, m; | 
 | 	enum psi_states s; | 
 |  | 
 | 	groupc = per_cpu_ptr(group->pcpu, cpu); | 
 |  | 
 | 	/* | 
 | 	 * First we assess the aggregate resource states this CPU's | 
 | 	 * tasks have been in since the last change, and account any | 
 | 	 * SOME and FULL time these may have resulted in. | 
 | 	 * | 
 | 	 * Then we update the task counts according to the state | 
 | 	 * change requested through the @clear and @set bits. | 
 | 	 */ | 
 | 	write_seqcount_begin(&groupc->seq); | 
 |  | 
 | 	record_times(groupc, now); | 
 |  | 
 | 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) { | 
 | 		if (!(m & (1 << t))) | 
 | 			continue; | 
 | 		if (groupc->tasks[t]) { | 
 | 			groupc->tasks[t]--; | 
 | 		} else if (!psi_bug) { | 
 | 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n", | 
 | 					cpu, t, groupc->tasks[0], | 
 | 					groupc->tasks[1], groupc->tasks[2], | 
 | 					groupc->tasks[3], groupc->tasks[4], | 
 | 					clear, set); | 
 | 			psi_bug = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (t = 0; set; set &= ~(1 << t), t++) | 
 | 		if (set & (1 << t)) | 
 | 			groupc->tasks[t]++; | 
 |  | 
 | 	/* Calculate state mask representing active states */ | 
 | 	for (s = 0; s < NR_PSI_STATES; s++) { | 
 | 		if (test_state(groupc->tasks, s)) | 
 | 			state_mask |= (1 << s); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since we care about lost potential, a memstall is FULL | 
 | 	 * when there are no other working tasks, but also when | 
 | 	 * the CPU is actively reclaiming and nothing productive | 
 | 	 * could run even if it were runnable. So when the current | 
 | 	 * task in a cgroup is in_memstall, the corresponding groupc | 
 | 	 * on that cpu is in PSI_MEM_FULL state. | 
 | 	 */ | 
 | 	if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall)) | 
 | 		state_mask |= (1 << PSI_MEM_FULL); | 
 |  | 
 | 	groupc->state_mask = state_mask; | 
 |  | 
 | 	write_seqcount_end(&groupc->seq); | 
 |  | 
 | 	if (state_mask & group->poll_states) | 
 | 		psi_schedule_poll_work(group, 1); | 
 |  | 
 | 	if (wake_clock && !delayed_work_pending(&group->avgs_work)) | 
 | 		schedule_delayed_work(&group->avgs_work, PSI_FREQ); | 
 | } | 
 |  | 
 | static struct psi_group *iterate_groups(struct task_struct *task, void **iter) | 
 | { | 
 | 	if (*iter == &psi_system) | 
 | 		return NULL; | 
 |  | 
 | #ifdef CONFIG_CGROUPS | 
 | 	if (static_branch_likely(&psi_cgroups_enabled)) { | 
 | 		struct cgroup *cgroup = NULL; | 
 |  | 
 | 		if (!*iter) | 
 | 			cgroup = task->cgroups->dfl_cgrp; | 
 | 		else | 
 | 			cgroup = cgroup_parent(*iter); | 
 |  | 
 | 		if (cgroup && cgroup_parent(cgroup)) { | 
 | 			*iter = cgroup; | 
 | 			return cgroup_psi(cgroup); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	*iter = &psi_system; | 
 | 	return &psi_system; | 
 | } | 
 |  | 
 | static void psi_flags_change(struct task_struct *task, int clear, int set) | 
 | { | 
 | 	if (((task->psi_flags & set) || | 
 | 	     (task->psi_flags & clear) != clear) && | 
 | 	    !psi_bug) { | 
 | 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", | 
 | 				task->pid, task->comm, task_cpu(task), | 
 | 				task->psi_flags, clear, set); | 
 | 		psi_bug = 1; | 
 | 	} | 
 |  | 
 | 	task->psi_flags &= ~clear; | 
 | 	task->psi_flags |= set; | 
 | } | 
 |  | 
 | void psi_task_change(struct task_struct *task, int clear, int set) | 
 | { | 
 | 	int cpu = task_cpu(task); | 
 | 	struct psi_group *group; | 
 | 	bool wake_clock = true; | 
 | 	void *iter = NULL; | 
 | 	u64 now; | 
 |  | 
 | 	if (!task->pid) | 
 | 		return; | 
 |  | 
 | 	psi_flags_change(task, clear, set); | 
 |  | 
 | 	now = cpu_clock(cpu); | 
 | 	/* | 
 | 	 * Periodic aggregation shuts off if there is a period of no | 
 | 	 * task changes, so we wake it back up if necessary. However, | 
 | 	 * don't do this if the task change is the aggregation worker | 
 | 	 * itself going to sleep, or we'll ping-pong forever. | 
 | 	 */ | 
 | 	if (unlikely((clear & TSK_RUNNING) && | 
 | 		     (task->flags & PF_WQ_WORKER) && | 
 | 		     wq_worker_last_func(task) == psi_avgs_work)) | 
 | 		wake_clock = false; | 
 |  | 
 | 	while ((group = iterate_groups(task, &iter))) | 
 | 		psi_group_change(group, cpu, clear, set, now, wake_clock); | 
 | } | 
 |  | 
 | void psi_task_switch(struct task_struct *prev, struct task_struct *next, | 
 | 		     bool sleep) | 
 | { | 
 | 	struct psi_group *group, *common = NULL; | 
 | 	int cpu = task_cpu(prev); | 
 | 	void *iter; | 
 | 	u64 now = cpu_clock(cpu); | 
 |  | 
 | 	if (next->pid) { | 
 | 		bool identical_state; | 
 |  | 
 | 		psi_flags_change(next, 0, TSK_ONCPU); | 
 | 		/* | 
 | 		 * When switching between tasks that have an identical | 
 | 		 * runtime state, the cgroup that contains both tasks | 
 | 		 * we reach the first common ancestor. Iterate @next's | 
 | 		 * ancestors only until we encounter @prev's ONCPU. | 
 | 		 */ | 
 | 		identical_state = prev->psi_flags == next->psi_flags; | 
 | 		iter = NULL; | 
 | 		while ((group = iterate_groups(next, &iter))) { | 
 | 			if (identical_state && | 
 | 			    per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { | 
 | 				common = group; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (prev->pid) { | 
 | 		int clear = TSK_ONCPU, set = 0; | 
 |  | 
 | 		/* | 
 | 		 * When we're going to sleep, psi_dequeue() lets us | 
 | 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and | 
 | 		 * TSK_IOWAIT here, where we can combine it with | 
 | 		 * TSK_ONCPU and save walking common ancestors twice. | 
 | 		 */ | 
 | 		if (sleep) { | 
 | 			clear |= TSK_RUNNING; | 
 | 			if (prev->in_memstall) | 
 | 				clear |= TSK_MEMSTALL_RUNNING; | 
 | 			if (prev->in_iowait) | 
 | 				set |= TSK_IOWAIT; | 
 | 		} | 
 |  | 
 | 		psi_flags_change(prev, clear, set); | 
 |  | 
 | 		iter = NULL; | 
 | 		while ((group = iterate_groups(prev, &iter)) && group != common) | 
 | 			psi_group_change(group, cpu, clear, set, now, true); | 
 |  | 
 | 		/* | 
 | 		 * TSK_ONCPU is handled up to the common ancestor. If we're tasked | 
 | 		 * with dequeuing too, finish that for the rest of the hierarchy. | 
 | 		 */ | 
 | 		if (sleep) { | 
 | 			clear &= ~TSK_ONCPU; | 
 | 			for (; group; group = iterate_groups(prev, &iter)) | 
 | 				psi_group_change(group, cpu, clear, set, now, true); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * psi_memstall_enter - mark the beginning of a memory stall section | 
 |  * @flags: flags to handle nested sections | 
 |  * | 
 |  * Marks the calling task as being stalled due to a lack of memory, | 
 |  * such as waiting for a refault or performing reclaim. | 
 |  */ | 
 | void psi_memstall_enter(unsigned long *flags) | 
 | { | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	*flags = current->in_memstall; | 
 | 	if (*flags) | 
 | 		return; | 
 | 	/* | 
 | 	 * in_memstall setting & accounting needs to be atomic wrt | 
 | 	 * changes to the task's scheduling state, otherwise we can | 
 | 	 * race with CPU migration. | 
 | 	 */ | 
 | 	rq = this_rq_lock_irq(&rf); | 
 |  | 
 | 	current->in_memstall = 1; | 
 | 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); | 
 |  | 
 | 	rq_unlock_irq(rq, &rf); | 
 | } | 
 |  | 
 | /** | 
 |  * psi_memstall_leave - mark the end of an memory stall section | 
 |  * @flags: flags to handle nested memdelay sections | 
 |  * | 
 |  * Marks the calling task as no longer stalled due to lack of memory. | 
 |  */ | 
 | void psi_memstall_leave(unsigned long *flags) | 
 | { | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	if (*flags) | 
 | 		return; | 
 | 	/* | 
 | 	 * in_memstall clearing & accounting needs to be atomic wrt | 
 | 	 * changes to the task's scheduling state, otherwise we could | 
 | 	 * race with CPU migration. | 
 | 	 */ | 
 | 	rq = this_rq_lock_irq(&rf); | 
 |  | 
 | 	current->in_memstall = 0; | 
 | 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); | 
 |  | 
 | 	rq_unlock_irq(rq, &rf); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUPS | 
 | int psi_cgroup_alloc(struct cgroup *cgroup) | 
 | { | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return 0; | 
 |  | 
 | 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); | 
 | 	if (!cgroup->psi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); | 
 | 	if (!cgroup->psi->pcpu) { | 
 | 		kfree(cgroup->psi); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	group_init(cgroup->psi); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void psi_cgroup_free(struct cgroup *cgroup) | 
 | { | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	cancel_delayed_work_sync(&cgroup->psi->avgs_work); | 
 | 	free_percpu(cgroup->psi->pcpu); | 
 | 	/* All triggers must be removed by now */ | 
 | 	WARN_ONCE(cgroup->psi->poll_states, "psi: trigger leak\n"); | 
 | 	kfree(cgroup->psi); | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_move_task - move task to a different cgroup | 
 |  * @task: the task | 
 |  * @to: the target css_set | 
 |  * | 
 |  * Move task to a new cgroup and safely migrate its associated stall | 
 |  * state between the different groups. | 
 |  * | 
 |  * This function acquires the task's rq lock to lock out concurrent | 
 |  * changes to the task's scheduling state and - in case the task is | 
 |  * running - concurrent changes to its stall state. | 
 |  */ | 
 | void cgroup_move_task(struct task_struct *task, struct css_set *to) | 
 | { | 
 | 	unsigned int task_flags; | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) { | 
 | 		/* | 
 | 		 * Lame to do this here, but the scheduler cannot be locked | 
 | 		 * from the outside, so we move cgroups from inside sched/. | 
 | 		 */ | 
 | 		rcu_assign_pointer(task->cgroups, to); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rq = task_rq_lock(task, &rf); | 
 |  | 
 | 	/* | 
 | 	 * We may race with schedule() dropping the rq lock between | 
 | 	 * deactivating prev and switching to next. Because the psi | 
 | 	 * updates from the deactivation are deferred to the switch | 
 | 	 * callback to save cgroup tree updates, the task's scheduling | 
 | 	 * state here is not coherent with its psi state: | 
 | 	 * | 
 | 	 * schedule()                   cgroup_move_task() | 
 | 	 *   rq_lock() | 
 | 	 *   deactivate_task() | 
 | 	 *     p->on_rq = 0 | 
 | 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates | 
 | 	 *   pick_next_task() | 
 | 	 *     rq_unlock() | 
 | 	 *                                rq_lock() | 
 | 	 *                                psi_task_change() // old cgroup | 
 | 	 *                                task->cgroups = to | 
 | 	 *                                psi_task_change() // new cgroup | 
 | 	 *                                rq_unlock() | 
 | 	 *     rq_lock() | 
 | 	 *   psi_sched_switch() // does deferred updates in new cgroup | 
 | 	 * | 
 | 	 * Don't rely on the scheduling state. Use psi_flags instead. | 
 | 	 */ | 
 | 	task_flags = task->psi_flags; | 
 |  | 
 | 	if (task_flags) | 
 | 		psi_task_change(task, task_flags, 0); | 
 |  | 
 | 	/* See comment above */ | 
 | 	rcu_assign_pointer(task->cgroups, to); | 
 |  | 
 | 	if (task_flags) | 
 | 		psi_task_change(task, 0, task_flags); | 
 |  | 
 | 	task_rq_unlock(rq, task, &rf); | 
 | } | 
 | #endif /* CONFIG_CGROUPS */ | 
 |  | 
 | int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) | 
 | { | 
 | 	int full; | 
 | 	u64 now; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* Update averages before reporting them */ | 
 | 	mutex_lock(&group->avgs_lock); | 
 | 	now = sched_clock(); | 
 | 	collect_percpu_times(group, PSI_AVGS, NULL); | 
 | 	if (now >= group->avg_next_update) | 
 | 		group->avg_next_update = update_averages(group, now); | 
 | 	mutex_unlock(&group->avgs_lock); | 
 |  | 
 | 	for (full = 0; full < 2; full++) { | 
 | 		unsigned long avg[3] = { 0, }; | 
 | 		u64 total = 0; | 
 | 		int w; | 
 |  | 
 | 		/* CPU FULL is undefined at the system level */ | 
 | 		if (!(group == &psi_system && res == PSI_CPU && full)) { | 
 | 			for (w = 0; w < 3; w++) | 
 | 				avg[w] = group->avg[res * 2 + full][w]; | 
 | 			total = div_u64(group->total[PSI_AVGS][res * 2 + full], | 
 | 					NSEC_PER_USEC); | 
 | 		} | 
 |  | 
 | 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", | 
 | 			   full ? "full" : "some", | 
 | 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), | 
 | 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), | 
 | 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), | 
 | 			   total); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct psi_trigger *psi_trigger_create(struct psi_group *group, | 
 | 			char *buf, enum psi_res res) | 
 | { | 
 | 	struct psi_trigger *t; | 
 | 	enum psi_states state; | 
 | 	u32 threshold_us; | 
 | 	u32 window_us; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return ERR_PTR(-EOPNOTSUPP); | 
 |  | 
 | 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) | 
 | 		state = PSI_IO_SOME + res * 2; | 
 | 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) | 
 | 		state = PSI_IO_FULL + res * 2; | 
 | 	else | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (state >= PSI_NONIDLE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (window_us < WINDOW_MIN_US || | 
 | 		window_us > WINDOW_MAX_US) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* Check threshold */ | 
 | 	if (threshold_us == 0 || threshold_us > window_us) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	t = kmalloc(sizeof(*t), GFP_KERNEL); | 
 | 	if (!t) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	t->group = group; | 
 | 	t->state = state; | 
 | 	t->threshold = threshold_us * NSEC_PER_USEC; | 
 | 	t->win.size = window_us * NSEC_PER_USEC; | 
 | 	window_reset(&t->win, sched_clock(), | 
 | 			group->total[PSI_POLL][t->state], 0); | 
 |  | 
 | 	t->event = 0; | 
 | 	t->last_event_time = 0; | 
 | 	init_waitqueue_head(&t->event_wait); | 
 | 	t->pending_event = false; | 
 |  | 
 | 	mutex_lock(&group->trigger_lock); | 
 |  | 
 | 	if (!rcu_access_pointer(group->poll_task)) { | 
 | 		struct task_struct *task; | 
 |  | 
 | 		task = kthread_create(psi_poll_worker, group, "psimon"); | 
 | 		if (IS_ERR(task)) { | 
 | 			kfree(t); | 
 | 			mutex_unlock(&group->trigger_lock); | 
 | 			return ERR_CAST(task); | 
 | 		} | 
 | 		atomic_set(&group->poll_wakeup, 0); | 
 | 		wake_up_process(task); | 
 | 		rcu_assign_pointer(group->poll_task, task); | 
 | 	} | 
 |  | 
 | 	list_add(&t->node, &group->triggers); | 
 | 	group->poll_min_period = min(group->poll_min_period, | 
 | 		div_u64(t->win.size, UPDATES_PER_WINDOW)); | 
 | 	group->nr_triggers[t->state]++; | 
 | 	group->poll_states |= (1 << t->state); | 
 |  | 
 | 	mutex_unlock(&group->trigger_lock); | 
 |  | 
 | 	return t; | 
 | } | 
 |  | 
 | void psi_trigger_destroy(struct psi_trigger *t) | 
 | { | 
 | 	struct psi_group *group; | 
 | 	struct task_struct *task_to_destroy = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We do not check psi_disabled since it might have been disabled after | 
 | 	 * the trigger got created. | 
 | 	 */ | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	group = t->group; | 
 | 	/* | 
 | 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted | 
 | 	 * from under a polling process. | 
 | 	 */ | 
 | 	wake_up_interruptible(&t->event_wait); | 
 |  | 
 | 	mutex_lock(&group->trigger_lock); | 
 |  | 
 | 	if (!list_empty(&t->node)) { | 
 | 		struct psi_trigger *tmp; | 
 | 		u64 period = ULLONG_MAX; | 
 |  | 
 | 		list_del(&t->node); | 
 | 		group->nr_triggers[t->state]--; | 
 | 		if (!group->nr_triggers[t->state]) | 
 | 			group->poll_states &= ~(1 << t->state); | 
 | 		/* reset min update period for the remaining triggers */ | 
 | 		list_for_each_entry(tmp, &group->triggers, node) | 
 | 			period = min(period, div_u64(tmp->win.size, | 
 | 					UPDATES_PER_WINDOW)); | 
 | 		group->poll_min_period = period; | 
 | 		/* Destroy poll_task when the last trigger is destroyed */ | 
 | 		if (group->poll_states == 0) { | 
 | 			group->polling_until = 0; | 
 | 			task_to_destroy = rcu_dereference_protected( | 
 | 					group->poll_task, | 
 | 					lockdep_is_held(&group->trigger_lock)); | 
 | 			rcu_assign_pointer(group->poll_task, NULL); | 
 | 			del_timer(&group->poll_timer); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&group->trigger_lock); | 
 |  | 
 | 	/* | 
 | 	 * Wait for psi_schedule_poll_work RCU to complete its read-side | 
 | 	 * critical section before destroying the trigger and optionally the | 
 | 	 * poll_task. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 | 	/* | 
 | 	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a | 
 | 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock | 
 | 	 */ | 
 | 	if (task_to_destroy) { | 
 | 		/* | 
 | 		 * After the RCU grace period has expired, the worker | 
 | 		 * can no longer be found through group->poll_task. | 
 | 		 */ | 
 | 		kthread_stop(task_to_destroy); | 
 | 	} | 
 | 	kfree(t); | 
 | } | 
 |  | 
 | __poll_t psi_trigger_poll(void **trigger_ptr, | 
 | 				struct file *file, poll_table *wait) | 
 | { | 
 | 	__poll_t ret = DEFAULT_POLLMASK; | 
 | 	struct psi_trigger *t; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; | 
 |  | 
 | 	t = smp_load_acquire(trigger_ptr); | 
 | 	if (!t) | 
 | 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; | 
 |  | 
 | 	poll_wait(file, &t->event_wait, wait); | 
 |  | 
 | 	if (cmpxchg(&t->event, 1, 0) == 1) | 
 | 		ret |= EPOLLPRI; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static int psi_io_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return psi_show(m, &psi_system, PSI_IO); | 
 | } | 
 |  | 
 | static int psi_memory_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return psi_show(m, &psi_system, PSI_MEM); | 
 | } | 
 |  | 
 | static int psi_cpu_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return psi_show(m, &psi_system, PSI_CPU); | 
 | } | 
 |  | 
 | static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *)) | 
 | { | 
 | 	if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	return single_open(file, psi_show, NULL); | 
 | } | 
 |  | 
 | static int psi_io_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return psi_open(file, psi_io_show); | 
 | } | 
 |  | 
 | static int psi_memory_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return psi_open(file, psi_memory_show); | 
 | } | 
 |  | 
 | static int psi_cpu_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return psi_open(file, psi_cpu_show); | 
 | } | 
 |  | 
 | static ssize_t psi_write(struct file *file, const char __user *user_buf, | 
 | 			 size_t nbytes, enum psi_res res) | 
 | { | 
 | 	char buf[32]; | 
 | 	size_t buf_size; | 
 | 	struct seq_file *seq; | 
 | 	struct psi_trigger *new; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (!nbytes) | 
 | 		return -EINVAL; | 
 |  | 
 | 	buf_size = min(nbytes, sizeof(buf)); | 
 | 	if (copy_from_user(buf, user_buf, buf_size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	buf[buf_size - 1] = '\0'; | 
 |  | 
 | 	seq = file->private_data; | 
 |  | 
 | 	/* Take seq->lock to protect seq->private from concurrent writes */ | 
 | 	mutex_lock(&seq->lock); | 
 |  | 
 | 	/* Allow only one trigger per file descriptor */ | 
 | 	if (seq->private) { | 
 | 		mutex_unlock(&seq->lock); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	new = psi_trigger_create(&psi_system, buf, res); | 
 | 	if (IS_ERR(new)) { | 
 | 		mutex_unlock(&seq->lock); | 
 | 		return PTR_ERR(new); | 
 | 	} | 
 |  | 
 | 	smp_store_release(&seq->private, new); | 
 | 	mutex_unlock(&seq->lock); | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static ssize_t psi_io_write(struct file *file, const char __user *user_buf, | 
 | 			    size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return psi_write(file, user_buf, nbytes, PSI_IO); | 
 | } | 
 |  | 
 | static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, | 
 | 				size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return psi_write(file, user_buf, nbytes, PSI_MEM); | 
 | } | 
 |  | 
 | static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, | 
 | 			     size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	return psi_write(file, user_buf, nbytes, PSI_CPU); | 
 | } | 
 |  | 
 | static __poll_t psi_fop_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct seq_file *seq = file->private_data; | 
 |  | 
 | 	return psi_trigger_poll(&seq->private, file, wait); | 
 | } | 
 |  | 
 | static int psi_fop_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct seq_file *seq = file->private_data; | 
 |  | 
 | 	psi_trigger_destroy(seq->private); | 
 | 	return single_release(inode, file); | 
 | } | 
 |  | 
 | static const struct proc_ops psi_io_proc_ops = { | 
 | 	.proc_open	= psi_io_open, | 
 | 	.proc_read	= seq_read, | 
 | 	.proc_lseek	= seq_lseek, | 
 | 	.proc_write	= psi_io_write, | 
 | 	.proc_poll	= psi_fop_poll, | 
 | 	.proc_release	= psi_fop_release, | 
 | }; | 
 |  | 
 | static const struct proc_ops psi_memory_proc_ops = { | 
 | 	.proc_open	= psi_memory_open, | 
 | 	.proc_read	= seq_read, | 
 | 	.proc_lseek	= seq_lseek, | 
 | 	.proc_write	= psi_memory_write, | 
 | 	.proc_poll	= psi_fop_poll, | 
 | 	.proc_release	= psi_fop_release, | 
 | }; | 
 |  | 
 | static const struct proc_ops psi_cpu_proc_ops = { | 
 | 	.proc_open	= psi_cpu_open, | 
 | 	.proc_read	= seq_read, | 
 | 	.proc_lseek	= seq_lseek, | 
 | 	.proc_write	= psi_cpu_write, | 
 | 	.proc_poll	= psi_fop_poll, | 
 | 	.proc_release	= psi_fop_release, | 
 | }; | 
 |  | 
 | static int __init psi_proc_init(void) | 
 | { | 
 | 	if (psi_enable) { | 
 | 		proc_mkdir("pressure", NULL); | 
 | 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); | 
 | 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); | 
 | 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | module_init(psi_proc_init); | 
 |  | 
 | #endif /* CONFIG_PROC_FS */ |