| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/moduleloader.h> |
| #include <linux/workqueue.h> |
| #include <linux/netdevice.h> |
| #include <linux/filter.h> |
| #include <linux/bpf.h> |
| #include <linux/cache.h> |
| #include <linux/if_vlan.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/ptrace.h> |
| |
| #include "bpf_jit_64.h" |
| |
| static inline bool is_simm13(unsigned int value) |
| { |
| return value + 0x1000 < 0x2000; |
| } |
| |
| static inline bool is_simm10(unsigned int value) |
| { |
| return value + 0x200 < 0x400; |
| } |
| |
| static inline bool is_simm5(unsigned int value) |
| { |
| return value + 0x10 < 0x20; |
| } |
| |
| static inline bool is_sethi(unsigned int value) |
| { |
| return (value & ~0x3fffff) == 0; |
| } |
| |
| static void bpf_flush_icache(void *start_, void *end_) |
| { |
| /* Cheetah's I-cache is fully coherent. */ |
| if (tlb_type == spitfire) { |
| unsigned long start = (unsigned long) start_; |
| unsigned long end = (unsigned long) end_; |
| |
| start &= ~7UL; |
| end = (end + 7UL) & ~7UL; |
| while (start < end) { |
| flushi(start); |
| start += 32; |
| } |
| } |
| } |
| |
| #define S13(X) ((X) & 0x1fff) |
| #define S5(X) ((X) & 0x1f) |
| #define IMMED 0x00002000 |
| #define RD(X) ((X) << 25) |
| #define RS1(X) ((X) << 14) |
| #define RS2(X) ((X)) |
| #define OP(X) ((X) << 30) |
| #define OP2(X) ((X) << 22) |
| #define OP3(X) ((X) << 19) |
| #define COND(X) (((X) & 0xf) << 25) |
| #define CBCOND(X) (((X) & 0x1f) << 25) |
| #define F1(X) OP(X) |
| #define F2(X, Y) (OP(X) | OP2(Y)) |
| #define F3(X, Y) (OP(X) | OP3(Y)) |
| #define ASI(X) (((X) & 0xff) << 5) |
| |
| #define CONDN COND(0x0) |
| #define CONDE COND(0x1) |
| #define CONDLE COND(0x2) |
| #define CONDL COND(0x3) |
| #define CONDLEU COND(0x4) |
| #define CONDCS COND(0x5) |
| #define CONDNEG COND(0x6) |
| #define CONDVC COND(0x7) |
| #define CONDA COND(0x8) |
| #define CONDNE COND(0x9) |
| #define CONDG COND(0xa) |
| #define CONDGE COND(0xb) |
| #define CONDGU COND(0xc) |
| #define CONDCC COND(0xd) |
| #define CONDPOS COND(0xe) |
| #define CONDVS COND(0xf) |
| |
| #define CONDGEU CONDCC |
| #define CONDLU CONDCS |
| |
| #define WDISP22(X) (((X) >> 2) & 0x3fffff) |
| #define WDISP19(X) (((X) >> 2) & 0x7ffff) |
| |
| /* The 10-bit branch displacement for CBCOND is split into two fields */ |
| static u32 WDISP10(u32 off) |
| { |
| u32 ret = ((off >> 2) & 0xff) << 5; |
| |
| ret |= ((off >> (2 + 8)) & 0x03) << 19; |
| |
| return ret; |
| } |
| |
| #define CBCONDE CBCOND(0x09) |
| #define CBCONDLE CBCOND(0x0a) |
| #define CBCONDL CBCOND(0x0b) |
| #define CBCONDLEU CBCOND(0x0c) |
| #define CBCONDCS CBCOND(0x0d) |
| #define CBCONDN CBCOND(0x0e) |
| #define CBCONDVS CBCOND(0x0f) |
| #define CBCONDNE CBCOND(0x19) |
| #define CBCONDG CBCOND(0x1a) |
| #define CBCONDGE CBCOND(0x1b) |
| #define CBCONDGU CBCOND(0x1c) |
| #define CBCONDCC CBCOND(0x1d) |
| #define CBCONDPOS CBCOND(0x1e) |
| #define CBCONDVC CBCOND(0x1f) |
| |
| #define CBCONDGEU CBCONDCC |
| #define CBCONDLU CBCONDCS |
| |
| #define ANNUL (1 << 29) |
| #define XCC (1 << 21) |
| |
| #define BRANCH (F2(0, 1) | XCC) |
| #define CBCOND_OP (F2(0, 3) | XCC) |
| |
| #define BA (BRANCH | CONDA) |
| #define BG (BRANCH | CONDG) |
| #define BL (BRANCH | CONDL) |
| #define BLE (BRANCH | CONDLE) |
| #define BGU (BRANCH | CONDGU) |
| #define BLEU (BRANCH | CONDLEU) |
| #define BGE (BRANCH | CONDGE) |
| #define BGEU (BRANCH | CONDGEU) |
| #define BLU (BRANCH | CONDLU) |
| #define BE (BRANCH | CONDE) |
| #define BNE (BRANCH | CONDNE) |
| |
| #define SETHI(K, REG) \ |
| (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) |
| #define OR_LO(K, REG) \ |
| (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) |
| |
| #define ADD F3(2, 0x00) |
| #define AND F3(2, 0x01) |
| #define ANDCC F3(2, 0x11) |
| #define OR F3(2, 0x02) |
| #define XOR F3(2, 0x03) |
| #define SUB F3(2, 0x04) |
| #define SUBCC F3(2, 0x14) |
| #define MUL F3(2, 0x0a) |
| #define MULX F3(2, 0x09) |
| #define UDIVX F3(2, 0x0d) |
| #define DIV F3(2, 0x0e) |
| #define SLL F3(2, 0x25) |
| #define SLLX (F3(2, 0x25)|(1<<12)) |
| #define SRA F3(2, 0x27) |
| #define SRAX (F3(2, 0x27)|(1<<12)) |
| #define SRL F3(2, 0x26) |
| #define SRLX (F3(2, 0x26)|(1<<12)) |
| #define JMPL F3(2, 0x38) |
| #define SAVE F3(2, 0x3c) |
| #define RESTORE F3(2, 0x3d) |
| #define CALL F1(1) |
| #define BR F2(0, 0x01) |
| #define RD_Y F3(2, 0x28) |
| #define WR_Y F3(2, 0x30) |
| |
| #define LD32 F3(3, 0x00) |
| #define LD8 F3(3, 0x01) |
| #define LD16 F3(3, 0x02) |
| #define LD64 F3(3, 0x0b) |
| #define LD64A F3(3, 0x1b) |
| #define ST8 F3(3, 0x05) |
| #define ST16 F3(3, 0x06) |
| #define ST32 F3(3, 0x04) |
| #define ST64 F3(3, 0x0e) |
| |
| #define CAS F3(3, 0x3c) |
| #define CASX F3(3, 0x3e) |
| |
| #define LDPTR LD64 |
| #define BASE_STACKFRAME 176 |
| |
| #define LD32I (LD32 | IMMED) |
| #define LD8I (LD8 | IMMED) |
| #define LD16I (LD16 | IMMED) |
| #define LD64I (LD64 | IMMED) |
| #define LDPTRI (LDPTR | IMMED) |
| #define ST32I (ST32 | IMMED) |
| |
| struct jit_ctx { |
| struct bpf_prog *prog; |
| unsigned int *offset; |
| int idx; |
| int epilogue_offset; |
| bool tmp_1_used; |
| bool tmp_2_used; |
| bool tmp_3_used; |
| bool saw_frame_pointer; |
| bool saw_call; |
| bool saw_tail_call; |
| u32 *image; |
| }; |
| |
| #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) |
| #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) |
| #define TMP_REG_3 (MAX_BPF_JIT_REG + 2) |
| |
| /* Map BPF registers to SPARC registers */ |
| static const int bpf2sparc[] = { |
| /* return value from in-kernel function, and exit value from eBPF */ |
| [BPF_REG_0] = O5, |
| |
| /* arguments from eBPF program to in-kernel function */ |
| [BPF_REG_1] = O0, |
| [BPF_REG_2] = O1, |
| [BPF_REG_3] = O2, |
| [BPF_REG_4] = O3, |
| [BPF_REG_5] = O4, |
| |
| /* callee saved registers that in-kernel function will preserve */ |
| [BPF_REG_6] = L0, |
| [BPF_REG_7] = L1, |
| [BPF_REG_8] = L2, |
| [BPF_REG_9] = L3, |
| |
| /* read-only frame pointer to access stack */ |
| [BPF_REG_FP] = L6, |
| |
| [BPF_REG_AX] = G7, |
| |
| /* temporary register for internal BPF JIT */ |
| [TMP_REG_1] = G1, |
| [TMP_REG_2] = G2, |
| [TMP_REG_3] = G3, |
| }; |
| |
| static void emit(const u32 insn, struct jit_ctx *ctx) |
| { |
| if (ctx->image != NULL) |
| ctx->image[ctx->idx] = insn; |
| |
| ctx->idx++; |
| } |
| |
| static void emit_call(u32 *func, struct jit_ctx *ctx) |
| { |
| if (ctx->image != NULL) { |
| void *here = &ctx->image[ctx->idx]; |
| unsigned int off; |
| |
| off = (void *)func - here; |
| ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff); |
| } |
| ctx->idx++; |
| } |
| |
| static void emit_nop(struct jit_ctx *ctx) |
| { |
| emit(SETHI(0, G0), ctx); |
| } |
| |
| static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx) |
| { |
| emit(OR | RS1(G0) | RS2(from) | RD(to), ctx); |
| } |
| |
| /* Emit 32-bit constant, zero extended. */ |
| static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx) |
| { |
| emit(SETHI(K, reg), ctx); |
| emit(OR_LO(K, reg), ctx); |
| } |
| |
| /* Emit 32-bit constant, sign extended. */ |
| static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx) |
| { |
| if (K >= 0) { |
| emit(SETHI(K, reg), ctx); |
| emit(OR_LO(K, reg), ctx); |
| } else { |
| u32 hbits = ~(u32) K; |
| u32 lbits = -0x400 | (u32) K; |
| |
| emit(SETHI(hbits, reg), ctx); |
| emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx); |
| } |
| } |
| |
| static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx) |
| { |
| emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx); |
| } |
| |
| static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx) |
| { |
| emit(opcode | RS1(a) | RS2(b) | RD(c), ctx); |
| } |
| |
| static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm, |
| struct jit_ctx *ctx) |
| { |
| bool small_immed = is_simm13(imm); |
| unsigned int insn = opcode; |
| |
| insn |= RS1(dst) | RD(dst); |
| if (small_immed) { |
| emit(insn | IMMED | S13(imm), ctx); |
| } else { |
| unsigned int tmp = bpf2sparc[TMP_REG_1]; |
| |
| ctx->tmp_1_used = true; |
| |
| emit_set_const_sext(imm, tmp, ctx); |
| emit(insn | RS2(tmp), ctx); |
| } |
| } |
| |
| static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm, |
| unsigned int dst, struct jit_ctx *ctx) |
| { |
| bool small_immed = is_simm13(imm); |
| unsigned int insn = opcode; |
| |
| insn |= RS1(src) | RD(dst); |
| if (small_immed) { |
| emit(insn | IMMED | S13(imm), ctx); |
| } else { |
| unsigned int tmp = bpf2sparc[TMP_REG_1]; |
| |
| ctx->tmp_1_used = true; |
| |
| emit_set_const_sext(imm, tmp, ctx); |
| emit(insn | RS2(tmp), ctx); |
| } |
| } |
| |
| static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx) |
| { |
| if (K >= 0 && is_simm13(K)) { |
| /* or %g0, K, DEST */ |
| emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); |
| } else { |
| emit_set_const(K, dest, ctx); |
| } |
| } |
| |
| static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx) |
| { |
| if (is_simm13(K)) { |
| /* or %g0, K, DEST */ |
| emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); |
| } else { |
| emit_set_const(K, dest, ctx); |
| } |
| } |
| |
| static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx) |
| { |
| if (is_simm13(K)) { |
| /* or %g0, K, DEST */ |
| emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); |
| } else { |
| emit_set_const_sext(K, dest, ctx); |
| } |
| } |
| |
| static void analyze_64bit_constant(u32 high_bits, u32 low_bits, |
| int *hbsp, int *lbsp, int *abbasp) |
| { |
| int lowest_bit_set, highest_bit_set, all_bits_between_are_set; |
| int i; |
| |
| lowest_bit_set = highest_bit_set = -1; |
| i = 0; |
| do { |
| if ((lowest_bit_set == -1) && ((low_bits >> i) & 1)) |
| lowest_bit_set = i; |
| if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1)) |
| highest_bit_set = (64 - i - 1); |
| } while (++i < 32 && (highest_bit_set == -1 || |
| lowest_bit_set == -1)); |
| if (i == 32) { |
| i = 0; |
| do { |
| if (lowest_bit_set == -1 && ((high_bits >> i) & 1)) |
| lowest_bit_set = i + 32; |
| if (highest_bit_set == -1 && |
| ((low_bits >> (32 - i - 1)) & 1)) |
| highest_bit_set = 32 - i - 1; |
| } while (++i < 32 && (highest_bit_set == -1 || |
| lowest_bit_set == -1)); |
| } |
| |
| all_bits_between_are_set = 1; |
| for (i = lowest_bit_set; i <= highest_bit_set; i++) { |
| if (i < 32) { |
| if ((low_bits & (1 << i)) != 0) |
| continue; |
| } else { |
| if ((high_bits & (1 << (i - 32))) != 0) |
| continue; |
| } |
| all_bits_between_are_set = 0; |
| break; |
| } |
| *hbsp = highest_bit_set; |
| *lbsp = lowest_bit_set; |
| *abbasp = all_bits_between_are_set; |
| } |
| |
| static unsigned long create_simple_focus_bits(unsigned long high_bits, |
| unsigned long low_bits, |
| int lowest_bit_set, int shift) |
| { |
| long hi, lo; |
| |
| if (lowest_bit_set < 32) { |
| lo = (low_bits >> lowest_bit_set) << shift; |
| hi = ((high_bits << (32 - lowest_bit_set)) << shift); |
| } else { |
| lo = 0; |
| hi = ((high_bits >> (lowest_bit_set - 32)) << shift); |
| } |
| return hi | lo; |
| } |
| |
| static bool const64_is_2insns(unsigned long high_bits, |
| unsigned long low_bits) |
| { |
| int highest_bit_set, lowest_bit_set, all_bits_between_are_set; |
| |
| if (high_bits == 0 || high_bits == 0xffffffff) |
| return true; |
| |
| analyze_64bit_constant(high_bits, low_bits, |
| &highest_bit_set, &lowest_bit_set, |
| &all_bits_between_are_set); |
| |
| if ((highest_bit_set == 63 || lowest_bit_set == 0) && |
| all_bits_between_are_set != 0) |
| return true; |
| |
| if (highest_bit_set - lowest_bit_set < 21) |
| return true; |
| |
| return false; |
| } |
| |
| static void sparc_emit_set_const64_quick2(unsigned long high_bits, |
| unsigned long low_imm, |
| unsigned int dest, |
| int shift_count, struct jit_ctx *ctx) |
| { |
| emit_loadimm32(high_bits, dest, ctx); |
| |
| /* Now shift it up into place. */ |
| emit_alu_K(SLLX, dest, shift_count, ctx); |
| |
| /* If there is a low immediate part piece, finish up by |
| * putting that in as well. |
| */ |
| if (low_imm != 0) |
| emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx); |
| } |
| |
| static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx) |
| { |
| int all_bits_between_are_set, lowest_bit_set, highest_bit_set; |
| unsigned int tmp = bpf2sparc[TMP_REG_1]; |
| u32 low_bits = (K & 0xffffffff); |
| u32 high_bits = (K >> 32); |
| |
| /* These two tests also take care of all of the one |
| * instruction cases. |
| */ |
| if (high_bits == 0xffffffff && (low_bits & 0x80000000)) |
| return emit_loadimm_sext(K, dest, ctx); |
| if (high_bits == 0x00000000) |
| return emit_loadimm32(K, dest, ctx); |
| |
| analyze_64bit_constant(high_bits, low_bits, &highest_bit_set, |
| &lowest_bit_set, &all_bits_between_are_set); |
| |
| /* 1) mov -1, %reg |
| * sllx %reg, shift, %reg |
| * 2) mov -1, %reg |
| * srlx %reg, shift, %reg |
| * 3) mov some_small_const, %reg |
| * sllx %reg, shift, %reg |
| */ |
| if (((highest_bit_set == 63 || lowest_bit_set == 0) && |
| all_bits_between_are_set != 0) || |
| ((highest_bit_set - lowest_bit_set) < 12)) { |
| int shift = lowest_bit_set; |
| long the_const = -1; |
| |
| if ((highest_bit_set != 63 && lowest_bit_set != 0) || |
| all_bits_between_are_set == 0) { |
| the_const = |
| create_simple_focus_bits(high_bits, low_bits, |
| lowest_bit_set, 0); |
| } else if (lowest_bit_set == 0) |
| shift = -(63 - highest_bit_set); |
| |
| emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx); |
| if (shift > 0) |
| emit_alu_K(SLLX, dest, shift, ctx); |
| else if (shift < 0) |
| emit_alu_K(SRLX, dest, -shift, ctx); |
| |
| return; |
| } |
| |
| /* Now a range of 22 or less bits set somewhere. |
| * 1) sethi %hi(focus_bits), %reg |
| * sllx %reg, shift, %reg |
| * 2) sethi %hi(focus_bits), %reg |
| * srlx %reg, shift, %reg |
| */ |
| if ((highest_bit_set - lowest_bit_set) < 21) { |
| unsigned long focus_bits = |
| create_simple_focus_bits(high_bits, low_bits, |
| lowest_bit_set, 10); |
| |
| emit(SETHI(focus_bits, dest), ctx); |
| |
| /* If lowest_bit_set == 10 then a sethi alone could |
| * have done it. |
| */ |
| if (lowest_bit_set < 10) |
| emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx); |
| else if (lowest_bit_set > 10) |
| emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx); |
| return; |
| } |
| |
| /* Ok, now 3 instruction sequences. */ |
| if (low_bits == 0) { |
| emit_loadimm32(high_bits, dest, ctx); |
| emit_alu_K(SLLX, dest, 32, ctx); |
| return; |
| } |
| |
| /* We may be able to do something quick |
| * when the constant is negated, so try that. |
| */ |
| if (const64_is_2insns((~high_bits) & 0xffffffff, |
| (~low_bits) & 0xfffffc00)) { |
| /* NOTE: The trailing bits get XOR'd so we need the |
| * non-negated bits, not the negated ones. |
| */ |
| unsigned long trailing_bits = low_bits & 0x3ff; |
| |
| if ((((~high_bits) & 0xffffffff) == 0 && |
| ((~low_bits) & 0x80000000) == 0) || |
| (((~high_bits) & 0xffffffff) == 0xffffffff && |
| ((~low_bits) & 0x80000000) != 0)) { |
| unsigned long fast_int = (~low_bits & 0xffffffff); |
| |
| if ((is_sethi(fast_int) && |
| (~high_bits & 0xffffffff) == 0)) { |
| emit(SETHI(fast_int, dest), ctx); |
| } else if (is_simm13(fast_int)) { |
| emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx); |
| } else { |
| emit_loadimm64(fast_int, dest, ctx); |
| } |
| } else { |
| u64 n = ((~low_bits) & 0xfffffc00) | |
| (((unsigned long)((~high_bits) & 0xffffffff))<<32); |
| emit_loadimm64(n, dest, ctx); |
| } |
| |
| low_bits = -0x400 | trailing_bits; |
| |
| emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx); |
| return; |
| } |
| |
| /* 1) sethi %hi(xxx), %reg |
| * or %reg, %lo(xxx), %reg |
| * sllx %reg, yyy, %reg |
| */ |
| if ((highest_bit_set - lowest_bit_set) < 32) { |
| unsigned long focus_bits = |
| create_simple_focus_bits(high_bits, low_bits, |
| lowest_bit_set, 0); |
| |
| /* So what we know is that the set bits straddle the |
| * middle of the 64-bit word. |
| */ |
| sparc_emit_set_const64_quick2(focus_bits, 0, dest, |
| lowest_bit_set, ctx); |
| return; |
| } |
| |
| /* 1) sethi %hi(high_bits), %reg |
| * or %reg, %lo(high_bits), %reg |
| * sllx %reg, 32, %reg |
| * or %reg, low_bits, %reg |
| */ |
| if (is_simm13(low_bits) && ((int)low_bits > 0)) { |
| sparc_emit_set_const64_quick2(high_bits, low_bits, |
| dest, 32, ctx); |
| return; |
| } |
| |
| /* Oh well, we tried... Do a full 64-bit decomposition. */ |
| ctx->tmp_1_used = true; |
| |
| emit_loadimm32(high_bits, tmp, ctx); |
| emit_loadimm32(low_bits, dest, ctx); |
| emit_alu_K(SLLX, tmp, 32, ctx); |
| emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx); |
| } |
| |
| static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx, |
| struct jit_ctx *ctx) |
| { |
| unsigned int off = to_idx - from_idx; |
| |
| if (br_opc & XCC) |
| emit(br_opc | WDISP19(off << 2), ctx); |
| else |
| emit(br_opc | WDISP22(off << 2), ctx); |
| } |
| |
| static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx, |
| const u8 dst, const u8 src, struct jit_ctx *ctx) |
| { |
| unsigned int off = to_idx - from_idx; |
| |
| emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx); |
| } |
| |
| static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx, |
| const u8 dst, s32 imm, struct jit_ctx *ctx) |
| { |
| unsigned int off = to_idx - from_idx; |
| |
| emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx); |
| } |
| |
| #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX) |
| #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX) |
| |
| #define emit_cmp(R1, R2, CTX) \ |
| emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX) |
| |
| #define emit_cmpi(R1, IMM, CTX) \ |
| emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX) |
| |
| #define emit_btst(R1, R2, CTX) \ |
| emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX) |
| |
| #define emit_btsti(R1, IMM, CTX) \ |
| emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX) |
| |
| static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src, |
| const s32 imm, bool is_imm, int branch_dst, |
| struct jit_ctx *ctx) |
| { |
| bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0; |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| |
| branch_dst = ctx->offset[branch_dst]; |
| |
| if (!is_simm10(branch_dst - ctx->idx) || |
| BPF_OP(code) == BPF_JSET) |
| use_cbcond = false; |
| |
| if (is_imm) { |
| bool fits = true; |
| |
| if (use_cbcond) { |
| if (!is_simm5(imm)) |
| fits = false; |
| } else if (!is_simm13(imm)) { |
| fits = false; |
| } |
| if (!fits) { |
| ctx->tmp_1_used = true; |
| emit_loadimm_sext(imm, tmp, ctx); |
| src = tmp; |
| is_imm = false; |
| } |
| } |
| |
| if (!use_cbcond) { |
| u32 br_opcode; |
| |
| if (BPF_OP(code) == BPF_JSET) { |
| if (is_imm) |
| emit_btsti(dst, imm, ctx); |
| else |
| emit_btst(dst, src, ctx); |
| } else { |
| if (is_imm) |
| emit_cmpi(dst, imm, ctx); |
| else |
| emit_cmp(dst, src, ctx); |
| } |
| switch (BPF_OP(code)) { |
| case BPF_JEQ: |
| br_opcode = BE; |
| break; |
| case BPF_JGT: |
| br_opcode = BGU; |
| break; |
| case BPF_JLT: |
| br_opcode = BLU; |
| break; |
| case BPF_JGE: |
| br_opcode = BGEU; |
| break; |
| case BPF_JLE: |
| br_opcode = BLEU; |
| break; |
| case BPF_JSET: |
| case BPF_JNE: |
| br_opcode = BNE; |
| break; |
| case BPF_JSGT: |
| br_opcode = BG; |
| break; |
| case BPF_JSLT: |
| br_opcode = BL; |
| break; |
| case BPF_JSGE: |
| br_opcode = BGE; |
| break; |
| case BPF_JSLE: |
| br_opcode = BLE; |
| break; |
| default: |
| /* Make sure we dont leak kernel information to the |
| * user. |
| */ |
| return -EFAULT; |
| } |
| emit_branch(br_opcode, ctx->idx, branch_dst, ctx); |
| emit_nop(ctx); |
| } else { |
| u32 cbcond_opcode; |
| |
| switch (BPF_OP(code)) { |
| case BPF_JEQ: |
| cbcond_opcode = CBCONDE; |
| break; |
| case BPF_JGT: |
| cbcond_opcode = CBCONDGU; |
| break; |
| case BPF_JLT: |
| cbcond_opcode = CBCONDLU; |
| break; |
| case BPF_JGE: |
| cbcond_opcode = CBCONDGEU; |
| break; |
| case BPF_JLE: |
| cbcond_opcode = CBCONDLEU; |
| break; |
| case BPF_JNE: |
| cbcond_opcode = CBCONDNE; |
| break; |
| case BPF_JSGT: |
| cbcond_opcode = CBCONDG; |
| break; |
| case BPF_JSLT: |
| cbcond_opcode = CBCONDL; |
| break; |
| case BPF_JSGE: |
| cbcond_opcode = CBCONDGE; |
| break; |
| case BPF_JSLE: |
| cbcond_opcode = CBCONDLE; |
| break; |
| default: |
| /* Make sure we dont leak kernel information to the |
| * user. |
| */ |
| return -EFAULT; |
| } |
| cbcond_opcode |= CBCOND_OP; |
| if (is_imm) |
| emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst, |
| dst, imm, ctx); |
| else |
| emit_cbcond(cbcond_opcode, ctx->idx, branch_dst, |
| dst, src, ctx); |
| } |
| return 0; |
| } |
| |
| /* Just skip the save instruction and the ctx register move. */ |
| #define BPF_TAILCALL_PROLOGUE_SKIP 32 |
| #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128) |
| |
| static void build_prologue(struct jit_ctx *ctx) |
| { |
| s32 stack_needed = BASE_STACKFRAME; |
| |
| if (ctx->saw_frame_pointer || ctx->saw_tail_call) { |
| struct bpf_prog *prog = ctx->prog; |
| u32 stack_depth; |
| |
| stack_depth = prog->aux->stack_depth; |
| stack_needed += round_up(stack_depth, 16); |
| } |
| |
| if (ctx->saw_tail_call) |
| stack_needed += 8; |
| |
| /* save %sp, -176, %sp */ |
| emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx); |
| |
| /* tail_call_cnt = 0 */ |
| if (ctx->saw_tail_call) { |
| u32 off = BPF_TAILCALL_CNT_SP_OFF; |
| |
| emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx); |
| } else { |
| emit_nop(ctx); |
| } |
| if (ctx->saw_frame_pointer) { |
| const u8 vfp = bpf2sparc[BPF_REG_FP]; |
| |
| emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx); |
| } else { |
| emit_nop(ctx); |
| } |
| |
| emit_reg_move(I0, O0, ctx); |
| emit_reg_move(I1, O1, ctx); |
| emit_reg_move(I2, O2, ctx); |
| emit_reg_move(I3, O3, ctx); |
| emit_reg_move(I4, O4, ctx); |
| /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */ |
| } |
| |
| static void build_epilogue(struct jit_ctx *ctx) |
| { |
| ctx->epilogue_offset = ctx->idx; |
| |
| /* ret (jmpl %i7 + 8, %g0) */ |
| emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx); |
| |
| /* restore %i5, %g0, %o0 */ |
| emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx); |
| } |
| |
| static void emit_tail_call(struct jit_ctx *ctx) |
| { |
| const u8 bpf_array = bpf2sparc[BPF_REG_2]; |
| const u8 bpf_index = bpf2sparc[BPF_REG_3]; |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| u32 off; |
| |
| ctx->saw_tail_call = true; |
| |
| off = offsetof(struct bpf_array, map.max_entries); |
| emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx); |
| emit_cmp(bpf_index, tmp, ctx); |
| #define OFFSET1 17 |
| emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx); |
| emit_nop(ctx); |
| |
| off = BPF_TAILCALL_CNT_SP_OFF; |
| emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx); |
| emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx); |
| #define OFFSET2 13 |
| emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx); |
| emit_nop(ctx); |
| |
| emit_alu_K(ADD, tmp, 1, ctx); |
| off = BPF_TAILCALL_CNT_SP_OFF; |
| emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx); |
| |
| emit_alu3_K(SLL, bpf_index, 3, tmp, ctx); |
| emit_alu(ADD, bpf_array, tmp, ctx); |
| off = offsetof(struct bpf_array, ptrs); |
| emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx); |
| |
| emit_cmpi(tmp, 0, ctx); |
| #define OFFSET3 5 |
| emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx); |
| emit_nop(ctx); |
| |
| off = offsetof(struct bpf_prog, bpf_func); |
| emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx); |
| |
| off = BPF_TAILCALL_PROLOGUE_SKIP; |
| emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx); |
| emit_nop(ctx); |
| } |
| |
| static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| { |
| const u8 code = insn->code; |
| const u8 dst = bpf2sparc[insn->dst_reg]; |
| const u8 src = bpf2sparc[insn->src_reg]; |
| const int i = insn - ctx->prog->insnsi; |
| const s16 off = insn->off; |
| const s32 imm = insn->imm; |
| |
| if (insn->src_reg == BPF_REG_FP) |
| ctx->saw_frame_pointer = true; |
| |
| switch (code) { |
| /* dst = src */ |
| case BPF_ALU | BPF_MOV | BPF_X: |
| emit_alu3_K(SRL, src, 0, dst, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| emit_reg_move(src, dst, ctx); |
| break; |
| /* dst = dst OP src */ |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| emit_alu(ADD, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| emit_alu(SUB, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| emit_alu(AND, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| emit_alu(OR, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_XOR | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| emit_alu(XOR, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_MUL | BPF_X: |
| emit_alu(MUL, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| emit_alu(MULX, src, dst, ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: |
| emit_write_y(G0, ctx); |
| emit_alu(DIV, src, dst, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| emit_alu(UDIVX, src, dst, ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_X: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| |
| ctx->tmp_1_used = true; |
| |
| emit_write_y(G0, ctx); |
| emit_alu3(DIV, dst, src, tmp, ctx); |
| emit_alu3(MULX, tmp, src, tmp, ctx); |
| emit_alu3(SUB, dst, tmp, dst, ctx); |
| goto do_alu32_trunc; |
| } |
| case BPF_ALU64 | BPF_MOD | BPF_X: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| |
| ctx->tmp_1_used = true; |
| |
| emit_alu3(UDIVX, dst, src, tmp, ctx); |
| emit_alu3(MULX, tmp, src, tmp, ctx); |
| emit_alu3(SUB, dst, tmp, dst, ctx); |
| break; |
| } |
| case BPF_ALU | BPF_LSH | BPF_X: |
| emit_alu(SLL, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| emit_alu(SLLX, src, dst, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: |
| emit_alu(SRL, src, dst, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| emit_alu(SRLX, src, dst, ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| emit_alu(SRA, src, dst, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| emit_alu(SRAX, src, dst, ctx); |
| break; |
| |
| /* dst = -dst */ |
| case BPF_ALU | BPF_NEG: |
| case BPF_ALU64 | BPF_NEG: |
| emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx); |
| goto do_alu32_trunc; |
| |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| switch (imm) { |
| case 16: |
| emit_alu_K(SLL, dst, 16, ctx); |
| emit_alu_K(SRL, dst, 16, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case 32: |
| if (!ctx->prog->aux->verifier_zext) |
| emit_alu_K(SRL, dst, 0, ctx); |
| break; |
| case 64: |
| /* nop */ |
| break; |
| |
| } |
| break; |
| |
| /* dst = BSWAP##imm(dst) */ |
| case BPF_ALU | BPF_END | BPF_FROM_LE: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| const u8 tmp2 = bpf2sparc[TMP_REG_2]; |
| |
| ctx->tmp_1_used = true; |
| switch (imm) { |
| case 16: |
| emit_alu3_K(AND, dst, 0xff, tmp, ctx); |
| emit_alu3_K(SRL, dst, 8, dst, ctx); |
| emit_alu3_K(AND, dst, 0xff, dst, ctx); |
| emit_alu3_K(SLL, tmp, 8, tmp, ctx); |
| emit_alu(OR, tmp, dst, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| |
| case 32: |
| ctx->tmp_2_used = true; |
| emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */ |
| emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */ |
| emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */ |
| emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */ |
| emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */ |
| emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */ |
| emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */ |
| emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */ |
| emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */ |
| emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */ |
| emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */ |
| emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */ |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| |
| case 64: |
| emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx); |
| emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx); |
| emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx); |
| break; |
| } |
| break; |
| } |
| /* dst = imm */ |
| case BPF_ALU | BPF_MOV | BPF_K: |
| emit_loadimm32(imm, dst, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| emit_loadimm_sext(imm, dst, ctx); |
| break; |
| /* dst = dst OP imm */ |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| emit_alu_K(ADD, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| emit_alu_K(SUB, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| emit_alu_K(AND, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| emit_alu_K(OR, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| emit_alu_K(XOR, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU | BPF_MUL | BPF_K: |
| emit_alu_K(MUL, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| emit_alu_K(MULX, dst, imm, ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: |
| if (imm == 0) |
| return -EINVAL; |
| |
| emit_write_y(G0, ctx); |
| emit_alu_K(DIV, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| if (imm == 0) |
| return -EINVAL; |
| |
| emit_alu_K(UDIVX, dst, imm, ctx); |
| break; |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| case BPF_ALU | BPF_MOD | BPF_K: { |
| const u8 tmp = bpf2sparc[TMP_REG_2]; |
| unsigned int div; |
| |
| if (imm == 0) |
| return -EINVAL; |
| |
| div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV; |
| |
| ctx->tmp_2_used = true; |
| |
| if (BPF_CLASS(code) != BPF_ALU64) |
| emit_write_y(G0, ctx); |
| if (is_simm13(imm)) { |
| emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx); |
| emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx); |
| emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx); |
| } else { |
| const u8 tmp1 = bpf2sparc[TMP_REG_1]; |
| |
| ctx->tmp_1_used = true; |
| |
| emit_set_const_sext(imm, tmp1, ctx); |
| emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx); |
| emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx); |
| emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx); |
| } |
| goto do_alu32_trunc; |
| } |
| case BPF_ALU | BPF_LSH | BPF_K: |
| emit_alu_K(SLL, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| emit_alu_K(SLLX, dst, imm, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: |
| emit_alu_K(SRL, dst, imm, ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| emit_alu_K(SRLX, dst, imm, ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| emit_alu_K(SRA, dst, imm, ctx); |
| goto do_alu32_trunc; |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| emit_alu_K(SRAX, dst, imm, ctx); |
| break; |
| |
| do_alu32_trunc: |
| if (BPF_CLASS(code) == BPF_ALU && |
| !ctx->prog->aux->verifier_zext) |
| emit_alu_K(SRL, dst, 0, ctx); |
| break; |
| |
| /* JUMP off */ |
| case BPF_JMP | BPF_JA: |
| emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx); |
| emit_nop(ctx); |
| break; |
| /* IF (dst COND src) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP | BPF_JSET | BPF_X: { |
| int err; |
| |
| err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx); |
| if (err) |
| return err; |
| break; |
| } |
| /* IF (dst COND imm) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP | BPF_JSET | BPF_K: { |
| int err; |
| |
| err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx); |
| if (err) |
| return err; |
| break; |
| } |
| |
| /* function call */ |
| case BPF_JMP | BPF_CALL: |
| { |
| u8 *func = ((u8 *)__bpf_call_base) + imm; |
| |
| ctx->saw_call = true; |
| |
| emit_call((u32 *)func, ctx); |
| emit_nop(ctx); |
| |
| emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx); |
| break; |
| } |
| |
| /* tail call */ |
| case BPF_JMP | BPF_TAIL_CALL: |
| emit_tail_call(ctx); |
| break; |
| |
| /* function return */ |
| case BPF_JMP | BPF_EXIT: |
| /* Optimization: when last instruction is EXIT, |
| simply fallthrough to epilogue. */ |
| if (i == ctx->prog->len - 1) |
| break; |
| emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx); |
| emit_nop(ctx); |
| break; |
| |
| /* dst = imm64 */ |
| case BPF_LD | BPF_IMM | BPF_DW: |
| { |
| const struct bpf_insn insn1 = insn[1]; |
| u64 imm64; |
| |
| imm64 = (u64)insn1.imm << 32 | (u32)imm; |
| emit_loadimm64(imm64, dst, ctx); |
| |
| return 1; |
| } |
| |
| /* LDX: dst = *(size *)(src + off) */ |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_DW: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| u32 opcode = 0, rs2; |
| |
| ctx->tmp_1_used = true; |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| opcode = LD32; |
| break; |
| case BPF_H: |
| opcode = LD16; |
| break; |
| case BPF_B: |
| opcode = LD8; |
| break; |
| case BPF_DW: |
| opcode = LD64; |
| break; |
| } |
| |
| if (is_simm13(off)) { |
| opcode |= IMMED; |
| rs2 = S13(off); |
| } else { |
| emit_loadimm(off, tmp, ctx); |
| rs2 = RS2(tmp); |
| } |
| emit(opcode | RS1(src) | rs2 | RD(dst), ctx); |
| if (opcode != LD64 && insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| } |
| /* ST: *(size *)(dst + off) = imm */ |
| case BPF_ST | BPF_MEM | BPF_W: |
| case BPF_ST | BPF_MEM | BPF_H: |
| case BPF_ST | BPF_MEM | BPF_B: |
| case BPF_ST | BPF_MEM | BPF_DW: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| const u8 tmp2 = bpf2sparc[TMP_REG_2]; |
| u32 opcode = 0, rs2; |
| |
| if (insn->dst_reg == BPF_REG_FP) |
| ctx->saw_frame_pointer = true; |
| |
| ctx->tmp_2_used = true; |
| emit_loadimm(imm, tmp2, ctx); |
| |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| opcode = ST32; |
| break; |
| case BPF_H: |
| opcode = ST16; |
| break; |
| case BPF_B: |
| opcode = ST8; |
| break; |
| case BPF_DW: |
| opcode = ST64; |
| break; |
| } |
| |
| if (is_simm13(off)) { |
| opcode |= IMMED; |
| rs2 = S13(off); |
| } else { |
| ctx->tmp_1_used = true; |
| emit_loadimm(off, tmp, ctx); |
| rs2 = RS2(tmp); |
| } |
| emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx); |
| break; |
| } |
| |
| /* STX: *(size *)(dst + off) = src */ |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_DW: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| u32 opcode = 0, rs2; |
| |
| if (insn->dst_reg == BPF_REG_FP) |
| ctx->saw_frame_pointer = true; |
| |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| opcode = ST32; |
| break; |
| case BPF_H: |
| opcode = ST16; |
| break; |
| case BPF_B: |
| opcode = ST8; |
| break; |
| case BPF_DW: |
| opcode = ST64; |
| break; |
| } |
| if (is_simm13(off)) { |
| opcode |= IMMED; |
| rs2 = S13(off); |
| } else { |
| ctx->tmp_1_used = true; |
| emit_loadimm(off, tmp, ctx); |
| rs2 = RS2(tmp); |
| } |
| emit(opcode | RS1(dst) | rs2 | RD(src), ctx); |
| break; |
| } |
| |
| case BPF_STX | BPF_ATOMIC | BPF_W: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| const u8 tmp2 = bpf2sparc[TMP_REG_2]; |
| const u8 tmp3 = bpf2sparc[TMP_REG_3]; |
| |
| if (insn->imm != BPF_ADD) { |
| pr_err_once("unknown atomic op %02x\n", insn->imm); |
| return -EINVAL; |
| } |
| |
| /* lock *(u32 *)(dst + off) += src */ |
| |
| if (insn->dst_reg == BPF_REG_FP) |
| ctx->saw_frame_pointer = true; |
| |
| ctx->tmp_1_used = true; |
| ctx->tmp_2_used = true; |
| ctx->tmp_3_used = true; |
| emit_loadimm(off, tmp, ctx); |
| emit_alu3(ADD, dst, tmp, tmp, ctx); |
| |
| emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx); |
| emit_alu3(ADD, tmp2, src, tmp3, ctx); |
| emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx); |
| emit_cmp(tmp2, tmp3, ctx); |
| emit_branch(BNE, 4, 0, ctx); |
| emit_nop(ctx); |
| break; |
| } |
| /* STX XADD: lock *(u64 *)(dst + off) += src */ |
| case BPF_STX | BPF_ATOMIC | BPF_DW: { |
| const u8 tmp = bpf2sparc[TMP_REG_1]; |
| const u8 tmp2 = bpf2sparc[TMP_REG_2]; |
| const u8 tmp3 = bpf2sparc[TMP_REG_3]; |
| |
| if (insn->imm != BPF_ADD) { |
| pr_err_once("unknown atomic op %02x\n", insn->imm); |
| return -EINVAL; |
| } |
| |
| if (insn->dst_reg == BPF_REG_FP) |
| ctx->saw_frame_pointer = true; |
| |
| ctx->tmp_1_used = true; |
| ctx->tmp_2_used = true; |
| ctx->tmp_3_used = true; |
| emit_loadimm(off, tmp, ctx); |
| emit_alu3(ADD, dst, tmp, tmp, ctx); |
| |
| emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx); |
| emit_alu3(ADD, tmp2, src, tmp3, ctx); |
| emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx); |
| emit_cmp(tmp2, tmp3, ctx); |
| emit_branch(BNE, 4, 0, ctx); |
| emit_nop(ctx); |
| break; |
| } |
| |
| default: |
| pr_err_once("unknown opcode %02x\n", code); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int build_body(struct jit_ctx *ctx) |
| { |
| const struct bpf_prog *prog = ctx->prog; |
| int i; |
| |
| for (i = 0; i < prog->len; i++) { |
| const struct bpf_insn *insn = &prog->insnsi[i]; |
| int ret; |
| |
| ret = build_insn(insn, ctx); |
| |
| if (ret > 0) { |
| i++; |
| ctx->offset[i] = ctx->idx; |
| continue; |
| } |
| ctx->offset[i] = ctx->idx; |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static void jit_fill_hole(void *area, unsigned int size) |
| { |
| u32 *ptr; |
| /* We are guaranteed to have aligned memory. */ |
| for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) |
| *ptr++ = 0x91d02005; /* ta 5 */ |
| } |
| |
| bool bpf_jit_needs_zext(void) |
| { |
| return true; |
| } |
| |
| struct sparc64_jit_data { |
| struct bpf_binary_header *header; |
| u8 *image; |
| struct jit_ctx ctx; |
| }; |
| |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) |
| { |
| struct bpf_prog *tmp, *orig_prog = prog; |
| struct sparc64_jit_data *jit_data; |
| struct bpf_binary_header *header; |
| u32 prev_image_size, image_size; |
| bool tmp_blinded = false; |
| bool extra_pass = false; |
| struct jit_ctx ctx; |
| u8 *image_ptr; |
| int pass, i; |
| |
| if (!prog->jit_requested) |
| return orig_prog; |
| |
| tmp = bpf_jit_blind_constants(prog); |
| /* If blinding was requested and we failed during blinding, |
| * we must fall back to the interpreter. |
| */ |
| if (IS_ERR(tmp)) |
| return orig_prog; |
| if (tmp != prog) { |
| tmp_blinded = true; |
| prog = tmp; |
| } |
| |
| jit_data = prog->aux->jit_data; |
| if (!jit_data) { |
| jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); |
| if (!jit_data) { |
| prog = orig_prog; |
| goto out; |
| } |
| prog->aux->jit_data = jit_data; |
| } |
| if (jit_data->ctx.offset) { |
| ctx = jit_data->ctx; |
| image_ptr = jit_data->image; |
| header = jit_data->header; |
| extra_pass = true; |
| image_size = sizeof(u32) * ctx.idx; |
| prev_image_size = image_size; |
| pass = 1; |
| goto skip_init_ctx; |
| } |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.prog = prog; |
| |
| ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL); |
| if (ctx.offset == NULL) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| /* Longest sequence emitted is for bswap32, 12 instructions. Pre-cook |
| * the offset array so that we converge faster. |
| */ |
| for (i = 0; i < prog->len; i++) |
| ctx.offset[i] = i * (12 * 4); |
| |
| prev_image_size = ~0U; |
| for (pass = 1; pass < 40; pass++) { |
| ctx.idx = 0; |
| |
| build_prologue(&ctx); |
| if (build_body(&ctx)) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| build_epilogue(&ctx); |
| |
| if (bpf_jit_enable > 1) |
| pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass, |
| ctx.idx * 4, |
| ctx.tmp_1_used ? '1' : ' ', |
| ctx.tmp_2_used ? '2' : ' ', |
| ctx.tmp_3_used ? '3' : ' ', |
| ctx.saw_frame_pointer ? 'F' : ' ', |
| ctx.saw_call ? 'C' : ' ', |
| ctx.saw_tail_call ? 'T' : ' '); |
| |
| if (ctx.idx * 4 == prev_image_size) |
| break; |
| prev_image_size = ctx.idx * 4; |
| cond_resched(); |
| } |
| |
| /* Now we know the actual image size. */ |
| image_size = sizeof(u32) * ctx.idx; |
| header = bpf_jit_binary_alloc(image_size, &image_ptr, |
| sizeof(u32), jit_fill_hole); |
| if (header == NULL) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| ctx.image = (u32 *)image_ptr; |
| skip_init_ctx: |
| ctx.idx = 0; |
| |
| build_prologue(&ctx); |
| |
| if (build_body(&ctx)) { |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| build_epilogue(&ctx); |
| |
| if (ctx.idx * 4 != prev_image_size) { |
| pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n", |
| prev_image_size, ctx.idx * 4); |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| if (bpf_jit_enable > 1) |
| bpf_jit_dump(prog->len, image_size, pass, ctx.image); |
| |
| bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE)); |
| |
| if (!prog->is_func || extra_pass) { |
| bpf_jit_binary_lock_ro(header); |
| } else { |
| jit_data->ctx = ctx; |
| jit_data->image = image_ptr; |
| jit_data->header = header; |
| } |
| |
| prog->bpf_func = (void *)ctx.image; |
| prog->jited = 1; |
| prog->jited_len = image_size; |
| |
| if (!prog->is_func || extra_pass) { |
| bpf_prog_fill_jited_linfo(prog, ctx.offset); |
| out_off: |
| kfree(ctx.offset); |
| kfree(jit_data); |
| prog->aux->jit_data = NULL; |
| } |
| out: |
| if (tmp_blinded) |
| bpf_jit_prog_release_other(prog, prog == orig_prog ? |
| tmp : orig_prog); |
| return prog; |
| } |