| /* |
| * CAN bus driver for Bosch C_CAN controller |
| * |
| * Copyright (C) 2010 ST Microelectronics |
| * Bhupesh Sharma <bhupesh.sharma@st.com> |
| * |
| * Borrowed heavily from the C_CAN driver originally written by: |
| * Copyright (C) 2007 |
| * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de> |
| * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch> |
| * |
| * TX and RX NAPI implementation has been borrowed from at91 CAN driver |
| * written by: |
| * Copyright |
| * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de> |
| * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de> |
| * |
| * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B. |
| * Bosch C_CAN user manual can be obtained from: |
| * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/ |
| * users_manual_c_can.pdf |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_ether.h> |
| #include <linux/list.h> |
| #include <linux/io.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pinctrl/consumer.h> |
| |
| #include <linux/can.h> |
| #include <linux/can/dev.h> |
| #include <linux/can/error.h> |
| #include <linux/can/led.h> |
| |
| #include "c_can.h" |
| |
| /* Number of interface registers */ |
| #define IF_ENUM_REG_LEN 11 |
| #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN) |
| |
| /* control extension register D_CAN specific */ |
| #define CONTROL_EX_PDR BIT(8) |
| |
| /* control register */ |
| #define CONTROL_SWR BIT(15) |
| #define CONTROL_TEST BIT(7) |
| #define CONTROL_CCE BIT(6) |
| #define CONTROL_DISABLE_AR BIT(5) |
| #define CONTROL_ENABLE_AR (0 << 5) |
| #define CONTROL_EIE BIT(3) |
| #define CONTROL_SIE BIT(2) |
| #define CONTROL_IE BIT(1) |
| #define CONTROL_INIT BIT(0) |
| |
| #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE) |
| |
| /* test register */ |
| #define TEST_RX BIT(7) |
| #define TEST_TX1 BIT(6) |
| #define TEST_TX2 BIT(5) |
| #define TEST_LBACK BIT(4) |
| #define TEST_SILENT BIT(3) |
| #define TEST_BASIC BIT(2) |
| |
| /* status register */ |
| #define STATUS_PDA BIT(10) |
| #define STATUS_BOFF BIT(7) |
| #define STATUS_EWARN BIT(6) |
| #define STATUS_EPASS BIT(5) |
| #define STATUS_RXOK BIT(4) |
| #define STATUS_TXOK BIT(3) |
| |
| /* error counter register */ |
| #define ERR_CNT_TEC_MASK 0xff |
| #define ERR_CNT_TEC_SHIFT 0 |
| #define ERR_CNT_REC_SHIFT 8 |
| #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT) |
| #define ERR_CNT_RP_SHIFT 15 |
| #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT) |
| |
| /* bit-timing register */ |
| #define BTR_BRP_MASK 0x3f |
| #define BTR_BRP_SHIFT 0 |
| #define BTR_SJW_SHIFT 6 |
| #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT) |
| #define BTR_TSEG1_SHIFT 8 |
| #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT) |
| #define BTR_TSEG2_SHIFT 12 |
| #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT) |
| |
| /* interrupt register */ |
| #define INT_STS_PENDING 0x8000 |
| |
| /* brp extension register */ |
| #define BRP_EXT_BRPE_MASK 0x0f |
| #define BRP_EXT_BRPE_SHIFT 0 |
| |
| /* IFx command request */ |
| #define IF_COMR_BUSY BIT(15) |
| |
| /* IFx command mask */ |
| #define IF_COMM_WR BIT(7) |
| #define IF_COMM_MASK BIT(6) |
| #define IF_COMM_ARB BIT(5) |
| #define IF_COMM_CONTROL BIT(4) |
| #define IF_COMM_CLR_INT_PND BIT(3) |
| #define IF_COMM_TXRQST BIT(2) |
| #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST |
| #define IF_COMM_DATAA BIT(1) |
| #define IF_COMM_DATAB BIT(0) |
| |
| /* TX buffer setup */ |
| #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \ |
| IF_COMM_TXRQST | \ |
| IF_COMM_DATAA | IF_COMM_DATAB) |
| |
| /* For the low buffers we clear the interrupt bit, but keep newdat */ |
| #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \ |
| IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \ |
| IF_COMM_DATAA | IF_COMM_DATAB) |
| |
| /* For the high buffers we clear the interrupt bit and newdat */ |
| #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT) |
| |
| |
| /* Receive setup of message objects */ |
| #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL) |
| |
| /* Invalidation of message objects */ |
| #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL) |
| |
| /* IFx arbitration */ |
| #define IF_ARB_MSGVAL BIT(31) |
| #define IF_ARB_MSGXTD BIT(30) |
| #define IF_ARB_TRANSMIT BIT(29) |
| |
| /* IFx message control */ |
| #define IF_MCONT_NEWDAT BIT(15) |
| #define IF_MCONT_MSGLST BIT(14) |
| #define IF_MCONT_INTPND BIT(13) |
| #define IF_MCONT_UMASK BIT(12) |
| #define IF_MCONT_TXIE BIT(11) |
| #define IF_MCONT_RXIE BIT(10) |
| #define IF_MCONT_RMTEN BIT(9) |
| #define IF_MCONT_TXRQST BIT(8) |
| #define IF_MCONT_EOB BIT(7) |
| #define IF_MCONT_DLC_MASK 0xf |
| |
| #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK) |
| #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB) |
| |
| #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB) |
| |
| /* |
| * Use IF1 for RX and IF2 for TX |
| */ |
| #define IF_RX 0 |
| #define IF_TX 1 |
| |
| /* minimum timeout for checking BUSY status */ |
| #define MIN_TIMEOUT_VALUE 6 |
| |
| /* Wait for ~1 sec for INIT bit */ |
| #define INIT_WAIT_MS 1000 |
| |
| /* napi related */ |
| #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM |
| |
| /* c_can lec values */ |
| enum c_can_lec_type { |
| LEC_NO_ERROR = 0, |
| LEC_STUFF_ERROR, |
| LEC_FORM_ERROR, |
| LEC_ACK_ERROR, |
| LEC_BIT1_ERROR, |
| LEC_BIT0_ERROR, |
| LEC_CRC_ERROR, |
| LEC_UNUSED, |
| LEC_MASK = LEC_UNUSED, |
| }; |
| |
| /* |
| * c_can error types: |
| * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported |
| */ |
| enum c_can_bus_error_types { |
| C_CAN_NO_ERROR = 0, |
| C_CAN_BUS_OFF, |
| C_CAN_ERROR_WARNING, |
| C_CAN_ERROR_PASSIVE, |
| }; |
| |
| static const struct can_bittiming_const c_can_bittiming_const = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 16, |
| .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 8, |
| .sjw_max = 4, |
| .brp_min = 1, |
| .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/ |
| .brp_inc = 1, |
| }; |
| |
| static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv) |
| { |
| if (priv->device) |
| pm_runtime_enable(priv->device); |
| } |
| |
| static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv) |
| { |
| if (priv->device) |
| pm_runtime_disable(priv->device); |
| } |
| |
| static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv) |
| { |
| if (priv->device) |
| pm_runtime_get_sync(priv->device); |
| } |
| |
| static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv) |
| { |
| if (priv->device) |
| pm_runtime_put_sync(priv->device); |
| } |
| |
| static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable) |
| { |
| if (priv->raminit) |
| priv->raminit(priv, enable); |
| } |
| |
| static void c_can_irq_control(struct c_can_priv *priv, bool enable) |
| { |
| u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK; |
| |
| if (enable) |
| ctrl |= CONTROL_IRQMSK; |
| |
| priv->write_reg(priv, C_CAN_CTRL_REG, ctrl); |
| } |
| |
| static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface); |
| |
| priv->write_reg32(priv, reg, (cmd << 16) | obj); |
| |
| for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) { |
| if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY)) |
| return; |
| udelay(1); |
| } |
| netdev_err(dev, "Updating object timed out\n"); |
| |
| } |
| |
| static inline void c_can_object_get(struct net_device *dev, int iface, |
| u32 obj, u32 cmd) |
| { |
| c_can_obj_update(dev, iface, cmd, obj); |
| } |
| |
| static inline void c_can_object_put(struct net_device *dev, int iface, |
| u32 obj, u32 cmd) |
| { |
| c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj); |
| } |
| |
| /* |
| * Note: According to documentation clearing TXIE while MSGVAL is set |
| * is not allowed, but works nicely on C/DCAN. And that lowers the I/O |
| * load significantly. |
| */ |
| static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0); |
| c_can_object_put(dev, iface, obj, IF_COMM_INVAL); |
| } |
| |
| static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0); |
| priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0); |
| c_can_inval_tx_object(dev, iface, obj); |
| } |
| |
| static void c_can_setup_tx_object(struct net_device *dev, int iface, |
| struct can_frame *frame, int idx) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| u16 ctrl = IF_MCONT_TX | frame->can_dlc; |
| bool rtr = frame->can_id & CAN_RTR_FLAG; |
| u32 arb = IF_ARB_MSGVAL; |
| int i; |
| |
| if (frame->can_id & CAN_EFF_FLAG) { |
| arb |= frame->can_id & CAN_EFF_MASK; |
| arb |= IF_ARB_MSGXTD; |
| } else { |
| arb |= (frame->can_id & CAN_SFF_MASK) << 18; |
| } |
| |
| if (!rtr) |
| arb |= IF_ARB_TRANSMIT; |
| |
| /* |
| * If we change the DIR bit, we need to invalidate the buffer |
| * first, i.e. clear the MSGVAL flag in the arbiter. |
| */ |
| if (rtr != (bool)test_bit(idx, &priv->tx_dir)) { |
| u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST; |
| |
| c_can_inval_msg_object(dev, iface, obj); |
| change_bit(idx, &priv->tx_dir); |
| } |
| |
| priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb); |
| |
| priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl); |
| |
| if (priv->type == BOSCH_D_CAN) { |
| u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface); |
| |
| for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) { |
| data = (u32)frame->data[i]; |
| data |= (u32)frame->data[i + 1] << 8; |
| data |= (u32)frame->data[i + 2] << 16; |
| data |= (u32)frame->data[i + 3] << 24; |
| priv->write_reg32(priv, dreg, data); |
| } |
| } else { |
| for (i = 0; i < frame->can_dlc; i += 2) { |
| priv->write_reg(priv, |
| C_CAN_IFACE(DATA1_REG, iface) + i / 2, |
| frame->data[i] | |
| (frame->data[i + 1] << 8)); |
| } |
| } |
| } |
| |
| static int c_can_handle_lost_msg_obj(struct net_device *dev, |
| int iface, int objno, u32 ctrl) |
| { |
| struct net_device_stats *stats = &dev->stats; |
| struct c_can_priv *priv = netdev_priv(dev); |
| struct can_frame *frame; |
| struct sk_buff *skb; |
| |
| ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT); |
| priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl); |
| c_can_object_put(dev, iface, objno, IF_COMM_CONTROL); |
| |
| stats->rx_errors++; |
| stats->rx_over_errors++; |
| |
| /* create an error msg */ |
| skb = alloc_can_err_skb(dev, &frame); |
| if (unlikely(!skb)) |
| return 0; |
| |
| frame->can_id |= CAN_ERR_CRTL; |
| frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; |
| |
| netif_receive_skb(skb); |
| return 1; |
| } |
| |
| static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl) |
| { |
| struct net_device_stats *stats = &dev->stats; |
| struct c_can_priv *priv = netdev_priv(dev); |
| struct can_frame *frame; |
| struct sk_buff *skb; |
| u32 arb, data; |
| |
| skb = alloc_can_skb(dev, &frame); |
| if (!skb) { |
| stats->rx_dropped++; |
| return -ENOMEM; |
| } |
| |
| frame->can_dlc = get_can_dlc(ctrl & 0x0F); |
| |
| arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface)); |
| |
| if (arb & IF_ARB_MSGXTD) |
| frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG; |
| else |
| frame->can_id = (arb >> 18) & CAN_SFF_MASK; |
| |
| if (arb & IF_ARB_TRANSMIT) { |
| frame->can_id |= CAN_RTR_FLAG; |
| } else { |
| int i, dreg = C_CAN_IFACE(DATA1_REG, iface); |
| |
| if (priv->type == BOSCH_D_CAN) { |
| for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) { |
| data = priv->read_reg32(priv, dreg); |
| frame->data[i] = data; |
| frame->data[i + 1] = data >> 8; |
| frame->data[i + 2] = data >> 16; |
| frame->data[i + 3] = data >> 24; |
| } |
| } else { |
| for (i = 0; i < frame->can_dlc; i += 2, dreg++) { |
| data = priv->read_reg(priv, dreg); |
| frame->data[i] = data; |
| frame->data[i + 1] = data >> 8; |
| } |
| } |
| } |
| |
| stats->rx_packets++; |
| stats->rx_bytes += frame->can_dlc; |
| |
| netif_receive_skb(skb); |
| return 0; |
| } |
| |
| static void c_can_setup_receive_object(struct net_device *dev, int iface, |
| u32 obj, u32 mask, u32 id, u32 mcont) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| mask |= BIT(29); |
| priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask); |
| |
| id |= IF_ARB_MSGVAL; |
| priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id); |
| |
| priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont); |
| c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP); |
| } |
| |
| static netdev_tx_t c_can_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct can_frame *frame = (struct can_frame *)skb->data; |
| struct c_can_priv *priv = netdev_priv(dev); |
| u32 idx, obj; |
| |
| if (can_dropped_invalid_skb(dev, skb)) |
| return NETDEV_TX_OK; |
| /* |
| * This is not a FIFO. C/D_CAN sends out the buffers |
| * prioritized. The lowest buffer number wins. |
| */ |
| idx = fls(atomic_read(&priv->tx_active)); |
| obj = idx + C_CAN_MSG_OBJ_TX_FIRST; |
| |
| /* If this is the last buffer, stop the xmit queue */ |
| if (idx == C_CAN_MSG_OBJ_TX_NUM - 1) |
| netif_stop_queue(dev); |
| /* |
| * Store the message in the interface so we can call |
| * can_put_echo_skb(). We must do this before we enable |
| * transmit as we might race against do_tx(). |
| */ |
| c_can_setup_tx_object(dev, IF_TX, frame, idx); |
| priv->dlc[idx] = frame->can_dlc; |
| can_put_echo_skb(skb, dev, idx); |
| |
| /* Update the active bits */ |
| atomic_add((1 << idx), &priv->tx_active); |
| /* Start transmission */ |
| c_can_object_put(dev, IF_TX, obj, IF_COMM_TX); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int c_can_wait_for_ctrl_init(struct net_device *dev, |
| struct c_can_priv *priv, u32 init) |
| { |
| int retry = 0; |
| |
| while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) { |
| udelay(10); |
| if (retry++ > 1000) { |
| netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n"); |
| return -EIO; |
| } |
| } |
| return 0; |
| } |
| |
| static int c_can_set_bittiming(struct net_device *dev) |
| { |
| unsigned int reg_btr, reg_brpe, ctrl_save; |
| u8 brp, brpe, sjw, tseg1, tseg2; |
| u32 ten_bit_brp; |
| struct c_can_priv *priv = netdev_priv(dev); |
| const struct can_bittiming *bt = &priv->can.bittiming; |
| int res; |
| |
| /* c_can provides a 6-bit brp and 4-bit brpe fields */ |
| ten_bit_brp = bt->brp - 1; |
| brp = ten_bit_brp & BTR_BRP_MASK; |
| brpe = ten_bit_brp >> 6; |
| |
| sjw = bt->sjw - 1; |
| tseg1 = bt->prop_seg + bt->phase_seg1 - 1; |
| tseg2 = bt->phase_seg2 - 1; |
| reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) | |
| (tseg2 << BTR_TSEG2_SHIFT); |
| reg_brpe = brpe & BRP_EXT_BRPE_MASK; |
| |
| netdev_info(dev, |
| "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe); |
| |
| ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG); |
| ctrl_save &= ~CONTROL_INIT; |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT); |
| res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT); |
| if (res) |
| return res; |
| |
| priv->write_reg(priv, C_CAN_BTR_REG, reg_btr); |
| priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe); |
| priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save); |
| |
| return c_can_wait_for_ctrl_init(dev, priv, 0); |
| } |
| |
| /* |
| * Configure C_CAN message objects for Tx and Rx purposes: |
| * C_CAN provides a total of 32 message objects that can be configured |
| * either for Tx or Rx purposes. Here the first 16 message objects are used as |
| * a reception FIFO. The end of reception FIFO is signified by the EoB bit |
| * being SET. The remaining 16 message objects are kept aside for Tx purposes. |
| * See user guide document for further details on configuring message |
| * objects. |
| */ |
| static void c_can_configure_msg_objects(struct net_device *dev) |
| { |
| int i; |
| |
| /* first invalidate all message objects */ |
| for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++) |
| c_can_inval_msg_object(dev, IF_RX, i); |
| |
| /* setup receive message objects */ |
| for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++) |
| c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV); |
| |
| c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0, |
| IF_MCONT_RCV_EOB); |
| } |
| |
| static int c_can_software_reset(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int retry = 0; |
| |
| if (priv->type != BOSCH_D_CAN) |
| return 0; |
| |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT); |
| while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) { |
| msleep(20); |
| if (retry++ > 100) { |
| netdev_err(dev, "CCTRL: software reset failed\n"); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Configure C_CAN chip: |
| * - enable/disable auto-retransmission |
| * - set operating mode |
| * - configure message objects |
| */ |
| static int c_can_chip_config(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| err = c_can_software_reset(dev); |
| if (err) |
| return err; |
| |
| /* enable automatic retransmission */ |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR); |
| |
| if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) && |
| (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) { |
| /* loopback + silent mode : useful for hot self-test */ |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST); |
| priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT); |
| } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { |
| /* loopback mode : useful for self-test function */ |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST); |
| priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK); |
| } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { |
| /* silent mode : bus-monitoring mode */ |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST); |
| priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT); |
| } |
| |
| /* configure message objects */ |
| c_can_configure_msg_objects(dev); |
| |
| /* set a `lec` value so that we can check for updates later */ |
| priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED); |
| |
| /* Clear all internal status */ |
| atomic_set(&priv->tx_active, 0); |
| priv->rxmasked = 0; |
| priv->tx_dir = 0; |
| |
| /* set bittiming params */ |
| return c_can_set_bittiming(dev); |
| } |
| |
| static int c_can_start(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int err; |
| struct pinctrl *p; |
| |
| /* basic c_can configuration */ |
| err = c_can_chip_config(dev); |
| if (err) |
| return err; |
| |
| /* Setup the command for new messages */ |
| priv->comm_rcv_high = priv->type != BOSCH_D_CAN ? |
| IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH; |
| |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| /* Attempt to use "active" if available else use "default" */ |
| p = pinctrl_get_select(priv->device, "active"); |
| if (!IS_ERR(p)) |
| pinctrl_put(p); |
| else |
| pinctrl_pm_select_default_state(priv->device); |
| |
| return 0; |
| } |
| |
| static void c_can_stop(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| c_can_irq_control(priv, false); |
| |
| /* put ctrl to init on stop to end ongoing transmission */ |
| priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT); |
| |
| /* deactivate pins */ |
| pinctrl_pm_select_sleep_state(dev->dev.parent); |
| priv->can.state = CAN_STATE_STOPPED; |
| } |
| |
| static int c_can_set_mode(struct net_device *dev, enum can_mode mode) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| switch (mode) { |
| case CAN_MODE_START: |
| err = c_can_start(dev); |
| if (err) |
| return err; |
| netif_wake_queue(dev); |
| c_can_irq_control(priv, true); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static int __c_can_get_berr_counter(const struct net_device *dev, |
| struct can_berr_counter *bec) |
| { |
| unsigned int reg_err_counter; |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG); |
| bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >> |
| ERR_CNT_REC_SHIFT; |
| bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK; |
| |
| return 0; |
| } |
| |
| static int c_can_get_berr_counter(const struct net_device *dev, |
| struct can_berr_counter *bec) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| c_can_pm_runtime_get_sync(priv); |
| err = __c_can_get_berr_counter(dev, bec); |
| c_can_pm_runtime_put_sync(priv); |
| |
| return err; |
| } |
| |
| static void c_can_do_tx(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| u32 idx, obj, pkts = 0, bytes = 0, pend, clr; |
| |
| clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG); |
| |
| while ((idx = ffs(pend))) { |
| idx--; |
| pend &= ~(1 << idx); |
| obj = idx + C_CAN_MSG_OBJ_TX_FIRST; |
| c_can_inval_tx_object(dev, IF_RX, obj); |
| can_get_echo_skb(dev, idx); |
| bytes += priv->dlc[idx]; |
| pkts++; |
| } |
| |
| /* Clear the bits in the tx_active mask */ |
| atomic_sub(clr, &priv->tx_active); |
| |
| if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1))) |
| netif_wake_queue(dev); |
| |
| if (pkts) { |
| stats->tx_bytes += bytes; |
| stats->tx_packets += pkts; |
| can_led_event(dev, CAN_LED_EVENT_TX); |
| } |
| } |
| |
| /* |
| * If we have a gap in the pending bits, that means we either |
| * raced with the hardware or failed to readout all upper |
| * objects in the last run due to quota limit. |
| */ |
| static u32 c_can_adjust_pending(u32 pend) |
| { |
| u32 weight, lasts; |
| |
| if (pend == RECEIVE_OBJECT_BITS) |
| return pend; |
| |
| /* |
| * If the last set bit is larger than the number of pending |
| * bits we have a gap. |
| */ |
| weight = hweight32(pend); |
| lasts = fls(pend); |
| |
| /* If the bits are linear, nothing to do */ |
| if (lasts == weight) |
| return pend; |
| |
| /* |
| * Find the first set bit after the gap. We walk backwards |
| * from the last set bit. |
| */ |
| for (lasts--; pend & (1 << (lasts - 1)); lasts--); |
| |
| return pend & ~((1 << lasts) - 1); |
| } |
| |
| static inline void c_can_rx_object_get(struct net_device *dev, |
| struct c_can_priv *priv, u32 obj) |
| { |
| c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high); |
| } |
| |
| static inline void c_can_rx_finalize(struct net_device *dev, |
| struct c_can_priv *priv, u32 obj) |
| { |
| if (priv->type != BOSCH_D_CAN) |
| c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT); |
| } |
| |
| static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv, |
| u32 pend, int quota) |
| { |
| u32 pkts = 0, ctrl, obj; |
| |
| while ((obj = ffs(pend)) && quota > 0) { |
| pend &= ~BIT(obj - 1); |
| |
| c_can_rx_object_get(dev, priv, obj); |
| ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX)); |
| |
| if (ctrl & IF_MCONT_MSGLST) { |
| int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl); |
| |
| pkts += n; |
| quota -= n; |
| continue; |
| } |
| |
| /* |
| * This really should not happen, but this covers some |
| * odd HW behaviour. Do not remove that unless you |
| * want to brick your machine. |
| */ |
| if (!(ctrl & IF_MCONT_NEWDAT)) |
| continue; |
| |
| /* read the data from the message object */ |
| c_can_read_msg_object(dev, IF_RX, ctrl); |
| |
| c_can_rx_finalize(dev, priv, obj); |
| |
| pkts++; |
| quota--; |
| } |
| |
| return pkts; |
| } |
| |
| static inline u32 c_can_get_pending(struct c_can_priv *priv) |
| { |
| u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG); |
| |
| return pend; |
| } |
| |
| /* |
| * theory of operation: |
| * |
| * c_can core saves a received CAN message into the first free message |
| * object it finds free (starting with the lowest). Bits NEWDAT and |
| * INTPND are set for this message object indicating that a new message |
| * has arrived. To work-around this issue, we keep two groups of message |
| * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT. |
| * |
| * We clear the newdat bit right away. |
| * |
| * This can result in packet reordering when the readout is slow. |
| */ |
| static int c_can_do_rx_poll(struct net_device *dev, int quota) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| u32 pkts = 0, pend = 0, toread, n; |
| |
| /* |
| * It is faster to read only one 16bit register. This is only possible |
| * for a maximum number of 16 objects. |
| */ |
| BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16, |
| "Implementation does not support more message objects than 16"); |
| |
| while (quota > 0) { |
| if (!pend) { |
| pend = c_can_get_pending(priv); |
| if (!pend) |
| break; |
| /* |
| * If the pending field has a gap, handle the |
| * bits above the gap first. |
| */ |
| toread = c_can_adjust_pending(pend); |
| } else { |
| toread = pend; |
| } |
| /* Remove the bits from pend */ |
| pend &= ~toread; |
| /* Read the objects */ |
| n = c_can_read_objects(dev, priv, toread, quota); |
| pkts += n; |
| quota -= n; |
| } |
| |
| if (pkts) |
| can_led_event(dev, CAN_LED_EVENT_RX); |
| |
| return pkts; |
| } |
| |
| static int c_can_handle_state_change(struct net_device *dev, |
| enum c_can_bus_error_types error_type) |
| { |
| unsigned int reg_err_counter; |
| unsigned int rx_err_passive; |
| struct c_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| struct can_berr_counter bec; |
| |
| switch (error_type) { |
| case C_CAN_NO_ERROR: |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| break; |
| case C_CAN_ERROR_WARNING: |
| /* error warning state */ |
| priv->can.can_stats.error_warning++; |
| priv->can.state = CAN_STATE_ERROR_WARNING; |
| break; |
| case C_CAN_ERROR_PASSIVE: |
| /* error passive state */ |
| priv->can.can_stats.error_passive++; |
| priv->can.state = CAN_STATE_ERROR_PASSIVE; |
| break; |
| case C_CAN_BUS_OFF: |
| /* bus-off state */ |
| priv->can.state = CAN_STATE_BUS_OFF; |
| priv->can.can_stats.bus_off++; |
| break; |
| default: |
| break; |
| } |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| __c_can_get_berr_counter(dev, &bec); |
| reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG); |
| rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >> |
| ERR_CNT_RP_SHIFT; |
| |
| switch (error_type) { |
| case C_CAN_NO_ERROR: |
| /* error warning state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] = CAN_ERR_CRTL_ACTIVE; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case C_CAN_ERROR_WARNING: |
| /* error warning state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] = (bec.txerr > bec.rxerr) ? |
| CAN_ERR_CRTL_TX_WARNING : |
| CAN_ERR_CRTL_RX_WARNING; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| |
| break; |
| case C_CAN_ERROR_PASSIVE: |
| /* error passive state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| if (rx_err_passive) |
| cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; |
| if (bec.txerr > 127) |
| cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; |
| |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case C_CAN_BUS_OFF: |
| /* bus-off state */ |
| cf->can_id |= CAN_ERR_BUSOFF; |
| can_bus_off(dev); |
| break; |
| default: |
| break; |
| } |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| static int c_can_handle_bus_err(struct net_device *dev, |
| enum c_can_lec_type lec_type) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| |
| /* |
| * early exit if no lec update or no error. |
| * no lec update means that no CAN bus event has been detected |
| * since CPU wrote 0x7 value to status reg. |
| */ |
| if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR) |
| return 0; |
| |
| if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) |
| return 0; |
| |
| /* common for all type of bus errors */ |
| priv->can.can_stats.bus_error++; |
| stats->rx_errors++; |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| /* |
| * check for 'last error code' which tells us the |
| * type of the last error to occur on the CAN bus |
| */ |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; |
| |
| switch (lec_type) { |
| case LEC_STUFF_ERROR: |
| netdev_dbg(dev, "stuff error\n"); |
| cf->data[2] |= CAN_ERR_PROT_STUFF; |
| break; |
| case LEC_FORM_ERROR: |
| netdev_dbg(dev, "form error\n"); |
| cf->data[2] |= CAN_ERR_PROT_FORM; |
| break; |
| case LEC_ACK_ERROR: |
| netdev_dbg(dev, "ack error\n"); |
| cf->data[3] = CAN_ERR_PROT_LOC_ACK; |
| break; |
| case LEC_BIT1_ERROR: |
| netdev_dbg(dev, "bit1 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT1; |
| break; |
| case LEC_BIT0_ERROR: |
| netdev_dbg(dev, "bit0 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT0; |
| break; |
| case LEC_CRC_ERROR: |
| netdev_dbg(dev, "CRC error\n"); |
| cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; |
| break; |
| default: |
| break; |
| } |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_receive_skb(skb); |
| return 1; |
| } |
| |
| static int c_can_poll(struct napi_struct *napi, int quota) |
| { |
| struct net_device *dev = napi->dev; |
| struct c_can_priv *priv = netdev_priv(dev); |
| u16 curr, last = priv->last_status; |
| int work_done = 0; |
| |
| /* Only read the status register if a status interrupt was pending */ |
| if (atomic_xchg(&priv->sie_pending, 0)) { |
| priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG); |
| /* Ack status on C_CAN. D_CAN is self clearing */ |
| if (priv->type != BOSCH_D_CAN) |
| priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED); |
| } else { |
| /* no change detected ... */ |
| curr = last; |
| } |
| |
| /* handle state changes */ |
| if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) { |
| netdev_dbg(dev, "entered error warning state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING); |
| } |
| |
| if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) { |
| netdev_dbg(dev, "entered error passive state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE); |
| } |
| |
| if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) { |
| netdev_dbg(dev, "entered bus off state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF); |
| goto end; |
| } |
| |
| /* handle bus recovery events */ |
| if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) { |
| netdev_dbg(dev, "left bus off state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE); |
| } |
| |
| if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) { |
| netdev_dbg(dev, "left error passive state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING); |
| } |
| |
| if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) { |
| netdev_dbg(dev, "left error warning state\n"); |
| work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR); |
| } |
| |
| /* handle lec errors on the bus */ |
| work_done += c_can_handle_bus_err(dev, curr & LEC_MASK); |
| |
| /* Handle Tx/Rx events. We do this unconditionally */ |
| work_done += c_can_do_rx_poll(dev, (quota - work_done)); |
| c_can_do_tx(dev); |
| |
| end: |
| if (work_done < quota) { |
| napi_complete_done(napi, work_done); |
| /* enable all IRQs if we are not in bus off state */ |
| if (priv->can.state != CAN_STATE_BUS_OFF) |
| c_can_irq_control(priv, true); |
| } |
| |
| return work_done; |
| } |
| |
| static irqreturn_t c_can_isr(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct c_can_priv *priv = netdev_priv(dev); |
| int reg_int; |
| |
| reg_int = priv->read_reg(priv, C_CAN_INT_REG); |
| if (!reg_int) |
| return IRQ_NONE; |
| |
| /* save for later use */ |
| if (reg_int & INT_STS_PENDING) |
| atomic_set(&priv->sie_pending, 1); |
| |
| /* disable all interrupts and schedule the NAPI */ |
| c_can_irq_control(priv, false); |
| napi_schedule(&priv->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int c_can_open(struct net_device *dev) |
| { |
| int err; |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| c_can_pm_runtime_get_sync(priv); |
| c_can_reset_ram(priv, true); |
| |
| /* open the can device */ |
| err = open_candev(dev); |
| if (err) { |
| netdev_err(dev, "failed to open can device\n"); |
| goto exit_open_fail; |
| } |
| |
| /* register interrupt handler */ |
| err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name, |
| dev); |
| if (err < 0) { |
| netdev_err(dev, "failed to request interrupt\n"); |
| goto exit_irq_fail; |
| } |
| |
| /* start the c_can controller */ |
| err = c_can_start(dev); |
| if (err) |
| goto exit_start_fail; |
| |
| can_led_event(dev, CAN_LED_EVENT_OPEN); |
| |
| napi_enable(&priv->napi); |
| /* enable status change, error and module interrupts */ |
| c_can_irq_control(priv, true); |
| netif_start_queue(dev); |
| |
| return 0; |
| |
| exit_start_fail: |
| free_irq(dev->irq, dev); |
| exit_irq_fail: |
| close_candev(dev); |
| exit_open_fail: |
| c_can_reset_ram(priv, false); |
| c_can_pm_runtime_put_sync(priv); |
| return err; |
| } |
| |
| static int c_can_close(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| netif_stop_queue(dev); |
| napi_disable(&priv->napi); |
| c_can_stop(dev); |
| free_irq(dev->irq, dev); |
| close_candev(dev); |
| |
| c_can_reset_ram(priv, false); |
| c_can_pm_runtime_put_sync(priv); |
| |
| can_led_event(dev, CAN_LED_EVENT_STOP); |
| |
| return 0; |
| } |
| |
| struct net_device *alloc_c_can_dev(void) |
| { |
| struct net_device *dev; |
| struct c_can_priv *priv; |
| |
| dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM); |
| if (!dev) |
| return NULL; |
| |
| priv = netdev_priv(dev); |
| netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT); |
| |
| priv->dev = dev; |
| priv->can.bittiming_const = &c_can_bittiming_const; |
| priv->can.do_set_mode = c_can_set_mode; |
| priv->can.do_get_berr_counter = c_can_get_berr_counter; |
| priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | |
| CAN_CTRLMODE_LISTENONLY | |
| CAN_CTRLMODE_BERR_REPORTING; |
| |
| return dev; |
| } |
| EXPORT_SYMBOL_GPL(alloc_c_can_dev); |
| |
| #ifdef CONFIG_PM |
| int c_can_power_down(struct net_device *dev) |
| { |
| u32 val; |
| unsigned long time_out; |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| if (!(dev->flags & IFF_UP)) |
| return 0; |
| |
| WARN_ON(priv->type != BOSCH_D_CAN); |
| |
| /* set PDR value so the device goes to power down mode */ |
| val = priv->read_reg(priv, C_CAN_CTRL_EX_REG); |
| val |= CONTROL_EX_PDR; |
| priv->write_reg(priv, C_CAN_CTRL_EX_REG, val); |
| |
| /* Wait for the PDA bit to get set */ |
| time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS); |
| while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) && |
| time_after(time_out, jiffies)) |
| cpu_relax(); |
| |
| if (time_after(jiffies, time_out)) |
| return -ETIMEDOUT; |
| |
| c_can_stop(dev); |
| |
| c_can_reset_ram(priv, false); |
| c_can_pm_runtime_put_sync(priv); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(c_can_power_down); |
| |
| int c_can_power_up(struct net_device *dev) |
| { |
| u32 val; |
| unsigned long time_out; |
| struct c_can_priv *priv = netdev_priv(dev); |
| int ret; |
| |
| if (!(dev->flags & IFF_UP)) |
| return 0; |
| |
| WARN_ON(priv->type != BOSCH_D_CAN); |
| |
| c_can_pm_runtime_get_sync(priv); |
| c_can_reset_ram(priv, true); |
| |
| /* Clear PDR and INIT bits */ |
| val = priv->read_reg(priv, C_CAN_CTRL_EX_REG); |
| val &= ~CONTROL_EX_PDR; |
| priv->write_reg(priv, C_CAN_CTRL_EX_REG, val); |
| val = priv->read_reg(priv, C_CAN_CTRL_REG); |
| val &= ~CONTROL_INIT; |
| priv->write_reg(priv, C_CAN_CTRL_REG, val); |
| |
| /* Wait for the PDA bit to get clear */ |
| time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS); |
| while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) && |
| time_after(time_out, jiffies)) |
| cpu_relax(); |
| |
| if (time_after(jiffies, time_out)) |
| return -ETIMEDOUT; |
| |
| ret = c_can_start(dev); |
| if (!ret) |
| c_can_irq_control(priv, true); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(c_can_power_up); |
| #endif |
| |
| void free_c_can_dev(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| netif_napi_del(&priv->napi); |
| free_candev(dev); |
| } |
| EXPORT_SYMBOL_GPL(free_c_can_dev); |
| |
| static const struct net_device_ops c_can_netdev_ops = { |
| .ndo_open = c_can_open, |
| .ndo_stop = c_can_close, |
| .ndo_start_xmit = c_can_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| }; |
| |
| int register_c_can_dev(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| /* Deactivate pins to prevent DRA7 DCAN IP from being |
| * stuck in transition when module is disabled. |
| * Pins are activated in c_can_start() and deactivated |
| * in c_can_stop() |
| */ |
| pinctrl_pm_select_sleep_state(dev->dev.parent); |
| |
| c_can_pm_runtime_enable(priv); |
| |
| dev->flags |= IFF_ECHO; /* we support local echo */ |
| dev->netdev_ops = &c_can_netdev_ops; |
| |
| err = register_candev(dev); |
| if (err) |
| c_can_pm_runtime_disable(priv); |
| else |
| devm_can_led_init(dev); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(register_c_can_dev); |
| |
| void unregister_c_can_dev(struct net_device *dev) |
| { |
| struct c_can_priv *priv = netdev_priv(dev); |
| |
| unregister_candev(dev); |
| |
| c_can_pm_runtime_disable(priv); |
| } |
| EXPORT_SYMBOL_GPL(unregister_c_can_dev); |
| |
| MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller"); |