blob: fbb32aa49b2412fcbfbb03c50cd1b7035df1fa07 [file] [log] [blame]
/*
* B53 switch driver main logic
*
* Copyright (C) 2011-2013 Jonas Gorski <jogo@openwrt.org>
* Copyright (C) 2016 Florian Fainelli <f.fainelli@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/b53.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include "b53_regs.h"
#include "b53_priv.h"
struct b53_mib_desc {
u8 size;
u8 offset;
const char *name;
};
/* BCM5365 MIB counters */
static const struct b53_mib_desc b53_mibs_65[] = {
{ 8, 0x00, "TxOctets" },
{ 4, 0x08, "TxDropPkts" },
{ 4, 0x10, "TxBroadcastPkts" },
{ 4, 0x14, "TxMulticastPkts" },
{ 4, 0x18, "TxUnicastPkts" },
{ 4, 0x1c, "TxCollisions" },
{ 4, 0x20, "TxSingleCollision" },
{ 4, 0x24, "TxMultipleCollision" },
{ 4, 0x28, "TxDeferredTransmit" },
{ 4, 0x2c, "TxLateCollision" },
{ 4, 0x30, "TxExcessiveCollision" },
{ 4, 0x38, "TxPausePkts" },
{ 8, 0x44, "RxOctets" },
{ 4, 0x4c, "RxUndersizePkts" },
{ 4, 0x50, "RxPausePkts" },
{ 4, 0x54, "Pkts64Octets" },
{ 4, 0x58, "Pkts65to127Octets" },
{ 4, 0x5c, "Pkts128to255Octets" },
{ 4, 0x60, "Pkts256to511Octets" },
{ 4, 0x64, "Pkts512to1023Octets" },
{ 4, 0x68, "Pkts1024to1522Octets" },
{ 4, 0x6c, "RxOversizePkts" },
{ 4, 0x70, "RxJabbers" },
{ 4, 0x74, "RxAlignmentErrors" },
{ 4, 0x78, "RxFCSErrors" },
{ 8, 0x7c, "RxGoodOctets" },
{ 4, 0x84, "RxDropPkts" },
{ 4, 0x88, "RxUnicastPkts" },
{ 4, 0x8c, "RxMulticastPkts" },
{ 4, 0x90, "RxBroadcastPkts" },
{ 4, 0x94, "RxSAChanges" },
{ 4, 0x98, "RxFragments" },
};
#define B53_MIBS_65_SIZE ARRAY_SIZE(b53_mibs_65)
/* BCM63xx MIB counters */
static const struct b53_mib_desc b53_mibs_63xx[] = {
{ 8, 0x00, "TxOctets" },
{ 4, 0x08, "TxDropPkts" },
{ 4, 0x0c, "TxQoSPkts" },
{ 4, 0x10, "TxBroadcastPkts" },
{ 4, 0x14, "TxMulticastPkts" },
{ 4, 0x18, "TxUnicastPkts" },
{ 4, 0x1c, "TxCollisions" },
{ 4, 0x20, "TxSingleCollision" },
{ 4, 0x24, "TxMultipleCollision" },
{ 4, 0x28, "TxDeferredTransmit" },
{ 4, 0x2c, "TxLateCollision" },
{ 4, 0x30, "TxExcessiveCollision" },
{ 4, 0x38, "TxPausePkts" },
{ 8, 0x3c, "TxQoSOctets" },
{ 8, 0x44, "RxOctets" },
{ 4, 0x4c, "RxUndersizePkts" },
{ 4, 0x50, "RxPausePkts" },
{ 4, 0x54, "Pkts64Octets" },
{ 4, 0x58, "Pkts65to127Octets" },
{ 4, 0x5c, "Pkts128to255Octets" },
{ 4, 0x60, "Pkts256to511Octets" },
{ 4, 0x64, "Pkts512to1023Octets" },
{ 4, 0x68, "Pkts1024to1522Octets" },
{ 4, 0x6c, "RxOversizePkts" },
{ 4, 0x70, "RxJabbers" },
{ 4, 0x74, "RxAlignmentErrors" },
{ 4, 0x78, "RxFCSErrors" },
{ 8, 0x7c, "RxGoodOctets" },
{ 4, 0x84, "RxDropPkts" },
{ 4, 0x88, "RxUnicastPkts" },
{ 4, 0x8c, "RxMulticastPkts" },
{ 4, 0x90, "RxBroadcastPkts" },
{ 4, 0x94, "RxSAChanges" },
{ 4, 0x98, "RxFragments" },
{ 4, 0xa0, "RxSymbolErrors" },
{ 4, 0xa4, "RxQoSPkts" },
{ 8, 0xa8, "RxQoSOctets" },
{ 4, 0xb0, "Pkts1523to2047Octets" },
{ 4, 0xb4, "Pkts2048to4095Octets" },
{ 4, 0xb8, "Pkts4096to8191Octets" },
{ 4, 0xbc, "Pkts8192to9728Octets" },
{ 4, 0xc0, "RxDiscarded" },
};
#define B53_MIBS_63XX_SIZE ARRAY_SIZE(b53_mibs_63xx)
/* MIB counters */
static const struct b53_mib_desc b53_mibs[] = {
{ 8, 0x00, "TxOctets" },
{ 4, 0x08, "TxDropPkts" },
{ 4, 0x10, "TxBroadcastPkts" },
{ 4, 0x14, "TxMulticastPkts" },
{ 4, 0x18, "TxUnicastPkts" },
{ 4, 0x1c, "TxCollisions" },
{ 4, 0x20, "TxSingleCollision" },
{ 4, 0x24, "TxMultipleCollision" },
{ 4, 0x28, "TxDeferredTransmit" },
{ 4, 0x2c, "TxLateCollision" },
{ 4, 0x30, "TxExcessiveCollision" },
{ 4, 0x38, "TxPausePkts" },
{ 8, 0x50, "RxOctets" },
{ 4, 0x58, "RxUndersizePkts" },
{ 4, 0x5c, "RxPausePkts" },
{ 4, 0x60, "Pkts64Octets" },
{ 4, 0x64, "Pkts65to127Octets" },
{ 4, 0x68, "Pkts128to255Octets" },
{ 4, 0x6c, "Pkts256to511Octets" },
{ 4, 0x70, "Pkts512to1023Octets" },
{ 4, 0x74, "Pkts1024to1522Octets" },
{ 4, 0x78, "RxOversizePkts" },
{ 4, 0x7c, "RxJabbers" },
{ 4, 0x80, "RxAlignmentErrors" },
{ 4, 0x84, "RxFCSErrors" },
{ 8, 0x88, "RxGoodOctets" },
{ 4, 0x90, "RxDropPkts" },
{ 4, 0x94, "RxUnicastPkts" },
{ 4, 0x98, "RxMulticastPkts" },
{ 4, 0x9c, "RxBroadcastPkts" },
{ 4, 0xa0, "RxSAChanges" },
{ 4, 0xa4, "RxFragments" },
{ 4, 0xa8, "RxJumboPkts" },
{ 4, 0xac, "RxSymbolErrors" },
{ 4, 0xc0, "RxDiscarded" },
};
#define B53_MIBS_SIZE ARRAY_SIZE(b53_mibs)
static const struct b53_mib_desc b53_mibs_58xx[] = {
{ 8, 0x00, "TxOctets" },
{ 4, 0x08, "TxDropPkts" },
{ 4, 0x0c, "TxQPKTQ0" },
{ 4, 0x10, "TxBroadcastPkts" },
{ 4, 0x14, "TxMulticastPkts" },
{ 4, 0x18, "TxUnicastPKts" },
{ 4, 0x1c, "TxCollisions" },
{ 4, 0x20, "TxSingleCollision" },
{ 4, 0x24, "TxMultipleCollision" },
{ 4, 0x28, "TxDeferredCollision" },
{ 4, 0x2c, "TxLateCollision" },
{ 4, 0x30, "TxExcessiveCollision" },
{ 4, 0x34, "TxFrameInDisc" },
{ 4, 0x38, "TxPausePkts" },
{ 4, 0x3c, "TxQPKTQ1" },
{ 4, 0x40, "TxQPKTQ2" },
{ 4, 0x44, "TxQPKTQ3" },
{ 4, 0x48, "TxQPKTQ4" },
{ 4, 0x4c, "TxQPKTQ5" },
{ 8, 0x50, "RxOctets" },
{ 4, 0x58, "RxUndersizePkts" },
{ 4, 0x5c, "RxPausePkts" },
{ 4, 0x60, "RxPkts64Octets" },
{ 4, 0x64, "RxPkts65to127Octets" },
{ 4, 0x68, "RxPkts128to255Octets" },
{ 4, 0x6c, "RxPkts256to511Octets" },
{ 4, 0x70, "RxPkts512to1023Octets" },
{ 4, 0x74, "RxPkts1024toMaxPktsOctets" },
{ 4, 0x78, "RxOversizePkts" },
{ 4, 0x7c, "RxJabbers" },
{ 4, 0x80, "RxAlignmentErrors" },
{ 4, 0x84, "RxFCSErrors" },
{ 8, 0x88, "RxGoodOctets" },
{ 4, 0x90, "RxDropPkts" },
{ 4, 0x94, "RxUnicastPkts" },
{ 4, 0x98, "RxMulticastPkts" },
{ 4, 0x9c, "RxBroadcastPkts" },
{ 4, 0xa0, "RxSAChanges" },
{ 4, 0xa4, "RxFragments" },
{ 4, 0xa8, "RxJumboPkt" },
{ 4, 0xac, "RxSymblErr" },
{ 4, 0xb0, "InRangeErrCount" },
{ 4, 0xb4, "OutRangeErrCount" },
{ 4, 0xb8, "EEELpiEvent" },
{ 4, 0xbc, "EEELpiDuration" },
{ 4, 0xc0, "RxDiscard" },
{ 4, 0xc8, "TxQPKTQ6" },
{ 4, 0xcc, "TxQPKTQ7" },
{ 4, 0xd0, "TxPkts64Octets" },
{ 4, 0xd4, "TxPkts65to127Octets" },
{ 4, 0xd8, "TxPkts128to255Octets" },
{ 4, 0xdc, "TxPkts256to511Ocets" },
{ 4, 0xe0, "TxPkts512to1023Ocets" },
{ 4, 0xe4, "TxPkts1024toMaxPktOcets" },
};
#define B53_MIBS_58XX_SIZE ARRAY_SIZE(b53_mibs_58xx)
static int b53_do_vlan_op(struct b53_device *dev, u8 op)
{
unsigned int i;
b53_write8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], VTA_START_CMD | op);
for (i = 0; i < 10; i++) {
u8 vta;
b53_read8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], &vta);
if (!(vta & VTA_START_CMD))
return 0;
usleep_range(100, 200);
}
return -EIO;
}
static void b53_set_vlan_entry(struct b53_device *dev, u16 vid,
struct b53_vlan *vlan)
{
if (is5325(dev)) {
u32 entry = 0;
if (vlan->members) {
entry = ((vlan->untag & VA_UNTAG_MASK_25) <<
VA_UNTAG_S_25) | vlan->members;
if (dev->core_rev >= 3)
entry |= VA_VALID_25_R4 | vid << VA_VID_HIGH_S;
else
entry |= VA_VALID_25;
}
b53_write32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, entry);
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
VTA_RW_STATE_WR | VTA_RW_OP_EN);
} else if (is5365(dev)) {
u16 entry = 0;
if (vlan->members)
entry = ((vlan->untag & VA_UNTAG_MASK_65) <<
VA_UNTAG_S_65) | vlan->members | VA_VALID_65;
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, entry);
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
VTA_RW_STATE_WR | VTA_RW_OP_EN);
} else {
b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
b53_write32(dev, B53_ARLIO_PAGE, dev->vta_regs[2],
(vlan->untag << VTE_UNTAG_S) | vlan->members);
b53_do_vlan_op(dev, VTA_CMD_WRITE);
}
dev_dbg(dev->ds->dev, "VID: %d, members: 0x%04x, untag: 0x%04x\n",
vid, vlan->members, vlan->untag);
}
static void b53_get_vlan_entry(struct b53_device *dev, u16 vid,
struct b53_vlan *vlan)
{
if (is5325(dev)) {
u32 entry = 0;
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
VTA_RW_STATE_RD | VTA_RW_OP_EN);
b53_read32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, &entry);
if (dev->core_rev >= 3)
vlan->valid = !!(entry & VA_VALID_25_R4);
else
vlan->valid = !!(entry & VA_VALID_25);
vlan->members = entry & VA_MEMBER_MASK;
vlan->untag = (entry >> VA_UNTAG_S_25) & VA_UNTAG_MASK_25;
} else if (is5365(dev)) {
u16 entry = 0;
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
VTA_RW_STATE_WR | VTA_RW_OP_EN);
b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, &entry);
vlan->valid = !!(entry & VA_VALID_65);
vlan->members = entry & VA_MEMBER_MASK;
vlan->untag = (entry >> VA_UNTAG_S_65) & VA_UNTAG_MASK_65;
} else {
u32 entry = 0;
b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
b53_do_vlan_op(dev, VTA_CMD_READ);
b53_read32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], &entry);
vlan->members = entry & VTE_MEMBERS;
vlan->untag = (entry >> VTE_UNTAG_S) & VTE_MEMBERS;
vlan->valid = true;
}
}
static void b53_set_forwarding(struct b53_device *dev, int enable)
{
u8 mgmt;
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
if (enable)
mgmt |= SM_SW_FWD_EN;
else
mgmt &= ~SM_SW_FWD_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
/* Include IMP port in dumb forwarding mode
*/
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, &mgmt);
mgmt |= B53_MII_DUMB_FWDG_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, mgmt);
/* Look at B53_UC_FWD_EN and B53_MC_FWD_EN to decide whether
* frames should be flooded or not.
*/
b53_read8(dev, B53_CTRL_PAGE, B53_IP_MULTICAST_CTRL, &mgmt);
mgmt |= B53_UC_FWD_EN | B53_MC_FWD_EN | B53_IPMC_FWD_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_IP_MULTICAST_CTRL, mgmt);
}
static void b53_enable_vlan(struct b53_device *dev, int port, bool enable,
bool enable_filtering)
{
u8 mgmt, vc0, vc1, vc4 = 0, vc5;
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, &vc0);
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, &vc1);
if (is5325(dev) || is5365(dev)) {
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, &vc5);
} else if (is63xx(dev)) {
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, &vc4);
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, &vc5);
} else {
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, &vc4);
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, &vc5);
}
if (enable) {
vc0 |= VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID;
vc1 |= VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN;
vc4 &= ~VC4_ING_VID_CHECK_MASK;
if (enable_filtering) {
vc4 |= VC4_ING_VID_VIO_DROP << VC4_ING_VID_CHECK_S;
vc5 |= VC5_DROP_VTABLE_MISS;
} else {
vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S;
vc5 &= ~VC5_DROP_VTABLE_MISS;
}
if (is5325(dev))
vc0 &= ~VC0_RESERVED_1;
if (is5325(dev) || is5365(dev))
vc1 |= VC1_RX_MCST_TAG_EN;
} else {
vc0 &= ~(VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID);
vc1 &= ~(VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN);
vc4 &= ~VC4_ING_VID_CHECK_MASK;
vc5 &= ~VC5_DROP_VTABLE_MISS;
if (is5325(dev) || is5365(dev))
vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S;
else
vc4 |= VC4_ING_VID_VIO_TO_IMP << VC4_ING_VID_CHECK_S;
if (is5325(dev) || is5365(dev))
vc1 &= ~VC1_RX_MCST_TAG_EN;
}
if (!is5325(dev) && !is5365(dev))
vc5 &= ~VC5_VID_FFF_EN;
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, vc0);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, vc1);
if (is5325(dev) || is5365(dev)) {
/* enable the high 8 bit vid check on 5325 */
if (is5325(dev) && enable)
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3,
VC3_HIGH_8BIT_EN);
else
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, vc4);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, vc5);
} else if (is63xx(dev)) {
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3_63XX, 0);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, vc4);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, vc5);
} else {
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, vc4);
b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, vc5);
}
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
dev->vlan_enabled = enable;
dev_dbg(dev->dev, "Port %d VLAN enabled: %d, filtering: %d\n",
port, enable, enable_filtering);
}
static int b53_set_jumbo(struct b53_device *dev, bool enable, bool allow_10_100)
{
u32 port_mask = 0;
u16 max_size = JMS_MIN_SIZE;
if (is5325(dev) || is5365(dev))
return -EINVAL;
if (enable) {
port_mask = dev->enabled_ports;
max_size = JMS_MAX_SIZE;
if (allow_10_100)
port_mask |= JPM_10_100_JUMBO_EN;
}
b53_write32(dev, B53_JUMBO_PAGE, dev->jumbo_pm_reg, port_mask);
return b53_write16(dev, B53_JUMBO_PAGE, dev->jumbo_size_reg, max_size);
}
static int b53_flush_arl(struct b53_device *dev, u8 mask)
{
unsigned int i;
b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask);
for (i = 0; i < 10; i++) {
u8 fast_age_ctrl;
b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
&fast_age_ctrl);
if (!(fast_age_ctrl & FAST_AGE_DONE))
goto out;
msleep(1);
}
return -ETIMEDOUT;
out:
/* Only age dynamic entries (default behavior) */
b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC);
return 0;
}
static int b53_fast_age_port(struct b53_device *dev, int port)
{
b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_PORT_CTRL, port);
return b53_flush_arl(dev, FAST_AGE_PORT);
}
static int b53_fast_age_vlan(struct b53_device *dev, u16 vid)
{
b53_write16(dev, B53_CTRL_PAGE, B53_FAST_AGE_VID_CTRL, vid);
return b53_flush_arl(dev, FAST_AGE_VLAN);
}
void b53_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
{
struct b53_device *dev = ds->priv;
unsigned int i;
u16 pvlan;
/* Enable the IMP port to be in the same VLAN as the other ports
* on a per-port basis such that we only have Port i and IMP in
* the same VLAN.
*/
b53_for_each_port(dev, i) {
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &pvlan);
pvlan |= BIT(cpu_port);
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), pvlan);
}
}
EXPORT_SYMBOL(b53_imp_vlan_setup);
static void b53_port_set_ucast_flood(struct b53_device *dev, int port,
bool unicast)
{
u16 uc;
b53_read16(dev, B53_CTRL_PAGE, B53_UC_FLOOD_MASK, &uc);
if (unicast)
uc |= BIT(port);
else
uc &= ~BIT(port);
b53_write16(dev, B53_CTRL_PAGE, B53_UC_FLOOD_MASK, uc);
}
static void b53_port_set_mcast_flood(struct b53_device *dev, int port,
bool multicast)
{
u16 mc;
b53_read16(dev, B53_CTRL_PAGE, B53_MC_FLOOD_MASK, &mc);
if (multicast)
mc |= BIT(port);
else
mc &= ~BIT(port);
b53_write16(dev, B53_CTRL_PAGE, B53_MC_FLOOD_MASK, mc);
b53_read16(dev, B53_CTRL_PAGE, B53_IPMC_FLOOD_MASK, &mc);
if (multicast)
mc |= BIT(port);
else
mc &= ~BIT(port);
b53_write16(dev, B53_CTRL_PAGE, B53_IPMC_FLOOD_MASK, mc);
}
static void b53_port_set_learning(struct b53_device *dev, int port,
bool learning)
{
u16 reg;
b53_read16(dev, B53_CTRL_PAGE, B53_DIS_LEARNING, &reg);
if (learning)
reg &= ~BIT(port);
else
reg |= BIT(port);
b53_write16(dev, B53_CTRL_PAGE, B53_DIS_LEARNING, reg);
}
int b53_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy)
{
struct b53_device *dev = ds->priv;
unsigned int cpu_port;
int ret = 0;
u16 pvlan;
if (!dsa_is_user_port(ds, port))
return 0;
cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
b53_port_set_ucast_flood(dev, port, true);
b53_port_set_mcast_flood(dev, port, true);
b53_port_set_learning(dev, port, false);
if (dev->ops->irq_enable)
ret = dev->ops->irq_enable(dev, port);
if (ret)
return ret;
/* Clear the Rx and Tx disable bits and set to no spanning tree */
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0);
/* Set this port, and only this one to be in the default VLAN,
* if member of a bridge, restore its membership prior to
* bringing down this port.
*/
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
pvlan &= ~0x1ff;
pvlan |= BIT(port);
pvlan |= dev->ports[port].vlan_ctl_mask;
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
b53_imp_vlan_setup(ds, cpu_port);
/* If EEE was enabled, restore it */
if (dev->ports[port].eee.eee_enabled)
b53_eee_enable_set(ds, port, true);
return 0;
}
EXPORT_SYMBOL(b53_enable_port);
void b53_disable_port(struct dsa_switch *ds, int port)
{
struct b53_device *dev = ds->priv;
u8 reg;
/* Disable Tx/Rx for the port */
b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
reg |= PORT_CTRL_RX_DISABLE | PORT_CTRL_TX_DISABLE;
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
if (dev->ops->irq_disable)
dev->ops->irq_disable(dev, port);
}
EXPORT_SYMBOL(b53_disable_port);
void b53_brcm_hdr_setup(struct dsa_switch *ds, int port)
{
struct b53_device *dev = ds->priv;
bool tag_en = !(dev->tag_protocol == DSA_TAG_PROTO_NONE);
u8 hdr_ctl, val;
u16 reg;
/* Resolve which bit controls the Broadcom tag */
switch (port) {
case 8:
val = BRCM_HDR_P8_EN;
break;
case 7:
val = BRCM_HDR_P7_EN;
break;
case 5:
val = BRCM_HDR_P5_EN;
break;
default:
val = 0;
break;
}
/* Enable management mode if tagging is requested */
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &hdr_ctl);
if (tag_en)
hdr_ctl |= SM_SW_FWD_MODE;
else
hdr_ctl &= ~SM_SW_FWD_MODE;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, hdr_ctl);
/* Configure the appropriate IMP port */
b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &hdr_ctl);
if (port == 8)
hdr_ctl |= GC_FRM_MGMT_PORT_MII;
else if (port == 5)
hdr_ctl |= GC_FRM_MGMT_PORT_M;
b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, hdr_ctl);
/* Enable Broadcom tags for IMP port */
b53_read8(dev, B53_MGMT_PAGE, B53_BRCM_HDR, &hdr_ctl);
if (tag_en)
hdr_ctl |= val;
else
hdr_ctl &= ~val;
b53_write8(dev, B53_MGMT_PAGE, B53_BRCM_HDR, hdr_ctl);
/* Registers below are only accessible on newer devices */
if (!is58xx(dev))
return;
/* Enable reception Broadcom tag for CPU TX (switch RX) to
* allow us to tag outgoing frames
*/
b53_read16(dev, B53_MGMT_PAGE, B53_BRCM_HDR_RX_DIS, &reg);
if (tag_en)
reg &= ~BIT(port);
else
reg |= BIT(port);
b53_write16(dev, B53_MGMT_PAGE, B53_BRCM_HDR_RX_DIS, reg);
/* Enable transmission of Broadcom tags from the switch (CPU RX) to
* allow delivering frames to the per-port net_devices
*/
b53_read16(dev, B53_MGMT_PAGE, B53_BRCM_HDR_TX_DIS, &reg);
if (tag_en)
reg &= ~BIT(port);
else
reg |= BIT(port);
b53_write16(dev, B53_MGMT_PAGE, B53_BRCM_HDR_TX_DIS, reg);
}
EXPORT_SYMBOL(b53_brcm_hdr_setup);
static void b53_enable_cpu_port(struct b53_device *dev, int port)
{
u8 port_ctrl;
/* BCM5325 CPU port is at 8 */
if ((is5325(dev) || is5365(dev)) && port == B53_CPU_PORT_25)
port = B53_CPU_PORT;
port_ctrl = PORT_CTRL_RX_BCST_EN |
PORT_CTRL_RX_MCST_EN |
PORT_CTRL_RX_UCST_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), port_ctrl);
b53_brcm_hdr_setup(dev->ds, port);
b53_port_set_ucast_flood(dev, port, true);
b53_port_set_mcast_flood(dev, port, true);
b53_port_set_learning(dev, port, false);
}
static void b53_enable_mib(struct b53_device *dev)
{
u8 gc;
b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
gc &= ~(GC_RESET_MIB | GC_MIB_AC_EN);
b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc);
}
static u16 b53_default_pvid(struct b53_device *dev)
{
if (is5325(dev) || is5365(dev))
return 1;
else
return 0;
}
static bool b53_vlan_port_needs_forced_tagged(struct dsa_switch *ds, int port)
{
struct b53_device *dev = ds->priv;
return dev->tag_protocol == DSA_TAG_PROTO_NONE && dsa_is_cpu_port(ds, port);
}
int b53_configure_vlan(struct dsa_switch *ds)
{
struct b53_device *dev = ds->priv;
struct b53_vlan vl = { 0 };
struct b53_vlan *v;
int i, def_vid;
u16 vid;
def_vid = b53_default_pvid(dev);
/* clear all vlan entries */
if (is5325(dev) || is5365(dev)) {
for (i = def_vid; i < dev->num_vlans; i++)
b53_set_vlan_entry(dev, i, &vl);
} else {
b53_do_vlan_op(dev, VTA_CMD_CLEAR);
}
b53_enable_vlan(dev, -1, dev->vlan_enabled, ds->vlan_filtering);
/* Create an untagged VLAN entry for the default PVID in case
* CONFIG_VLAN_8021Q is disabled and there are no calls to
* dsa_slave_vlan_rx_add_vid() to create the default VLAN
* entry. Do this only when the tagging protocol is not
* DSA_TAG_PROTO_NONE
*/
b53_for_each_port(dev, i) {
v = &dev->vlans[def_vid];
v->members |= BIT(i);
if (!b53_vlan_port_needs_forced_tagged(ds, i))
v->untag = v->members;
b53_write16(dev, B53_VLAN_PAGE,
B53_VLAN_PORT_DEF_TAG(i), def_vid);
}
/* Upon initial call we have not set-up any VLANs, but upon
* system resume, we need to restore all VLAN entries.
*/
for (vid = def_vid; vid < dev->num_vlans; vid++) {
v = &dev->vlans[vid];
if (!v->members)
continue;
b53_set_vlan_entry(dev, vid, v);
b53_fast_age_vlan(dev, vid);
}
return 0;
}
EXPORT_SYMBOL(b53_configure_vlan);
static void b53_switch_reset_gpio(struct b53_device *dev)
{
int gpio = dev->reset_gpio;
if (gpio < 0)
return;
/* Reset sequence: RESET low(50ms)->high(20ms)
*/
gpio_set_value(gpio, 0);
mdelay(50);
gpio_set_value(gpio, 1);
mdelay(20);
dev->current_page = 0xff;
}
static int b53_switch_reset(struct b53_device *dev)
{
unsigned int timeout = 1000;
u8 mgmt, reg;
b53_switch_reset_gpio(dev);
if (is539x(dev)) {
b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x83);
b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x00);
}
/* This is specific to 58xx devices here, do not use is58xx() which
* covers the larger Starfigther 2 family, including 7445/7278 which
* still use this driver as a library and need to perform the reset
* earlier.
*/
if (dev->chip_id == BCM58XX_DEVICE_ID ||
dev->chip_id == BCM583XX_DEVICE_ID) {
b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
reg |= SW_RST | EN_SW_RST | EN_CH_RST;
b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, reg);
do {
b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
if (!(reg & SW_RST))
break;
usleep_range(1000, 2000);
} while (timeout-- > 0);
if (timeout == 0) {
dev_err(dev->dev,
"Timeout waiting for SW_RST to clear!\n");
return -ETIMEDOUT;
}
}
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
if (!(mgmt & SM_SW_FWD_EN)) {
mgmt &= ~SM_SW_FWD_MODE;
mgmt |= SM_SW_FWD_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
if (!(mgmt & SM_SW_FWD_EN)) {
dev_err(dev->dev, "Failed to enable switch!\n");
return -EINVAL;
}
}
b53_enable_mib(dev);
return b53_flush_arl(dev, FAST_AGE_STATIC);
}
static int b53_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct b53_device *priv = ds->priv;
u16 value = 0;
int ret;
if (priv->ops->phy_read16)
ret = priv->ops->phy_read16(priv, addr, reg, &value);
else
ret = b53_read16(priv, B53_PORT_MII_PAGE(addr),
reg * 2, &value);
return ret ? ret : value;
}
static int b53_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct b53_device *priv = ds->priv;
if (priv->ops->phy_write16)
return priv->ops->phy_write16(priv, addr, reg, val);
return b53_write16(priv, B53_PORT_MII_PAGE(addr), reg * 2, val);
}
static int b53_reset_switch(struct b53_device *priv)
{
/* reset vlans */
memset(priv->vlans, 0, sizeof(*priv->vlans) * priv->num_vlans);
memset(priv->ports, 0, sizeof(*priv->ports) * priv->num_ports);
priv->serdes_lane = B53_INVALID_LANE;
return b53_switch_reset(priv);
}
static int b53_apply_config(struct b53_device *priv)
{
/* disable switching */
b53_set_forwarding(priv, 0);
b53_configure_vlan(priv->ds);
/* enable switching */
b53_set_forwarding(priv, 1);
return 0;
}
static void b53_reset_mib(struct b53_device *priv)
{
u8 gc;
b53_read8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc | GC_RESET_MIB);
msleep(1);
b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc & ~GC_RESET_MIB);
msleep(1);
}
static const struct b53_mib_desc *b53_get_mib(struct b53_device *dev)
{
if (is5365(dev))
return b53_mibs_65;
else if (is63xx(dev))
return b53_mibs_63xx;
else if (is58xx(dev))
return b53_mibs_58xx;
else
return b53_mibs;
}
static unsigned int b53_get_mib_size(struct b53_device *dev)
{
if (is5365(dev))
return B53_MIBS_65_SIZE;
else if (is63xx(dev))
return B53_MIBS_63XX_SIZE;
else if (is58xx(dev))
return B53_MIBS_58XX_SIZE;
else
return B53_MIBS_SIZE;
}
static struct phy_device *b53_get_phy_device(struct dsa_switch *ds, int port)
{
/* These ports typically do not have built-in PHYs */
switch (port) {
case B53_CPU_PORT_25:
case 7:
case B53_CPU_PORT:
return NULL;
}
return mdiobus_get_phy(ds->slave_mii_bus, port);
}
void b53_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
struct b53_device *dev = ds->priv;
const struct b53_mib_desc *mibs = b53_get_mib(dev);
unsigned int mib_size = b53_get_mib_size(dev);
struct phy_device *phydev;
unsigned int i;
if (stringset == ETH_SS_STATS) {
for (i = 0; i < mib_size; i++)
strlcpy(data + i * ETH_GSTRING_LEN,
mibs[i].name, ETH_GSTRING_LEN);
} else if (stringset == ETH_SS_PHY_STATS) {
phydev = b53_get_phy_device(ds, port);
if (!phydev)
return;
phy_ethtool_get_strings(phydev, data);
}
}
EXPORT_SYMBOL(b53_get_strings);
void b53_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
{
struct b53_device *dev = ds->priv;
const struct b53_mib_desc *mibs = b53_get_mib(dev);
unsigned int mib_size = b53_get_mib_size(dev);
const struct b53_mib_desc *s;
unsigned int i;
u64 val = 0;
if (is5365(dev) && port == 5)
port = 8;
mutex_lock(&dev->stats_mutex);
for (i = 0; i < mib_size; i++) {
s = &mibs[i];
if (s->size == 8) {
b53_read64(dev, B53_MIB_PAGE(port), s->offset, &val);
} else {
u32 val32;
b53_read32(dev, B53_MIB_PAGE(port), s->offset,
&val32);
val = val32;
}
data[i] = (u64)val;
}
mutex_unlock(&dev->stats_mutex);
}
EXPORT_SYMBOL(b53_get_ethtool_stats);
void b53_get_ethtool_phy_stats(struct dsa_switch *ds, int port, uint64_t *data)
{
struct phy_device *phydev;
phydev = b53_get_phy_device(ds, port);
if (!phydev)
return;
phy_ethtool_get_stats(phydev, NULL, data);
}
EXPORT_SYMBOL(b53_get_ethtool_phy_stats);
int b53_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
struct b53_device *dev = ds->priv;
struct phy_device *phydev;
if (sset == ETH_SS_STATS) {
return b53_get_mib_size(dev);
} else if (sset == ETH_SS_PHY_STATS) {
phydev = b53_get_phy_device(ds, port);
if (!phydev)
return 0;
return phy_ethtool_get_sset_count(phydev);
}
return 0;
}
EXPORT_SYMBOL(b53_get_sset_count);
enum b53_devlink_resource_id {
B53_DEVLINK_PARAM_ID_VLAN_TABLE,
};
static u64 b53_devlink_vlan_table_get(void *priv)
{
struct b53_device *dev = priv;
struct b53_vlan *vl;
unsigned int i;
u64 count = 0;
for (i = 0; i < dev->num_vlans; i++) {
vl = &dev->vlans[i];
if (vl->members)
count++;
}
return count;
}
int b53_setup_devlink_resources(struct dsa_switch *ds)
{
struct devlink_resource_size_params size_params;
struct b53_device *dev = ds->priv;
int err;
devlink_resource_size_params_init(&size_params, dev->num_vlans,
dev->num_vlans,
1, DEVLINK_RESOURCE_UNIT_ENTRY);
err = dsa_devlink_resource_register(ds, "VLAN", dev->num_vlans,
B53_DEVLINK_PARAM_ID_VLAN_TABLE,
DEVLINK_RESOURCE_ID_PARENT_TOP,
&size_params);
if (err)
goto out;
dsa_devlink_resource_occ_get_register(ds,
B53_DEVLINK_PARAM_ID_VLAN_TABLE,
b53_devlink_vlan_table_get, dev);
return 0;
out:
dsa_devlink_resources_unregister(ds);
return err;
}
EXPORT_SYMBOL(b53_setup_devlink_resources);
static int b53_setup(struct dsa_switch *ds)
{
struct b53_device *dev = ds->priv;
unsigned int port;
int ret;
/* Request bridge PVID untagged when DSA_TAG_PROTO_NONE is set
* which forces the CPU port to be tagged in all VLANs.
*/
ds->untag_bridge_pvid = dev->tag_protocol == DSA_TAG_PROTO_NONE;
ret = b53_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
b53_reset_mib(dev);
ret = b53_apply_config(dev);
if (ret) {
dev_err(ds->dev, "failed to apply configuration\n");
return ret;
}
/* Configure IMP/CPU port, disable all other ports. Enabled
* ports will be configured with .port_enable
*/
for (port = 0; port < dev->num_ports; port++) {
if (dsa_is_cpu_port(ds, port))
b53_enable_cpu_port(dev, port);
else
b53_disable_port(ds, port);
}
return b53_setup_devlink_resources(ds);
}
static void b53_teardown(struct dsa_switch *ds)
{
dsa_devlink_resources_unregister(ds);
}
static void b53_force_link(struct b53_device *dev, int port, int link)
{
u8 reg, val, off;
/* Override the port settings */
if (port == dev->imp_port) {
off = B53_PORT_OVERRIDE_CTRL;
val = PORT_OVERRIDE_EN;
} else {
off = B53_GMII_PORT_OVERRIDE_CTRL(port);
val = GMII_PO_EN;
}
b53_read8(dev, B53_CTRL_PAGE, off, &reg);
reg |= val;
if (link)
reg |= PORT_OVERRIDE_LINK;
else
reg &= ~PORT_OVERRIDE_LINK;
b53_write8(dev, B53_CTRL_PAGE, off, reg);
}
static void b53_force_port_config(struct b53_device *dev, int port,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
u8 reg, val, off;
/* Override the port settings */
if (port == dev->imp_port) {
off = B53_PORT_OVERRIDE_CTRL;
val = PORT_OVERRIDE_EN;
} else {
off = B53_GMII_PORT_OVERRIDE_CTRL(port);
val = GMII_PO_EN;
}
b53_read8(dev, B53_CTRL_PAGE, off, &reg);
reg |= val;
if (duplex == DUPLEX_FULL)
reg |= PORT_OVERRIDE_FULL_DUPLEX;
else
reg &= ~PORT_OVERRIDE_FULL_DUPLEX;
switch (speed) {
case 2000:
reg |= PORT_OVERRIDE_SPEED_2000M;
fallthrough;
case SPEED_1000:
reg |= PORT_OVERRIDE_SPEED_1000M;
break;
case SPEED_100:
reg |= PORT_OVERRIDE_SPEED_100M;
break;
case SPEED_10:
reg |= PORT_OVERRIDE_SPEED_10M;
break;
default:
dev_err(dev->dev, "unknown speed: %d\n", speed);
return;
}
if (rx_pause)
reg |= PORT_OVERRIDE_RX_FLOW;
if (tx_pause)
reg |= PORT_OVERRIDE_TX_FLOW;
b53_write8(dev, B53_CTRL_PAGE, off, reg);
}
static void b53_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct b53_device *dev = ds->priv;
struct ethtool_eee *p = &dev->ports[port].eee;
u8 rgmii_ctrl = 0, reg = 0, off;
bool tx_pause = false;
bool rx_pause = false;
if (!phy_is_pseudo_fixed_link(phydev))
return;
/* Enable flow control on BCM5301x's CPU port */
if (is5301x(dev) && dsa_is_cpu_port(ds, port))
tx_pause = rx_pause = true;
if (phydev->pause) {
if (phydev->asym_pause)
tx_pause = true;
rx_pause = true;
}
b53_force_port_config(dev, port, phydev->speed, phydev->duplex,
tx_pause, rx_pause);
b53_force_link(dev, port, phydev->link);
if (is531x5(dev) && phy_interface_is_rgmii(phydev)) {
if (port == dev->imp_port)
off = B53_RGMII_CTRL_IMP;
else
off = B53_RGMII_CTRL_P(port);
/* Configure the port RGMII clock delay by DLL disabled and
* tx_clk aligned timing (restoring to reset defaults)
*/
b53_read8(dev, B53_CTRL_PAGE, off, &rgmii_ctrl);
rgmii_ctrl &= ~(RGMII_CTRL_DLL_RXC | RGMII_CTRL_DLL_TXC |
RGMII_CTRL_TIMING_SEL);
/* PHY_INTERFACE_MODE_RGMII_TXID means TX internal delay, make
* sure that we enable the port TX clock internal delay to
* account for this internal delay that is inserted, otherwise
* the switch won't be able to receive correctly.
*
* PHY_INTERFACE_MODE_RGMII means that we are not introducing
* any delay neither on transmission nor reception, so the
* BCM53125 must also be configured accordingly to account for
* the lack of delay and introduce
*
* The BCM53125 switch has its RX clock and TX clock control
* swapped, hence the reason why we modify the TX clock path in
* the "RGMII" case
*/
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
rgmii_ctrl |= RGMII_CTRL_DLL_TXC;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
rgmii_ctrl |= RGMII_CTRL_DLL_TXC | RGMII_CTRL_DLL_RXC;
rgmii_ctrl |= RGMII_CTRL_TIMING_SEL;
b53_write8(dev, B53_CTRL_PAGE, off, rgmii_ctrl);
dev_info(ds->dev, "Configured port %d for %s\n", port,
phy_modes(phydev->interface));
}
/* configure MII port if necessary */
if (is5325(dev)) {
b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
&reg);
/* reverse mii needs to be enabled */
if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
reg | PORT_OVERRIDE_RV_MII_25);
b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
&reg);
if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
dev_err(ds->dev,
"Failed to enable reverse MII mode\n");
return;
}
}
}
/* Re-negotiate EEE if it was enabled already */
p->eee_enabled = b53_eee_init(ds, port, phydev);
}
void b53_port_event(struct dsa_switch *ds, int port)
{
struct b53_device *dev = ds->priv;
bool link;
u16 sts;
b53_read16(dev, B53_STAT_PAGE, B53_LINK_STAT, &sts);
link = !!(sts & BIT(port));
dsa_port_phylink_mac_change(ds, port, link);
}
EXPORT_SYMBOL(b53_port_event);
static void b53_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct b53_device *dev = ds->priv;
/* Internal ports need GMII for PHYLIB */
__set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces);
/* These switches appear to support MII and RevMII too, but beyond
* this, the code gives very few clues. FIXME: We probably need more
* interface modes here.
*
* According to b53_srab_mux_init(), ports 3..5 can support:
* SGMII, MII, GMII, RGMII or INTERNAL depending on the MUX setting.
* However, the interface mode read from the MUX configuration is
* not passed back to DSA, so phylink uses NA.
* DT can specify RGMII for ports 0, 1.
* For MDIO, port 8 can be RGMII_TXID.
*/
__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_REVMII, config->supported_interfaces);
config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_10 | MAC_100;
/* 5325/5365 are not capable of gigabit speeds, everything else is.
* Note: the original code also exclulded Gigagbit for MII, RevMII
* and 802.3z modes. MII and RevMII are not able to work above 100M,
* so will be excluded by the generic validator implementation.
* However, the exclusion of Gigabit for 802.3z just seems wrong.
*/
if (!(is5325(dev) || is5365(dev)))
config->mac_capabilities |= MAC_1000;
/* Get the implementation specific capabilities */
if (dev->ops->phylink_get_caps)
dev->ops->phylink_get_caps(dev, port, config);
/* This driver does not make use of the speed, duplex, pause or the
* advertisement in its mac_config, so it is safe to mark this driver
* as non-legacy.
*/
config->legacy_pre_march2020 = false;
}
static struct phylink_pcs *b53_phylink_mac_select_pcs(struct dsa_switch *ds,
int port,
phy_interface_t interface)
{
struct b53_device *dev = ds->priv;
if (!dev->ops->phylink_mac_select_pcs)
return NULL;
return dev->ops->phylink_mac_select_pcs(dev, port, interface);
}
void b53_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
}
EXPORT_SYMBOL(b53_phylink_mac_config);
void b53_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct b53_device *dev = ds->priv;
if (mode == MLO_AN_PHY)
return;
if (mode == MLO_AN_FIXED) {
b53_force_link(dev, port, false);
return;
}
if (phy_interface_mode_is_8023z(interface) &&
dev->ops->serdes_link_set)
dev->ops->serdes_link_set(dev, port, mode, interface, false);
}
EXPORT_SYMBOL(b53_phylink_mac_link_down);
void b53_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct b53_device *dev = ds->priv;
if (mode == MLO_AN_PHY)
return;
if (mode == MLO_AN_FIXED) {
b53_force_port_config(dev, port, speed, duplex,
tx_pause, rx_pause);
b53_force_link(dev, port, true);
return;
}
if (phy_interface_mode_is_8023z(interface) &&
dev->ops->serdes_link_set)
dev->ops->serdes_link_set(dev, port, mode, interface, true);
}
EXPORT_SYMBOL(b53_phylink_mac_link_up);
int b53_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct b53_device *dev = ds->priv;
b53_enable_vlan(dev, port, dev->vlan_enabled, vlan_filtering);
return 0;
}
EXPORT_SYMBOL(b53_vlan_filtering);
static int b53_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct b53_device *dev = ds->priv;
if ((is5325(dev) || is5365(dev)) && vlan->vid == 0)
return -EOPNOTSUPP;
/* Port 7 on 7278 connects to the ASP's UniMAC which is not capable of
* receiving VLAN tagged frames at all, we can still allow the port to
* be configured for egress untagged.
*/
if (dev->chip_id == BCM7278_DEVICE_ID && port == 7 &&
!(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED))
return -EINVAL;
if (vlan->vid >= dev->num_vlans)
return -ERANGE;
b53_enable_vlan(dev, port, true, ds->vlan_filtering);
return 0;
}
int b53_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct b53_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct b53_vlan *vl;
int err;
err = b53_vlan_prepare(ds, port, vlan);
if (err)
return err;
vl = &dev->vlans[vlan->vid];
b53_get_vlan_entry(dev, vlan->vid, vl);
if (vlan->vid == 0 && vlan->vid == b53_default_pvid(dev))
untagged = true;
vl->members |= BIT(port);
if (untagged && !b53_vlan_port_needs_forced_tagged(ds, port))
vl->untag |= BIT(port);
else
vl->untag &= ~BIT(port);
b53_set_vlan_entry(dev, vlan->vid, vl);
b53_fast_age_vlan(dev, vlan->vid);
if (pvid && !dsa_is_cpu_port(ds, port)) {
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port),
vlan->vid);
b53_fast_age_vlan(dev, vlan->vid);
}
return 0;
}
EXPORT_SYMBOL(b53_vlan_add);
int b53_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct b53_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct b53_vlan *vl;
u16 pvid;
b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
vl = &dev->vlans[vlan->vid];
b53_get_vlan_entry(dev, vlan->vid, vl);
vl->members &= ~BIT(port);
if (pvid == vlan->vid)
pvid = b53_default_pvid(dev);
if (untagged && !b53_vlan_port_needs_forced_tagged(ds, port))
vl->untag &= ~(BIT(port));
b53_set_vlan_entry(dev, vlan->vid, vl);
b53_fast_age_vlan(dev, vlan->vid);
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), pvid);
b53_fast_age_vlan(dev, pvid);
return 0;
}
EXPORT_SYMBOL(b53_vlan_del);
/* Address Resolution Logic routines. Caller must hold &dev->arl_mutex. */
static int b53_arl_op_wait(struct b53_device *dev)
{
unsigned int timeout = 10;
u8 reg;
do {
b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
if (!(reg & ARLTBL_START_DONE))
return 0;
usleep_range(1000, 2000);
} while (timeout--);
dev_warn(dev->dev, "timeout waiting for ARL to finish: 0x%02x\n", reg);
return -ETIMEDOUT;
}
static int b53_arl_rw_op(struct b53_device *dev, unsigned int op)
{
u8 reg;
if (op > ARLTBL_RW)
return -EINVAL;
b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
reg |= ARLTBL_START_DONE;
if (op)
reg |= ARLTBL_RW;
else
reg &= ~ARLTBL_RW;
if (dev->vlan_enabled)
reg &= ~ARLTBL_IVL_SVL_SELECT;
else
reg |= ARLTBL_IVL_SVL_SELECT;
b53_write8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, reg);
return b53_arl_op_wait(dev);
}
static int b53_arl_read(struct b53_device *dev, u64 mac,
u16 vid, struct b53_arl_entry *ent, u8 *idx)
{
DECLARE_BITMAP(free_bins, B53_ARLTBL_MAX_BIN_ENTRIES);
unsigned int i;
int ret;
ret = b53_arl_op_wait(dev);
if (ret)
return ret;
bitmap_zero(free_bins, dev->num_arl_bins);
/* Read the bins */
for (i = 0; i < dev->num_arl_bins; i++) {
u64 mac_vid;
u32 fwd_entry;
b53_read64(dev, B53_ARLIO_PAGE,
B53_ARLTBL_MAC_VID_ENTRY(i), &mac_vid);
b53_read32(dev, B53_ARLIO_PAGE,
B53_ARLTBL_DATA_ENTRY(i), &fwd_entry);
b53_arl_to_entry(ent, mac_vid, fwd_entry);
if (!(fwd_entry & ARLTBL_VALID)) {
set_bit(i, free_bins);
continue;
}
if ((mac_vid & ARLTBL_MAC_MASK) != mac)
continue;
if (dev->vlan_enabled &&
((mac_vid >> ARLTBL_VID_S) & ARLTBL_VID_MASK) != vid)
continue;
*idx = i;
return 0;
}
if (bitmap_weight(free_bins, dev->num_arl_bins) == 0)
return -ENOSPC;
*idx = find_first_bit(free_bins, dev->num_arl_bins);
return -ENOENT;
}
static int b53_arl_op(struct b53_device *dev, int op, int port,
const unsigned char *addr, u16 vid, bool is_valid)
{
struct b53_arl_entry ent;
u32 fwd_entry;
u64 mac, mac_vid = 0;
u8 idx = 0;
int ret;
/* Convert the array into a 64-bit MAC */
mac = ether_addr_to_u64(addr);
/* Perform a read for the given MAC and VID */
b53_write48(dev, B53_ARLIO_PAGE, B53_MAC_ADDR_IDX, mac);
b53_write16(dev, B53_ARLIO_PAGE, B53_VLAN_ID_IDX, vid);
/* Issue a read operation for this MAC */
ret = b53_arl_rw_op(dev, 1);
if (ret)
return ret;
ret = b53_arl_read(dev, mac, vid, &ent, &idx);
/* If this is a read, just finish now */
if (op)
return ret;
switch (ret) {
case -ETIMEDOUT:
return ret;
case -ENOSPC:
dev_dbg(dev->dev, "{%pM,%.4d} no space left in ARL\n",
addr, vid);
return is_valid ? ret : 0;
case -ENOENT:
/* We could not find a matching MAC, so reset to a new entry */
dev_dbg(dev->dev, "{%pM,%.4d} not found, using idx: %d\n",
addr, vid, idx);
fwd_entry = 0;
break;
default:
dev_dbg(dev->dev, "{%pM,%.4d} found, using idx: %d\n",
addr, vid, idx);
break;
}
/* For multicast address, the port is a bitmask and the validity
* is determined by having at least one port being still active
*/
if (!is_multicast_ether_addr(addr)) {
ent.port = port;
ent.is_valid = is_valid;
} else {
if (is_valid)
ent.port |= BIT(port);
else
ent.port &= ~BIT(port);
ent.is_valid = !!(ent.port);
}
ent.vid = vid;
ent.is_static = true;
ent.is_age = false;
memcpy(ent.mac, addr, ETH_ALEN);
b53_arl_from_entry(&mac_vid, &fwd_entry, &ent);
b53_write64(dev, B53_ARLIO_PAGE,
B53_ARLTBL_MAC_VID_ENTRY(idx), mac_vid);
b53_write32(dev, B53_ARLIO_PAGE,
B53_ARLTBL_DATA_ENTRY(idx), fwd_entry);
return b53_arl_rw_op(dev, 0);
}
int b53_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct b53_device *priv = ds->priv;
int ret;
/* 5325 and 5365 require some more massaging, but could
* be supported eventually
*/
if (is5325(priv) || is5365(priv))
return -EOPNOTSUPP;
mutex_lock(&priv->arl_mutex);
ret = b53_arl_op(priv, 0, port, addr, vid, true);
mutex_unlock(&priv->arl_mutex);
return ret;
}
EXPORT_SYMBOL(b53_fdb_add);
int b53_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct b53_device *priv = ds->priv;
int ret;
mutex_lock(&priv->arl_mutex);
ret = b53_arl_op(priv, 0, port, addr, vid, false);
mutex_unlock(&priv->arl_mutex);
return ret;
}
EXPORT_SYMBOL(b53_fdb_del);
static int b53_arl_search_wait(struct b53_device *dev)
{
unsigned int timeout = 1000;
u8 reg;
do {
b53_read8(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, &reg);
if (!(reg & ARL_SRCH_STDN))
return 0;
if (reg & ARL_SRCH_VLID)
return 0;
usleep_range(1000, 2000);
} while (timeout--);
return -ETIMEDOUT;
}
static void b53_arl_search_rd(struct b53_device *dev, u8 idx,
struct b53_arl_entry *ent)
{
u64 mac_vid;
u32 fwd_entry;
b53_read64(dev, B53_ARLIO_PAGE,
B53_ARL_SRCH_RSTL_MACVID(idx), &mac_vid);
b53_read32(dev, B53_ARLIO_PAGE,
B53_ARL_SRCH_RSTL(idx), &fwd_entry);
b53_arl_to_entry(ent, mac_vid, fwd_entry);
}
static int b53_fdb_copy(int port, const struct b53_arl_entry *ent,
dsa_fdb_dump_cb_t *cb, void *data)
{
if (!ent->is_valid)
return 0;
if (port != ent->port)
return 0;
return cb(ent->mac, ent->vid, ent->is_static, data);
}
int b53_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct b53_device *priv = ds->priv;
struct b53_arl_entry results[2];
unsigned int count = 0;
int ret;
u8 reg;
mutex_lock(&priv->arl_mutex);
/* Start search operation */
reg = ARL_SRCH_STDN;
b53_write8(priv, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, reg);
do {
ret = b53_arl_search_wait(priv);
if (ret)
break;
b53_arl_search_rd(priv, 0, &results[0]);
ret = b53_fdb_copy(port, &results[0], cb, data);
if (ret)
break;
if (priv->num_arl_bins > 2) {
b53_arl_search_rd(priv, 1, &results[1]);
ret = b53_fdb_copy(port, &results[1], cb, data);
if (ret)
break;
if (!results[0].is_valid && !results[1].is_valid)
break;
}
} while (count++ < b53_max_arl_entries(priv) / 2);
mutex_unlock(&priv->arl_mutex);
return 0;
}
EXPORT_SYMBOL(b53_fdb_dump);
int b53_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct b53_device *priv = ds->priv;
int ret;
/* 5325 and 5365 require some more massaging, but could
* be supported eventually
*/
if (is5325(priv) || is5365(priv))
return -EOPNOTSUPP;
mutex_lock(&priv->arl_mutex);
ret = b53_arl_op(priv, 0, port, mdb->addr, mdb->vid, true);
mutex_unlock(&priv->arl_mutex);
return ret;
}
EXPORT_SYMBOL(b53_mdb_add);
int b53_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct b53_device *priv = ds->priv;
int ret;
mutex_lock(&priv->arl_mutex);
ret = b53_arl_op(priv, 0, port, mdb->addr, mdb->vid, false);
mutex_unlock(&priv->arl_mutex);
if (ret)
dev_err(ds->dev, "failed to delete MDB entry\n");
return ret;
}
EXPORT_SYMBOL(b53_mdb_del);
int b53_br_join(struct dsa_switch *ds, int port, struct dsa_bridge bridge,
bool *tx_fwd_offload, struct netlink_ext_ack *extack)
{
struct b53_device *dev = ds->priv;
s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
u16 pvlan, reg;
unsigned int i;
/* On 7278, port 7 which connects to the ASP should only receive
* traffic from matching CFP rules.
*/
if (dev->chip_id == BCM7278_DEVICE_ID && port == 7)
return -EINVAL;
/* Make this port leave the all VLANs join since we will have proper
* VLAN entries from now on
*/
if (is58xx(dev)) {
b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
reg &= ~BIT(port);
if ((reg & BIT(cpu_port)) == BIT(cpu_port))
reg &= ~BIT(cpu_port);
b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
}
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
b53_for_each_port(dev, i) {
if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
continue;
/* Add this local port to the remote port VLAN control
* membership and update the remote port bitmask
*/
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
reg |= BIT(port);
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
dev->ports[i].vlan_ctl_mask = reg;
pvlan |= BIT(i);
}
/* Configure the local port VLAN control membership to include
* remote ports and update the local port bitmask
*/
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
dev->ports[port].vlan_ctl_mask = pvlan;
return 0;
}
EXPORT_SYMBOL(b53_br_join);
void b53_br_leave(struct dsa_switch *ds, int port, struct dsa_bridge bridge)
{
struct b53_device *dev = ds->priv;
struct b53_vlan *vl = &dev->vlans[0];
s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
unsigned int i;
u16 pvlan, reg, pvid;
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
b53_for_each_port(dev, i) {
/* Don't touch the remaining ports */
if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
continue;
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
reg &= ~BIT(port);
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
dev->ports[port].vlan_ctl_mask = reg;
/* Prevent self removal to preserve isolation */
if (port != i)
pvlan &= ~BIT(i);
}
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
dev->ports[port].vlan_ctl_mask = pvlan;
pvid = b53_default_pvid(dev);
/* Make this port join all VLANs without VLAN entries */
if (is58xx(dev)) {
b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
reg |= BIT(port);
if (!(reg & BIT(cpu_port)))
reg |= BIT(cpu_port);
b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
} else {
b53_get_vlan_entry(dev, pvid, vl);
vl->members |= BIT(port) | BIT(cpu_port);
vl->untag |= BIT(port) | BIT(cpu_port);
b53_set_vlan_entry(dev, pvid, vl);
}
}
EXPORT_SYMBOL(b53_br_leave);
void b53_br_set_stp_state(struct dsa_switch *ds, int port, u8 state)
{
struct b53_device *dev = ds->priv;
u8 hw_state;
u8 reg;
switch (state) {
case BR_STATE_DISABLED:
hw_state = PORT_CTRL_DIS_STATE;
break;
case BR_STATE_LISTENING:
hw_state = PORT_CTRL_LISTEN_STATE;
break;
case BR_STATE_LEARNING:
hw_state = PORT_CTRL_LEARN_STATE;
break;
case BR_STATE_FORWARDING:
hw_state = PORT_CTRL_FWD_STATE;
break;
case BR_STATE_BLOCKING:
hw_state = PORT_CTRL_BLOCK_STATE;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
reg &= ~PORT_CTRL_STP_STATE_MASK;
reg |= hw_state;
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
}
EXPORT_SYMBOL(b53_br_set_stp_state);
void b53_br_fast_age(struct dsa_switch *ds, int port)
{
struct b53_device *dev = ds->priv;
if (b53_fast_age_port(dev, port))
dev_err(ds->dev, "fast ageing failed\n");
}
EXPORT_SYMBOL(b53_br_fast_age);
int b53_br_flags_pre(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~(BR_FLOOD | BR_MCAST_FLOOD | BR_LEARNING))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(b53_br_flags_pre);
int b53_br_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & BR_FLOOD)
b53_port_set_ucast_flood(ds->priv, port,
!!(flags.val & BR_FLOOD));
if (flags.mask & BR_MCAST_FLOOD)
b53_port_set_mcast_flood(ds->priv, port,
!!(flags.val & BR_MCAST_FLOOD));
if (flags.mask & BR_LEARNING)
b53_port_set_learning(ds->priv, port,
!!(flags.val & BR_LEARNING));
return 0;
}
EXPORT_SYMBOL(b53_br_flags);
static bool b53_possible_cpu_port(struct dsa_switch *ds, int port)
{
/* Broadcom switches will accept enabling Broadcom tags on the
* following ports: 5, 7 and 8, any other port is not supported
*/
switch (port) {
case B53_CPU_PORT_25:
case 7:
case B53_CPU_PORT:
return true;
}
return false;
}
static bool b53_can_enable_brcm_tags(struct dsa_switch *ds, int port,
enum dsa_tag_protocol tag_protocol)
{
bool ret = b53_possible_cpu_port(ds, port);
if (!ret) {
dev_warn(ds->dev, "Port %d is not Broadcom tag capable\n",
port);
return ret;
}
switch (tag_protocol) {
case DSA_TAG_PROTO_BRCM:
case DSA_TAG_PROTO_BRCM_PREPEND:
dev_warn(ds->dev,
"Port %d is stacked to Broadcom tag switch\n", port);
ret = false;
break;
default:
ret = true;
break;
}
return ret;
}
enum dsa_tag_protocol b53_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mprot)
{
struct b53_device *dev = ds->priv;
if (!b53_can_enable_brcm_tags(ds, port, mprot)) {
dev->tag_protocol = DSA_TAG_PROTO_NONE;
goto out;
}
/* Older models require a different 6 byte tag */
if (is5325(dev) || is5365(dev) || is63xx(dev)) {
dev->tag_protocol = DSA_TAG_PROTO_BRCM_LEGACY;
goto out;
}
/* Broadcom BCM58xx chips have a flow accelerator on Port 8
* which requires us to use the prepended Broadcom tag type
*/
if (dev->chip_id == BCM58XX_DEVICE_ID && port == B53_CPU_PORT) {
dev->tag_protocol = DSA_TAG_PROTO_BRCM_PREPEND;
goto out;
}
dev->tag_protocol = DSA_TAG_PROTO_BRCM;
out:
return dev->tag_protocol;
}
EXPORT_SYMBOL(b53_get_tag_protocol);
int b53_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror, bool ingress,
struct netlink_ext_ack *extack)
{
struct b53_device *dev = ds->priv;
u16 reg, loc;
if (ingress)
loc = B53_IG_MIR_CTL;
else
loc = B53_EG_MIR_CTL;
b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
reg |= BIT(port);
b53_write16(dev, B53_MGMT_PAGE, loc, reg);
b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
reg &= ~CAP_PORT_MASK;
reg |= mirror->to_local_port;
reg |= MIRROR_EN;
b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
return 0;
}
EXPORT_SYMBOL(b53_mirror_add);
void b53_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct b53_device *dev = ds->priv;
bool loc_disable = false, other_loc_disable = false;
u16 reg, loc;
if (mirror->ingress)
loc = B53_IG_MIR_CTL;
else
loc = B53_EG_MIR_CTL;
/* Update the desired ingress/egress register */
b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
reg &= ~BIT(port);
if (!(reg & MIRROR_MASK))
loc_disable = true;
b53_write16(dev, B53_MGMT_PAGE, loc, reg);
/* Now look at the other one to know if we can disable mirroring
* entirely
*/
if (mirror->ingress)
b53_read16(dev, B53_MGMT_PAGE, B53_EG_MIR_CTL, &reg);
else
b53_read16(dev, B53_MGMT_PAGE, B53_IG_MIR_CTL, &reg);
if (!(reg & MIRROR_MASK))
other_loc_disable = true;
b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
/* Both no longer have ports, let's disable mirroring */
if (loc_disable && other_loc_disable) {
reg &= ~MIRROR_EN;
reg &= ~mirror->to_local_port;
}
b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
}
EXPORT_SYMBOL(b53_mirror_del);
void b53_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
{
struct b53_device *dev = ds->priv;
u16 reg;
b53_read16(dev, B53_EEE_PAGE, B53_EEE_EN_CTRL, &reg);
if (enable)
reg |= BIT(port);
else
reg &= ~BIT(port);
b53_write16(dev, B53_EEE_PAGE, B53_EEE_EN_CTRL, reg);
}
EXPORT_SYMBOL(b53_eee_enable_set);
/* Returns 0 if EEE was not enabled, or 1 otherwise
*/
int b53_eee_init(struct dsa_switch *ds, int port, struct phy_device *phy)
{
int ret;
ret = phy_init_eee(phy, false);
if (ret)
return 0;
b53_eee_enable_set(ds, port, true);
return 1;
}
EXPORT_SYMBOL(b53_eee_init);
int b53_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
struct b53_device *dev = ds->priv;
struct ethtool_eee *p = &dev->ports[port].eee;
u16 reg;
if (is5325(dev) || is5365(dev))
return -EOPNOTSUPP;
b53_read16(dev, B53_EEE_PAGE, B53_EEE_LPI_INDICATE, &reg);
e->eee_enabled = p->eee_enabled;
e->eee_active = !!(reg & BIT(port));
return 0;
}
EXPORT_SYMBOL(b53_get_mac_eee);
int b53_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
struct b53_device *dev = ds->priv;
struct ethtool_eee *p = &dev->ports[port].eee;
if (is5325(dev) || is5365(dev))
return -EOPNOTSUPP;
p->eee_enabled = e->eee_enabled;
b53_eee_enable_set(ds, port, e->eee_enabled);
return 0;
}
EXPORT_SYMBOL(b53_set_mac_eee);
static int b53_change_mtu(struct dsa_switch *ds, int port, int mtu)
{
struct b53_device *dev = ds->priv;
bool enable_jumbo;
bool allow_10_100;
if (is5325(dev) || is5365(dev))
return -EOPNOTSUPP;
enable_jumbo = (mtu >= JMS_MIN_SIZE);
allow_10_100 = (dev->chip_id == BCM583XX_DEVICE_ID);
return b53_set_jumbo(dev, enable_jumbo, allow_10_100);
}
static int b53_get_max_mtu(struct dsa_switch *ds, int port)
{
return JMS_MAX_SIZE;
}
static const struct dsa_switch_ops b53_switch_ops = {
.get_tag_protocol = b53_get_tag_protocol,
.setup = b53_setup,
.teardown = b53_teardown,
.get_strings = b53_get_strings,
.get_ethtool_stats = b53_get_ethtool_stats,
.get_sset_count = b53_get_sset_count,
.get_ethtool_phy_stats = b53_get_ethtool_phy_stats,
.phy_read = b53_phy_read16,
.phy_write = b53_phy_write16,
.adjust_link = b53_adjust_link,
.phylink_get_caps = b53_phylink_get_caps,
.phylink_mac_select_pcs = b53_phylink_mac_select_pcs,
.phylink_mac_config = b53_phylink_mac_config,
.phylink_mac_link_down = b53_phylink_mac_link_down,
.phylink_mac_link_up = b53_phylink_mac_link_up,
.port_enable = b53_enable_port,
.port_disable = b53_disable_port,
.get_mac_eee = b53_get_mac_eee,
.set_mac_eee = b53_set_mac_eee,
.port_bridge_join = b53_br_join,
.port_bridge_leave = b53_br_leave,
.port_pre_bridge_flags = b53_br_flags_pre,
.port_bridge_flags = b53_br_flags,
.port_stp_state_set = b53_br_set_stp_state,
.port_fast_age = b53_br_fast_age,
.port_vlan_filtering = b53_vlan_filtering,
.port_vlan_add = b53_vlan_add,
.port_vlan_del = b53_vlan_del,
.port_fdb_dump = b53_fdb_dump,
.port_fdb_add = b53_fdb_add,
.port_fdb_del = b53_fdb_del,
.port_mirror_add = b53_mirror_add,
.port_mirror_del = b53_mirror_del,
.port_mdb_add = b53_mdb_add,
.port_mdb_del = b53_mdb_del,
.port_max_mtu = b53_get_max_mtu,
.port_change_mtu = b53_change_mtu,
};
struct b53_chip_data {
u32 chip_id;
const char *dev_name;
u16 vlans;
u16 enabled_ports;
u8 imp_port;
u8 cpu_port;
u8 vta_regs[3];
u8 arl_bins;
u16 arl_buckets;
u8 duplex_reg;
u8 jumbo_pm_reg;
u8 jumbo_size_reg;
};
#define B53_VTA_REGS \
{ B53_VT_ACCESS, B53_VT_INDEX, B53_VT_ENTRY }
#define B53_VTA_REGS_9798 \
{ B53_VT_ACCESS_9798, B53_VT_INDEX_9798, B53_VT_ENTRY_9798 }
#define B53_VTA_REGS_63XX \
{ B53_VT_ACCESS_63XX, B53_VT_INDEX_63XX, B53_VT_ENTRY_63XX }
static const struct b53_chip_data b53_switch_chips[] = {
{
.chip_id = BCM5325_DEVICE_ID,
.dev_name = "BCM5325",
.vlans = 16,
.enabled_ports = 0x3f,
.arl_bins = 2,
.arl_buckets = 1024,
.imp_port = 5,
.duplex_reg = B53_DUPLEX_STAT_FE,
},
{
.chip_id = BCM5365_DEVICE_ID,
.dev_name = "BCM5365",
.vlans = 256,
.enabled_ports = 0x3f,
.arl_bins = 2,
.arl_buckets = 1024,
.imp_port = 5,
.duplex_reg = B53_DUPLEX_STAT_FE,
},
{
.chip_id = BCM5389_DEVICE_ID,
.dev_name = "BCM5389",
.vlans = 4096,
.enabled_ports = 0x11f,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM5395_DEVICE_ID,
.dev_name = "BCM5395",
.vlans = 4096,
.enabled_ports = 0x11f,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM5397_DEVICE_ID,
.dev_name = "BCM5397",
.vlans = 4096,
.enabled_ports = 0x11f,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS_9798,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM5398_DEVICE_ID,
.dev_name = "BCM5398",
.vlans = 4096,
.enabled_ports = 0x17f,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS_9798,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53115_DEVICE_ID,
.dev_name = "BCM53115",
.vlans = 4096,
.enabled_ports = 0x11f,
.arl_bins = 4,
.arl_buckets = 1024,
.vta_regs = B53_VTA_REGS,
.imp_port = 8,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53125_DEVICE_ID,
.dev_name = "BCM53125",
.vlans = 4096,
.enabled_ports = 0x1ff,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53128_DEVICE_ID,
.dev_name = "BCM53128",
.vlans = 4096,
.enabled_ports = 0x1ff,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM63XX_DEVICE_ID,
.dev_name = "BCM63xx",
.vlans = 4096,
.enabled_ports = 0, /* pdata must provide them */
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS_63XX,
.duplex_reg = B53_DUPLEX_STAT_63XX,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK_63XX,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE_63XX,
},
{
.chip_id = BCM53010_DEVICE_ID,
.dev_name = "BCM53010",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53011_DEVICE_ID,
.dev_name = "BCM53011",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53012_DEVICE_ID,
.dev_name = "BCM53012",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53018_DEVICE_ID,
.dev_name = "BCM53018",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM53019_DEVICE_ID,
.dev_name = "BCM53019",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM58XX_DEVICE_ID,
.dev_name = "BCM585xx/586xx/88312",
.vlans = 4096,
.enabled_ports = 0x1ff,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM583XX_DEVICE_ID,
.dev_name = "BCM583xx/11360",
.vlans = 4096,
.enabled_ports = 0x103,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
/* Starfighter 2 */
{
.chip_id = BCM4908_DEVICE_ID,
.dev_name = "BCM4908",
.vlans = 4096,
.enabled_ports = 0x1bf,
.arl_bins = 4,
.arl_buckets = 256,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM7445_DEVICE_ID,
.dev_name = "BCM7445",
.vlans = 4096,
.enabled_ports = 0x1ff,
.arl_bins = 4,
.arl_buckets = 1024,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
{
.chip_id = BCM7278_DEVICE_ID,
.dev_name = "BCM7278",
.vlans = 4096,
.enabled_ports = 0x1ff,
.arl_bins = 4,
.arl_buckets = 256,
.imp_port = 8,
.vta_regs = B53_VTA_REGS,
.duplex_reg = B53_DUPLEX_STAT_GE,
.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
},
};
static int b53_switch_init(struct b53_device *dev)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(b53_switch_chips); i++) {
const struct b53_chip_data *chip = &b53_switch_chips[i];
if (chip->chip_id == dev->chip_id) {
if (!dev->enabled_ports)
dev->enabled_ports = chip->enabled_ports;
dev->name = chip->dev_name;
dev->duplex_reg = chip->duplex_reg;
dev->vta_regs[0] = chip->vta_regs[0];
dev->vta_regs[1] = chip->vta_regs[1];
dev->vta_regs[2] = chip->vta_regs[2];
dev->jumbo_pm_reg = chip->jumbo_pm_reg;
dev->imp_port = chip->imp_port;
dev->num_vlans = chip->vlans;
dev->num_arl_bins = chip->arl_bins;
dev->num_arl_buckets = chip->arl_buckets;
break;
}
}
/* check which BCM5325x version we have */
if (is5325(dev)) {
u8 vc4;
b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
/* check reserved bits */
switch (vc4 & 3) {
case 1:
/* BCM5325E */
break;
case 3:
/* BCM5325F - do not use port 4 */
dev->enabled_ports &= ~BIT(4);
break;
default:
/* On the BCM47XX SoCs this is the supported internal switch.*/
#ifndef CONFIG_BCM47XX
/* BCM5325M */
return -EINVAL;
#else
break;
#endif
}
}
dev->num_ports = fls(dev->enabled_ports);
dev->ds->num_ports = min_t(unsigned int, dev->num_ports, DSA_MAX_PORTS);
/* Include non standard CPU port built-in PHYs to be probed */
if (is539x(dev) || is531x5(dev)) {
for (i = 0; i < dev->num_ports; i++) {
if (!(dev->ds->phys_mii_mask & BIT(i)) &&
!b53_possible_cpu_port(dev->ds, i))
dev->ds->phys_mii_mask |= BIT(i);
}
}
dev->ports = devm_kcalloc(dev->dev,
dev->num_ports, sizeof(struct b53_port),
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
dev->vlans = devm_kcalloc(dev->dev,
dev->num_vlans, sizeof(struct b53_vlan),
GFP_KERNEL);
if (!dev->vlans)
return -ENOMEM;
dev->reset_gpio = b53_switch_get_reset_gpio(dev);
if (dev->reset_gpio >= 0) {
ret = devm_gpio_request_one(dev->dev, dev->reset_gpio,
GPIOF_OUT_INIT_HIGH, "robo_reset");
if (ret)
return ret;
}
return 0;
}
struct b53_device *b53_switch_alloc(struct device *base,
const struct b53_io_ops *ops,
void *priv)
{
struct dsa_switch *ds;
struct b53_device *dev;
ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = base;
dev = devm_kzalloc(base, sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
ds->priv = dev;
dev->dev = base;
dev->ds = ds;
dev->priv = priv;
dev->ops = ops;
ds->ops = &b53_switch_ops;
dev->vlan_enabled = true;
/* Let DSA handle the case were multiple bridges span the same switch
* device and different VLAN awareness settings are requested, which
* would be breaking filtering semantics for any of the other bridge
* devices. (not hardware supported)
*/
ds->vlan_filtering_is_global = true;
mutex_init(&dev->reg_mutex);
mutex_init(&dev->stats_mutex);
mutex_init(&dev->arl_mutex);
return dev;
}
EXPORT_SYMBOL(b53_switch_alloc);
int b53_switch_detect(struct b53_device *dev)
{
u32 id32;
u16 tmp;
u8 id8;
int ret;
ret = b53_read8(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id8);
if (ret)
return ret;
switch (id8) {
case 0:
/* BCM5325 and BCM5365 do not have this register so reads
* return 0. But the read operation did succeed, so assume this
* is one of them.
*
* Next check if we can write to the 5325's VTA register; for
* 5365 it is read only.
*/
b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, 0xf);
b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, &tmp);
if (tmp == 0xf)
dev->chip_id = BCM5325_DEVICE_ID;
else
dev->chip_id = BCM5365_DEVICE_ID;
break;
case BCM5389_DEVICE_ID:
case BCM5395_DEVICE_ID:
case BCM5397_DEVICE_ID:
case BCM5398_DEVICE_ID:
dev->chip_id = id8;
break;
default:
ret = b53_read32(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id32);
if (ret)
return ret;
switch (id32) {
case BCM53115_DEVICE_ID:
case BCM53125_DEVICE_ID:
case BCM53128_DEVICE_ID:
case BCM53010_DEVICE_ID:
case BCM53011_DEVICE_ID:
case BCM53012_DEVICE_ID:
case BCM53018_DEVICE_ID:
case BCM53019_DEVICE_ID:
dev->chip_id = id32;
break;
default:
dev_err(dev->dev,
"unsupported switch detected (BCM53%02x/BCM%x)\n",
id8, id32);
return -ENODEV;
}
}
if (dev->chip_id == BCM5325_DEVICE_ID)
return b53_read8(dev, B53_STAT_PAGE, B53_REV_ID_25,
&dev->core_rev);
else
return b53_read8(dev, B53_MGMT_PAGE, B53_REV_ID,
&dev->core_rev);
}
EXPORT_SYMBOL(b53_switch_detect);
int b53_switch_register(struct b53_device *dev)
{
int ret;
if (dev->pdata) {
dev->chip_id = dev->pdata->chip_id;
dev->enabled_ports = dev->pdata->enabled_ports;
}
if (!dev->chip_id && b53_switch_detect(dev))
return -EINVAL;
ret = b53_switch_init(dev);
if (ret)
return ret;
dev_info(dev->dev, "found switch: %s, rev %i\n",
dev->name, dev->core_rev);
return dsa_register_switch(dev->ds);
}
EXPORT_SYMBOL(b53_switch_register);
MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
MODULE_DESCRIPTION("B53 switch library");
MODULE_LICENSE("Dual BSD/GPL");