blob: 2f0386dcb2f64c7bc8944ce76f04acc1b29f0172 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/if_vlan.h>
#include <linux/crash_dump.h>
#include <net/rtnetlink.h>
#include "hclge_cmd.h"
#include "hclge_dcb.h"
#include "hclge_main.h"
#include "hclge_mbx.h"
#include "hclge_mdio.h"
#include "hclge_tm.h"
#include "hclge_err.h"
#include "hnae3.h"
#define HCLGE_NAME "hclge"
#define HCLGE_STATS_READ(p, offset) (*((u64 *)((u8 *)(p) + (offset))))
#define HCLGE_MAC_STATS_FIELD_OFF(f) (offsetof(struct hclge_mac_stats, f))
#define HCLGE_BUF_SIZE_UNIT 256U
#define HCLGE_BUF_MUL_BY 2
#define HCLGE_BUF_DIV_BY 2
#define NEED_RESERVE_TC_NUM 2
#define BUF_MAX_PERCENT 100
#define BUF_RESERVE_PERCENT 90
#define HCLGE_RESET_MAX_FAIL_CNT 5
#define HCLGE_RESET_SYNC_TIME 100
#define HCLGE_PF_RESET_SYNC_TIME 20
#define HCLGE_PF_RESET_SYNC_CNT 1500
/* Get DFX BD number offset */
#define HCLGE_DFX_BIOS_BD_OFFSET 1
#define HCLGE_DFX_SSU_0_BD_OFFSET 2
#define HCLGE_DFX_SSU_1_BD_OFFSET 3
#define HCLGE_DFX_IGU_BD_OFFSET 4
#define HCLGE_DFX_RPU_0_BD_OFFSET 5
#define HCLGE_DFX_RPU_1_BD_OFFSET 6
#define HCLGE_DFX_NCSI_BD_OFFSET 7
#define HCLGE_DFX_RTC_BD_OFFSET 8
#define HCLGE_DFX_PPP_BD_OFFSET 9
#define HCLGE_DFX_RCB_BD_OFFSET 10
#define HCLGE_DFX_TQP_BD_OFFSET 11
#define HCLGE_DFX_SSU_2_BD_OFFSET 12
#define HCLGE_LINK_STATUS_MS 10
#define HCLGE_VF_VPORT_START_NUM 1
static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
static int hclge_init_vlan_config(struct hclge_dev *hdev);
static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
u16 *allocated_size, bool is_alloc);
static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
static void hclge_clear_arfs_rules(struct hnae3_handle *handle);
static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
unsigned long *addr);
static int hclge_set_default_loopback(struct hclge_dev *hdev);
static struct hnae3_ae_algo ae_algo;
static const struct pci_device_id ae_algo_pci_tbl[] = {
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);
static const u32 cmdq_reg_addr_list[] = {HCLGE_CMDQ_TX_ADDR_L_REG,
HCLGE_CMDQ_TX_ADDR_H_REG,
HCLGE_CMDQ_TX_DEPTH_REG,
HCLGE_CMDQ_TX_TAIL_REG,
HCLGE_CMDQ_TX_HEAD_REG,
HCLGE_CMDQ_RX_ADDR_L_REG,
HCLGE_CMDQ_RX_ADDR_H_REG,
HCLGE_CMDQ_RX_DEPTH_REG,
HCLGE_CMDQ_RX_TAIL_REG,
HCLGE_CMDQ_RX_HEAD_REG,
HCLGE_VECTOR0_CMDQ_SRC_REG,
HCLGE_CMDQ_INTR_STS_REG,
HCLGE_CMDQ_INTR_EN_REG,
HCLGE_CMDQ_INTR_GEN_REG};
static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE,
HCLGE_VECTOR0_OTER_EN_REG,
HCLGE_MISC_RESET_STS_REG,
HCLGE_MISC_VECTOR_INT_STS,
HCLGE_GLOBAL_RESET_REG,
HCLGE_FUN_RST_ING,
HCLGE_GRO_EN_REG};
static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG,
HCLGE_RING_RX_ADDR_H_REG,
HCLGE_RING_RX_BD_NUM_REG,
HCLGE_RING_RX_BD_LENGTH_REG,
HCLGE_RING_RX_MERGE_EN_REG,
HCLGE_RING_RX_TAIL_REG,
HCLGE_RING_RX_HEAD_REG,
HCLGE_RING_RX_FBD_NUM_REG,
HCLGE_RING_RX_OFFSET_REG,
HCLGE_RING_RX_FBD_OFFSET_REG,
HCLGE_RING_RX_STASH_REG,
HCLGE_RING_RX_BD_ERR_REG,
HCLGE_RING_TX_ADDR_L_REG,
HCLGE_RING_TX_ADDR_H_REG,
HCLGE_RING_TX_BD_NUM_REG,
HCLGE_RING_TX_PRIORITY_REG,
HCLGE_RING_TX_TC_REG,
HCLGE_RING_TX_MERGE_EN_REG,
HCLGE_RING_TX_TAIL_REG,
HCLGE_RING_TX_HEAD_REG,
HCLGE_RING_TX_FBD_NUM_REG,
HCLGE_RING_TX_OFFSET_REG,
HCLGE_RING_TX_EBD_NUM_REG,
HCLGE_RING_TX_EBD_OFFSET_REG,
HCLGE_RING_TX_BD_ERR_REG,
HCLGE_RING_EN_REG};
static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG,
HCLGE_TQP_INTR_GL0_REG,
HCLGE_TQP_INTR_GL1_REG,
HCLGE_TQP_INTR_GL2_REG,
HCLGE_TQP_INTR_RL_REG};
static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
"App Loopback test",
"Serdes serial Loopback test",
"Serdes parallel Loopback test",
"Phy Loopback test"
};
static const struct hclge_comm_stats_str g_mac_stats_string[] = {
{"mac_tx_mac_pause_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
{"mac_rx_mac_pause_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
{"mac_tx_control_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
{"mac_rx_control_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
{"mac_tx_pfc_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
{"mac_tx_pfc_pri0_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
{"mac_tx_pfc_pri1_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
{"mac_tx_pfc_pri2_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
{"mac_tx_pfc_pri3_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
{"mac_tx_pfc_pri4_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
{"mac_tx_pfc_pri5_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
{"mac_tx_pfc_pri6_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
{"mac_tx_pfc_pri7_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
{"mac_rx_pfc_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
{"mac_rx_pfc_pri0_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
{"mac_rx_pfc_pri1_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
{"mac_rx_pfc_pri2_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
{"mac_rx_pfc_pri3_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
{"mac_rx_pfc_pri4_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
{"mac_rx_pfc_pri5_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
{"mac_rx_pfc_pri6_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
{"mac_rx_pfc_pri7_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
{"mac_tx_total_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
{"mac_tx_total_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
{"mac_tx_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
{"mac_tx_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
{"mac_tx_good_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
{"mac_tx_bad_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
{"mac_tx_uni_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
{"mac_tx_multi_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
{"mac_tx_broad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
{"mac_tx_undersize_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
{"mac_tx_oversize_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
{"mac_tx_64_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
{"mac_tx_65_127_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
{"mac_tx_128_255_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
{"mac_tx_256_511_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
{"mac_tx_512_1023_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
{"mac_tx_1024_1518_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
{"mac_tx_1519_2047_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
{"mac_tx_2048_4095_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
{"mac_tx_4096_8191_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
{"mac_tx_8192_9216_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
{"mac_tx_9217_12287_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
{"mac_tx_12288_16383_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
{"mac_tx_1519_max_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
{"mac_tx_1519_max_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
{"mac_rx_total_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
{"mac_rx_total_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
{"mac_rx_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
{"mac_rx_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
{"mac_rx_good_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
{"mac_rx_bad_oct_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
{"mac_rx_uni_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
{"mac_rx_multi_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
{"mac_rx_broad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
{"mac_rx_undersize_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
{"mac_rx_oversize_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
{"mac_rx_64_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
{"mac_rx_65_127_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
{"mac_rx_128_255_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
{"mac_rx_256_511_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
{"mac_rx_512_1023_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
{"mac_rx_1024_1518_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
{"mac_rx_1519_2047_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
{"mac_rx_2048_4095_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
{"mac_rx_4096_8191_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
{"mac_rx_8192_9216_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
{"mac_rx_9217_12287_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
{"mac_rx_12288_16383_oct_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
{"mac_rx_1519_max_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
{"mac_rx_1519_max_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},
{"mac_tx_fragment_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
{"mac_tx_undermin_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
{"mac_tx_jabber_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
{"mac_tx_err_all_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
{"mac_tx_from_app_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
{"mac_tx_from_app_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
{"mac_rx_fragment_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
{"mac_rx_undermin_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
{"mac_rx_jabber_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
{"mac_rx_fcs_err_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
{"mac_rx_send_app_good_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
{"mac_rx_send_app_bad_pkt_num",
HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
};
static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
{
.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
.ethter_type = cpu_to_le16(ETH_P_LLDP),
.mac_addr_hi32 = cpu_to_le32(htonl(0x0180C200)),
.mac_addr_lo16 = cpu_to_le16(htons(0x000E)),
.i_port_bitmap = 0x1,
},
};
static const u8 hclge_hash_key[] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};
static const u32 hclge_dfx_bd_offset_list[] = {
HCLGE_DFX_BIOS_BD_OFFSET,
HCLGE_DFX_SSU_0_BD_OFFSET,
HCLGE_DFX_SSU_1_BD_OFFSET,
HCLGE_DFX_IGU_BD_OFFSET,
HCLGE_DFX_RPU_0_BD_OFFSET,
HCLGE_DFX_RPU_1_BD_OFFSET,
HCLGE_DFX_NCSI_BD_OFFSET,
HCLGE_DFX_RTC_BD_OFFSET,
HCLGE_DFX_PPP_BD_OFFSET,
HCLGE_DFX_RCB_BD_OFFSET,
HCLGE_DFX_TQP_BD_OFFSET,
HCLGE_DFX_SSU_2_BD_OFFSET
};
static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = {
HCLGE_OPC_DFX_BIOS_COMMON_REG,
HCLGE_OPC_DFX_SSU_REG_0,
HCLGE_OPC_DFX_SSU_REG_1,
HCLGE_OPC_DFX_IGU_EGU_REG,
HCLGE_OPC_DFX_RPU_REG_0,
HCLGE_OPC_DFX_RPU_REG_1,
HCLGE_OPC_DFX_NCSI_REG,
HCLGE_OPC_DFX_RTC_REG,
HCLGE_OPC_DFX_PPP_REG,
HCLGE_OPC_DFX_RCB_REG,
HCLGE_OPC_DFX_TQP_REG,
HCLGE_OPC_DFX_SSU_REG_2
};
static const struct key_info meta_data_key_info[] = {
{ PACKET_TYPE_ID, 6},
{ IP_FRAGEMENT, 1},
{ ROCE_TYPE, 1},
{ NEXT_KEY, 5},
{ VLAN_NUMBER, 2},
{ SRC_VPORT, 12},
{ DST_VPORT, 12},
{ TUNNEL_PACKET, 1},
};
static const struct key_info tuple_key_info[] = {
{ OUTER_DST_MAC, 48},
{ OUTER_SRC_MAC, 48},
{ OUTER_VLAN_TAG_FST, 16},
{ OUTER_VLAN_TAG_SEC, 16},
{ OUTER_ETH_TYPE, 16},
{ OUTER_L2_RSV, 16},
{ OUTER_IP_TOS, 8},
{ OUTER_IP_PROTO, 8},
{ OUTER_SRC_IP, 32},
{ OUTER_DST_IP, 32},
{ OUTER_L3_RSV, 16},
{ OUTER_SRC_PORT, 16},
{ OUTER_DST_PORT, 16},
{ OUTER_L4_RSV, 32},
{ OUTER_TUN_VNI, 24},
{ OUTER_TUN_FLOW_ID, 8},
{ INNER_DST_MAC, 48},
{ INNER_SRC_MAC, 48},
{ INNER_VLAN_TAG_FST, 16},
{ INNER_VLAN_TAG_SEC, 16},
{ INNER_ETH_TYPE, 16},
{ INNER_L2_RSV, 16},
{ INNER_IP_TOS, 8},
{ INNER_IP_PROTO, 8},
{ INNER_SRC_IP, 32},
{ INNER_DST_IP, 32},
{ INNER_L3_RSV, 16},
{ INNER_SRC_PORT, 16},
{ INNER_DST_PORT, 16},
{ INNER_L4_RSV, 32},
};
static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
{
#define HCLGE_MAC_CMD_NUM 21
u64 *data = (u64 *)(&hdev->hw_stats.mac_stats);
struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
__le64 *desc_data;
int i, k, n;
int ret;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get MAC pkt stats fail, status = %d.\n", ret);
return ret;
}
for (i = 0; i < HCLGE_MAC_CMD_NUM; i++) {
/* for special opcode 0032, only the first desc has the head */
if (unlikely(i == 0)) {
desc_data = (__le64 *)(&desc[i].data[0]);
n = HCLGE_RD_FIRST_STATS_NUM;
} else {
desc_data = (__le64 *)(&desc[i]);
n = HCLGE_RD_OTHER_STATS_NUM;
}
for (k = 0; k < n; k++) {
*data += le64_to_cpu(*desc_data);
data++;
desc_data++;
}
}
return 0;
}
static int hclge_mac_update_stats_complete(struct hclge_dev *hdev, u32 desc_num)
{
u64 *data = (u64 *)(&hdev->hw_stats.mac_stats);
struct hclge_desc *desc;
__le64 *desc_data;
u16 i, k, n;
int ret;
/* This may be called inside atomic sections,
* so GFP_ATOMIC is more suitalbe here
*/
desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
if (!desc)
return -ENOMEM;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
if (ret) {
kfree(desc);
return ret;
}
for (i = 0; i < desc_num; i++) {
/* for special opcode 0034, only the first desc has the head */
if (i == 0) {
desc_data = (__le64 *)(&desc[i].data[0]);
n = HCLGE_RD_FIRST_STATS_NUM;
} else {
desc_data = (__le64 *)(&desc[i]);
n = HCLGE_RD_OTHER_STATS_NUM;
}
for (k = 0; k < n; k++) {
*data += le64_to_cpu(*desc_data);
data++;
desc_data++;
}
}
kfree(desc);
return 0;
}
static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *desc_num)
{
struct hclge_desc desc;
__le32 *desc_data;
u32 reg_num;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
return ret;
desc_data = (__le32 *)(&desc.data[0]);
reg_num = le32_to_cpu(*desc_data);
*desc_num = 1 + ((reg_num - 3) >> 2) +
(u32)(((reg_num - 3) & 0x3) ? 1 : 0);
return 0;
}
static int hclge_mac_update_stats(struct hclge_dev *hdev)
{
u32 desc_num;
int ret;
ret = hclge_mac_query_reg_num(hdev, &desc_num);
/* The firmware supports the new statistics acquisition method */
if (!ret)
ret = hclge_mac_update_stats_complete(hdev, desc_num);
else if (ret == -EOPNOTSUPP)
ret = hclge_mac_update_stats_defective(hdev);
else
dev_err(&hdev->pdev->dev, "query mac reg num fail!\n");
return ret;
}
static int hclge_tqps_update_stats(struct hnae3_handle *handle)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hnae3_queue *queue;
struct hclge_desc desc[1];
struct hclge_tqp *tqp;
int ret, i;
for (i = 0; i < kinfo->num_tqps; i++) {
queue = handle->kinfo.tqp[i];
tqp = container_of(queue, struct hclge_tqp, q);
/* command : HCLGE_OPC_QUERY_IGU_STAT */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_RX_STATUS,
true);
desc[0].data[0] = cpu_to_le32((tqp->index & 0x1ff));
ret = hclge_cmd_send(&hdev->hw, desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query tqp stat fail, status = %d,queue = %d\n",
ret, i);
return ret;
}
tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
le32_to_cpu(desc[0].data[1]);
}
for (i = 0; i < kinfo->num_tqps; i++) {
queue = handle->kinfo.tqp[i];
tqp = container_of(queue, struct hclge_tqp, q);
/* command : HCLGE_OPC_QUERY_IGU_STAT */
hclge_cmd_setup_basic_desc(&desc[0],
HCLGE_OPC_QUERY_TX_STATUS,
true);
desc[0].data[0] = cpu_to_le32((tqp->index & 0x1ff));
ret = hclge_cmd_send(&hdev->hw, desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query tqp stat fail, status = %d,queue = %d\n",
ret, i);
return ret;
}
tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
le32_to_cpu(desc[0].data[1]);
}
return 0;
}
static u64 *hclge_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclge_tqp *tqp;
u64 *buff = data;
int i;
for (i = 0; i < kinfo->num_tqps; i++) {
tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q);
*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
}
for (i = 0; i < kinfo->num_tqps; i++) {
tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q);
*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
}
return buff;
}
static int hclge_tqps_get_sset_count(struct hnae3_handle *handle, int stringset)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
/* each tqp has TX & RX two queues */
return kinfo->num_tqps * (2);
}
static u8 *hclge_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
u8 *buff = data;
int i = 0;
for (i = 0; i < kinfo->num_tqps; i++) {
struct hclge_tqp *tqp = container_of(handle->kinfo.tqp[i],
struct hclge_tqp, q);
snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
tqp->index);
buff = buff + ETH_GSTRING_LEN;
}
for (i = 0; i < kinfo->num_tqps; i++) {
struct hclge_tqp *tqp = container_of(kinfo->tqp[i],
struct hclge_tqp, q);
snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
tqp->index);
buff = buff + ETH_GSTRING_LEN;
}
return buff;
}
static u64 *hclge_comm_get_stats(const void *comm_stats,
const struct hclge_comm_stats_str strs[],
int size, u64 *data)
{
u64 *buf = data;
u32 i;
for (i = 0; i < size; i++)
buf[i] = HCLGE_STATS_READ(comm_stats, strs[i].offset);
return buf + size;
}
static u8 *hclge_comm_get_strings(u32 stringset,
const struct hclge_comm_stats_str strs[],
int size, u8 *data)
{
char *buff = (char *)data;
u32 i;
if (stringset != ETH_SS_STATS)
return buff;
for (i = 0; i < size; i++) {
snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
buff = buff + ETH_GSTRING_LEN;
}
return (u8 *)buff;
}
static void hclge_update_stats_for_all(struct hclge_dev *hdev)
{
struct hnae3_handle *handle;
int status;
handle = &hdev->vport[0].nic;
if (handle->client) {
status = hclge_tqps_update_stats(handle);
if (status) {
dev_err(&hdev->pdev->dev,
"Update TQPS stats fail, status = %d.\n",
status);
}
}
status = hclge_mac_update_stats(hdev);
if (status)
dev_err(&hdev->pdev->dev,
"Update MAC stats fail, status = %d.\n", status);
}
static void hclge_update_stats(struct hnae3_handle *handle,
struct net_device_stats *net_stats)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int status;
if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
return;
status = hclge_mac_update_stats(hdev);
if (status)
dev_err(&hdev->pdev->dev,
"Update MAC stats fail, status = %d.\n",
status);
status = hclge_tqps_update_stats(handle);
if (status)
dev_err(&hdev->pdev->dev,
"Update TQPS stats fail, status = %d.\n",
status);
clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
}
static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
{
#define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK |\
HNAE3_SUPPORT_PHY_LOOPBACK |\
HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK |\
HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK)
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int count = 0;
/* Loopback test support rules:
* mac: only GE mode support
* serdes: all mac mode will support include GE/XGE/LGE/CGE
* phy: only support when phy device exist on board
*/
if (stringset == ETH_SS_TEST) {
/* clear loopback bit flags at first */
handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
if (hdev->pdev->revision >= 0x21 ||
hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
count += 1;
handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
}
count += 2;
handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
if (hdev->hw.mac.phydev) {
count += 1;
handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
}
} else if (stringset == ETH_SS_STATS) {
count = ARRAY_SIZE(g_mac_stats_string) +
hclge_tqps_get_sset_count(handle, stringset);
}
return count;
}
static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
u8 *data)
{
u8 *p = (char *)data;
int size;
if (stringset == ETH_SS_STATS) {
size = ARRAY_SIZE(g_mac_stats_string);
p = hclge_comm_get_strings(stringset, g_mac_stats_string,
size, p);
p = hclge_tqps_get_strings(handle, p);
} else if (stringset == ETH_SS_TEST) {
if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
memcpy(p,
hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
}
}
static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u64 *p;
p = hclge_comm_get_stats(&hdev->hw_stats.mac_stats, g_mac_stats_string,
ARRAY_SIZE(g_mac_stats_string), data);
p = hclge_tqps_get_stats(handle, p);
}
static void hclge_get_mac_stat(struct hnae3_handle *handle,
struct hns3_mac_stats *mac_stats)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
hclge_update_stats(handle, NULL);
mac_stats->tx_pause_cnt = hdev->hw_stats.mac_stats.mac_tx_mac_pause_num;
mac_stats->rx_pause_cnt = hdev->hw_stats.mac_stats.mac_rx_mac_pause_num;
}
static int hclge_parse_func_status(struct hclge_dev *hdev,
struct hclge_func_status_cmd *status)
{
if (!(status->pf_state & HCLGE_PF_STATE_DONE))
return -EINVAL;
/* Set the pf to main pf */
if (status->pf_state & HCLGE_PF_STATE_MAIN)
hdev->flag |= HCLGE_FLAG_MAIN;
else
hdev->flag &= ~HCLGE_FLAG_MAIN;
return 0;
}
static int hclge_query_function_status(struct hclge_dev *hdev)
{
#define HCLGE_QUERY_MAX_CNT 5
struct hclge_func_status_cmd *req;
struct hclge_desc desc;
int timeout = 0;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
req = (struct hclge_func_status_cmd *)desc.data;
do {
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"query function status failed %d.\n", ret);
return ret;
}
/* Check pf reset is done */
if (req->pf_state)
break;
usleep_range(1000, 2000);
} while (timeout++ < HCLGE_QUERY_MAX_CNT);
ret = hclge_parse_func_status(hdev, req);
return ret;
}
static int hclge_query_pf_resource(struct hclge_dev *hdev)
{
struct hclge_pf_res_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"query pf resource failed %d.\n", ret);
return ret;
}
req = (struct hclge_pf_res_cmd *)desc.data;
hdev->num_tqps = __le16_to_cpu(req->tqp_num);
hdev->pkt_buf_size = __le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;
if (req->tx_buf_size)
hdev->tx_buf_size =
__le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
else
hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;
hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);
if (req->dv_buf_size)
hdev->dv_buf_size =
__le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
else
hdev->dv_buf_size = HCLGE_DEFAULT_DV;
hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);
if (hnae3_dev_roce_supported(hdev)) {
hdev->roce_base_msix_offset =
hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
HCLGE_MSIX_OFT_ROCEE_M, HCLGE_MSIX_OFT_ROCEE_S);
hdev->num_roce_msi =
hnae3_get_field(__le16_to_cpu(req->pf_intr_vector_number),
HCLGE_PF_VEC_NUM_M, HCLGE_PF_VEC_NUM_S);
/* nic's msix numbers is always equals to the roce's. */
hdev->num_nic_msi = hdev->num_roce_msi;
/* PF should have NIC vectors and Roce vectors,
* NIC vectors are queued before Roce vectors.
*/
hdev->num_msi = hdev->num_roce_msi +
hdev->roce_base_msix_offset;
} else {
hdev->num_msi =
hnae3_get_field(__le16_to_cpu(req->pf_intr_vector_number),
HCLGE_PF_VEC_NUM_M, HCLGE_PF_VEC_NUM_S);
hdev->num_nic_msi = hdev->num_msi;
}
if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
dev_err(&hdev->pdev->dev,
"Just %u msi resources, not enough for pf(min:2).\n",
hdev->num_nic_msi);
return -EINVAL;
}
return 0;
}
static int hclge_parse_speed(int speed_cmd, int *speed)
{
switch (speed_cmd) {
case 6:
*speed = HCLGE_MAC_SPEED_10M;
break;
case 7:
*speed = HCLGE_MAC_SPEED_100M;
break;
case 0:
*speed = HCLGE_MAC_SPEED_1G;
break;
case 1:
*speed = HCLGE_MAC_SPEED_10G;
break;
case 2:
*speed = HCLGE_MAC_SPEED_25G;
break;
case 3:
*speed = HCLGE_MAC_SPEED_40G;
break;
case 4:
*speed = HCLGE_MAC_SPEED_50G;
break;
case 5:
*speed = HCLGE_MAC_SPEED_100G;
break;
default:
return -EINVAL;
}
return 0;
}
static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u32 speed_ability = hdev->hw.mac.speed_ability;
u32 speed_bit = 0;
switch (speed) {
case HCLGE_MAC_SPEED_10M:
speed_bit = HCLGE_SUPPORT_10M_BIT;
break;
case HCLGE_MAC_SPEED_100M:
speed_bit = HCLGE_SUPPORT_100M_BIT;
break;
case HCLGE_MAC_SPEED_1G:
speed_bit = HCLGE_SUPPORT_1G_BIT;
break;
case HCLGE_MAC_SPEED_10G:
speed_bit = HCLGE_SUPPORT_10G_BIT;
break;
case HCLGE_MAC_SPEED_25G:
speed_bit = HCLGE_SUPPORT_25G_BIT;
break;
case HCLGE_MAC_SPEED_40G:
speed_bit = HCLGE_SUPPORT_40G_BIT;
break;
case HCLGE_MAC_SPEED_50G:
speed_bit = HCLGE_SUPPORT_50G_BIT;
break;
case HCLGE_MAC_SPEED_100G:
speed_bit = HCLGE_SUPPORT_100G_BIT;
break;
default:
return -EINVAL;
}
if (speed_bit & speed_ability)
return 0;
return -EINVAL;
}
static void hclge_convert_setting_sr(struct hclge_mac *mac, u8 speed_ability)
{
if (speed_ability & HCLGE_SUPPORT_10G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_25G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_40G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_50G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_100G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
mac->supported);
}
static void hclge_convert_setting_lr(struct hclge_mac *mac, u8 speed_ability)
{
if (speed_ability & HCLGE_SUPPORT_10G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_25G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_50G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_40G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_100G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
mac->supported);
}
static void hclge_convert_setting_cr(struct hclge_mac *mac, u8 speed_ability)
{
if (speed_ability & HCLGE_SUPPORT_10G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_25G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_40G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_50G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_100G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
mac->supported);
}
static void hclge_convert_setting_kr(struct hclge_mac *mac, u8 speed_ability)
{
if (speed_ability & HCLGE_SUPPORT_1G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_10G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_25G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_40G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_50G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
mac->supported);
if (speed_ability & HCLGE_SUPPORT_100G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
mac->supported);
}
static void hclge_convert_setting_fec(struct hclge_mac *mac)
{
linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
switch (mac->speed) {
case HCLGE_MAC_SPEED_10G:
case HCLGE_MAC_SPEED_40G:
linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
mac->supported);
mac->fec_ability =
BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO);
break;
case HCLGE_MAC_SPEED_25G:
case HCLGE_MAC_SPEED_50G:
linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
mac->supported);
mac->fec_ability =
BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
BIT(HNAE3_FEC_AUTO);
break;
case HCLGE_MAC_SPEED_100G:
linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO);
break;
default:
mac->fec_ability = 0;
break;
}
}
static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
u8 speed_ability)
{
struct hclge_mac *mac = &hdev->hw.mac;
if (speed_ability & HCLGE_SUPPORT_1G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
mac->supported);
hclge_convert_setting_sr(mac, speed_ability);
hclge_convert_setting_lr(mac, speed_ability);
hclge_convert_setting_cr(mac, speed_ability);
if (hdev->pdev->revision >= 0x21)
hclge_convert_setting_fec(mac);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
}
static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
u8 speed_ability)
{
struct hclge_mac *mac = &hdev->hw.mac;
hclge_convert_setting_kr(mac, speed_ability);
if (hdev->pdev->revision >= 0x21)
hclge_convert_setting_fec(mac);
linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
}
static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
u8 speed_ability)
{
unsigned long *supported = hdev->hw.mac.supported;
/* default to support all speed for GE port */
if (!speed_ability)
speed_ability = HCLGE_SUPPORT_GE;
if (speed_ability & HCLGE_SUPPORT_1G_BIT)
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
supported);
if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
supported);
}
if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
}
linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
}
static void hclge_parse_link_mode(struct hclge_dev *hdev, u8 speed_ability)
{
u8 media_type = hdev->hw.mac.media_type;
if (media_type == HNAE3_MEDIA_TYPE_FIBER)
hclge_parse_fiber_link_mode(hdev, speed_ability);
else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
hclge_parse_copper_link_mode(hdev, speed_ability);
else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
hclge_parse_backplane_link_mode(hdev, speed_ability);
}
static u32 hclge_get_max_speed(u8 speed_ability)
{
if (speed_ability & HCLGE_SUPPORT_100G_BIT)
return HCLGE_MAC_SPEED_100G;
if (speed_ability & HCLGE_SUPPORT_50G_BIT)
return HCLGE_MAC_SPEED_50G;
if (speed_ability & HCLGE_SUPPORT_40G_BIT)
return HCLGE_MAC_SPEED_40G;
if (speed_ability & HCLGE_SUPPORT_25G_BIT)
return HCLGE_MAC_SPEED_25G;
if (speed_ability & HCLGE_SUPPORT_10G_BIT)
return HCLGE_MAC_SPEED_10G;
if (speed_ability & HCLGE_SUPPORT_1G_BIT)
return HCLGE_MAC_SPEED_1G;
if (speed_ability & HCLGE_SUPPORT_100M_BIT)
return HCLGE_MAC_SPEED_100M;
if (speed_ability & HCLGE_SUPPORT_10M_BIT)
return HCLGE_MAC_SPEED_10M;
return HCLGE_MAC_SPEED_1G;
}
static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
{
struct hclge_cfg_param_cmd *req;
u64 mac_addr_tmp_high;
u64 mac_addr_tmp;
unsigned int i;
req = (struct hclge_cfg_param_cmd *)desc[0].data;
/* get the configuration */
cfg->vmdq_vport_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
HCLGE_CFG_VMDQ_M,
HCLGE_CFG_VMDQ_S);
cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
HCLGE_CFG_TQP_DESC_N_M,
HCLGE_CFG_TQP_DESC_N_S);
cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
HCLGE_CFG_PHY_ADDR_M,
HCLGE_CFG_PHY_ADDR_S);
cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
HCLGE_CFG_MEDIA_TP_M,
HCLGE_CFG_MEDIA_TP_S);
cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
HCLGE_CFG_RX_BUF_LEN_M,
HCLGE_CFG_RX_BUF_LEN_S);
/* get mac_address */
mac_addr_tmp = __le32_to_cpu(req->param[2]);
mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
HCLGE_CFG_MAC_ADDR_H_M,
HCLGE_CFG_MAC_ADDR_H_S);
mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
HCLGE_CFG_DEFAULT_SPEED_M,
HCLGE_CFG_DEFAULT_SPEED_S);
cfg->rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
HCLGE_CFG_RSS_SIZE_M,
HCLGE_CFG_RSS_SIZE_S);
for (i = 0; i < ETH_ALEN; i++)
cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
req = (struct hclge_cfg_param_cmd *)desc[1].data;
cfg->numa_node_map = __le32_to_cpu(req->param[0]);
cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
HCLGE_CFG_SPEED_ABILITY_M,
HCLGE_CFG_SPEED_ABILITY_S);
cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
HCLGE_CFG_UMV_TBL_SPACE_M,
HCLGE_CFG_UMV_TBL_SPACE_S);
if (!cfg->umv_space)
cfg->umv_space = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
}
/* hclge_get_cfg: query the static parameter from flash
* @hdev: pointer to struct hclge_dev
* @hcfg: the config structure to be getted
*/
static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
{
struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
struct hclge_cfg_param_cmd *req;
unsigned int i;
int ret;
for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
u32 offset = 0;
req = (struct hclge_cfg_param_cmd *)desc[i].data;
hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
true);
hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
/* Len should be united by 4 bytes when send to hardware */
hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
req->offset = cpu_to_le32(offset);
}
ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
if (ret) {
dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
return ret;
}
hclge_parse_cfg(hcfg, desc);
return 0;
}
static int hclge_get_cap(struct hclge_dev *hdev)
{
int ret;
ret = hclge_query_function_status(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"query function status error %d.\n", ret);
return ret;
}
/* get pf resource */
ret = hclge_query_pf_resource(hdev);
if (ret)
dev_err(&hdev->pdev->dev, "query pf resource error %d.\n", ret);
return ret;
}
static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
{
#define HCLGE_MIN_TX_DESC 64
#define HCLGE_MIN_RX_DESC 64
if (!is_kdump_kernel())
return;
dev_info(&hdev->pdev->dev,
"Running kdump kernel. Using minimal resources\n");
/* minimal queue pairs equals to the number of vports */
hdev->num_tqps = hdev->num_vmdq_vport + hdev->num_req_vfs + 1;
hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
}
static int hclge_configure(struct hclge_dev *hdev)
{
struct hclge_cfg cfg;
unsigned int i;
int ret;
ret = hclge_get_cfg(hdev, &cfg);
if (ret) {
dev_err(&hdev->pdev->dev, "get mac mode error %d.\n", ret);
return ret;
}
hdev->num_vmdq_vport = cfg.vmdq_vport_num;
hdev->base_tqp_pid = 0;
hdev->rss_size_max = cfg.rss_size_max;
hdev->rx_buf_len = cfg.rx_buf_len;
ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
hdev->hw.mac.media_type = cfg.media_type;
hdev->hw.mac.phy_addr = cfg.phy_addr;
hdev->num_tx_desc = cfg.tqp_desc_num;
hdev->num_rx_desc = cfg.tqp_desc_num;
hdev->tm_info.num_pg = 1;
hdev->tc_max = cfg.tc_num;
hdev->tm_info.hw_pfc_map = 0;
hdev->wanted_umv_size = cfg.umv_space;
if (hnae3_dev_fd_supported(hdev)) {
hdev->fd_en = true;
hdev->fd_active_type = HCLGE_FD_RULE_NONE;
}
ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
if (ret) {
dev_err(&hdev->pdev->dev, "Get wrong speed ret=%d.\n", ret);
return ret;
}
hclge_parse_link_mode(hdev, cfg.speed_ability);
hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);
if ((hdev->tc_max > HNAE3_MAX_TC) ||
(hdev->tc_max < 1)) {
dev_warn(&hdev->pdev->dev, "TC num = %d.\n",
hdev->tc_max);
hdev->tc_max = 1;
}
/* Dev does not support DCB */
if (!hnae3_dev_dcb_supported(hdev)) {
hdev->tc_max = 1;
hdev->pfc_max = 0;
} else {
hdev->pfc_max = hdev->tc_max;
}
hdev->tm_info.num_tc = 1;
/* Currently not support uncontiuous tc */
for (i = 0; i < hdev->tm_info.num_tc; i++)
hnae3_set_bit(hdev->hw_tc_map, i, 1);
hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
hclge_init_kdump_kernel_config(hdev);
/* Set the init affinity based on pci func number */
i = cpumask_weight(cpumask_of_node(dev_to_node(&hdev->pdev->dev)));
i = i ? PCI_FUNC(hdev->pdev->devfn) % i : 0;
cpumask_set_cpu(cpumask_local_spread(i, dev_to_node(&hdev->pdev->dev)),
&hdev->affinity_mask);
return ret;
}
static int hclge_config_tso(struct hclge_dev *hdev, unsigned int tso_mss_min,
unsigned int tso_mss_max)
{
struct hclge_cfg_tso_status_cmd *req;
struct hclge_desc desc;
u16 tso_mss;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);
req = (struct hclge_cfg_tso_status_cmd *)desc.data;
tso_mss = 0;
hnae3_set_field(tso_mss, HCLGE_TSO_MSS_MIN_M,
HCLGE_TSO_MSS_MIN_S, tso_mss_min);
req->tso_mss_min = cpu_to_le16(tso_mss);
tso_mss = 0;
hnae3_set_field(tso_mss, HCLGE_TSO_MSS_MIN_M,
HCLGE_TSO_MSS_MIN_S, tso_mss_max);
req->tso_mss_max = cpu_to_le16(tso_mss);
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_config_gro(struct hclge_dev *hdev, bool en)
{
struct hclge_cfg_gro_status_cmd *req;
struct hclge_desc desc;
int ret;
if (!hnae3_dev_gro_supported(hdev))
return 0;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
req = (struct hclge_cfg_gro_status_cmd *)desc.data;
req->gro_en = cpu_to_le16(en ? 1 : 0);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"GRO hardware config cmd failed, ret = %d\n", ret);
return ret;
}
static int hclge_alloc_tqps(struct hclge_dev *hdev)
{
struct hclge_tqp *tqp;
int i;
hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
sizeof(struct hclge_tqp), GFP_KERNEL);
if (!hdev->htqp)
return -ENOMEM;
tqp = hdev->htqp;
for (i = 0; i < hdev->num_tqps; i++) {
tqp->dev = &hdev->pdev->dev;
tqp->index = i;
tqp->q.ae_algo = &ae_algo;
tqp->q.buf_size = hdev->rx_buf_len;
tqp->q.tx_desc_num = hdev->num_tx_desc;
tqp->q.rx_desc_num = hdev->num_rx_desc;
tqp->q.io_base = hdev->hw.io_base + HCLGE_TQP_REG_OFFSET +
i * HCLGE_TQP_REG_SIZE;
tqp++;
}
return 0;
}
static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
u16 tqp_pid, u16 tqp_vid, bool is_pf)
{
struct hclge_tqp_map_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);
req = (struct hclge_tqp_map_cmd *)desc.data;
req->tqp_id = cpu_to_le16(tqp_pid);
req->tqp_vf = func_id;
req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
if (!is_pf)
req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
req->tqp_vid = cpu_to_le16(tqp_vid);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);
return ret;
}
static int hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
{
struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
struct hclge_dev *hdev = vport->back;
int i, alloced;
for (i = 0, alloced = 0; i < hdev->num_tqps &&
alloced < num_tqps; i++) {
if (!hdev->htqp[i].alloced) {
hdev->htqp[i].q.handle = &vport->nic;
hdev->htqp[i].q.tqp_index = alloced;
hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
kinfo->tqp[alloced] = &hdev->htqp[i].q;
hdev->htqp[i].alloced = true;
alloced++;
}
}
vport->alloc_tqps = alloced;
kinfo->rss_size = min_t(u16, hdev->rss_size_max,
vport->alloc_tqps / hdev->tm_info.num_tc);
/* ensure one to one mapping between irq and queue at default */
kinfo->rss_size = min_t(u16, kinfo->rss_size,
(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);
return 0;
}
static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
u16 num_tx_desc, u16 num_rx_desc)
{
struct hnae3_handle *nic = &vport->nic;
struct hnae3_knic_private_info *kinfo = &nic->kinfo;
struct hclge_dev *hdev = vport->back;
int ret;
kinfo->num_tx_desc = num_tx_desc;
kinfo->num_rx_desc = num_rx_desc;
kinfo->rx_buf_len = hdev->rx_buf_len;
kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
sizeof(struct hnae3_queue *), GFP_KERNEL);
if (!kinfo->tqp)
return -ENOMEM;
ret = hclge_assign_tqp(vport, num_tqps);
if (ret)
dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);
return ret;
}
static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
struct hclge_vport *vport)
{
struct hnae3_handle *nic = &vport->nic;
struct hnae3_knic_private_info *kinfo;
u16 i;
kinfo = &nic->kinfo;
for (i = 0; i < vport->alloc_tqps; i++) {
struct hclge_tqp *q =
container_of(kinfo->tqp[i], struct hclge_tqp, q);
bool is_pf;
int ret;
is_pf = !(vport->vport_id);
ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
i, is_pf);
if (ret)
return ret;
}
return 0;
}
static int hclge_map_tqp(struct hclge_dev *hdev)
{
struct hclge_vport *vport = hdev->vport;
u16 i, num_vport;
num_vport = hdev->num_vmdq_vport + hdev->num_req_vfs + 1;
for (i = 0; i < num_vport; i++) {
int ret;
ret = hclge_map_tqp_to_vport(hdev, vport);
if (ret)
return ret;
vport++;
}
return 0;
}
static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
{
struct hnae3_handle *nic = &vport->nic;
struct hclge_dev *hdev = vport->back;
int ret;
nic->pdev = hdev->pdev;
nic->ae_algo = &ae_algo;
nic->numa_node_mask = hdev->numa_node_mask;
ret = hclge_knic_setup(vport, num_tqps,
hdev->num_tx_desc, hdev->num_rx_desc);
if (ret)
dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);
return ret;
}
static int hclge_alloc_vport(struct hclge_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
struct hclge_vport *vport;
u32 tqp_main_vport;
u32 tqp_per_vport;
int num_vport, i;
int ret;
/* We need to alloc a vport for main NIC of PF */
num_vport = hdev->num_vmdq_vport + hdev->num_req_vfs + 1;
if (hdev->num_tqps < num_vport) {
dev_err(&hdev->pdev->dev, "tqps(%d) is less than vports(%d)",
hdev->num_tqps, num_vport);
return -EINVAL;
}
/* Alloc the same number of TQPs for every vport */
tqp_per_vport = hdev->num_tqps / num_vport;
tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;
vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
GFP_KERNEL);
if (!vport)
return -ENOMEM;
hdev->vport = vport;
hdev->num_alloc_vport = num_vport;
if (IS_ENABLED(CONFIG_PCI_IOV))
hdev->num_alloc_vfs = hdev->num_req_vfs;
for (i = 0; i < num_vport; i++) {
vport->back = hdev;
vport->vport_id = i;
vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
vport->mps = HCLGE_MAC_DEFAULT_FRAME;
vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
vport->rxvlan_cfg.rx_vlan_offload_en = true;
INIT_LIST_HEAD(&vport->vlan_list);
INIT_LIST_HEAD(&vport->uc_mac_list);
INIT_LIST_HEAD(&vport->mc_mac_list);
if (i == 0)
ret = hclge_vport_setup(vport, tqp_main_vport);
else
ret = hclge_vport_setup(vport, tqp_per_vport);
if (ret) {
dev_err(&pdev->dev,
"vport setup failed for vport %d, %d\n",
i, ret);
return ret;
}
vport++;
}
return 0;
}
static int hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
/* TX buffer size is unit by 128 byte */
#define HCLGE_BUF_SIZE_UNIT_SHIFT 7
#define HCLGE_BUF_SIZE_UPDATE_EN_MSK BIT(15)
struct hclge_tx_buff_alloc_cmd *req;
struct hclge_desc desc;
int ret;
u8 i;
req = (struct hclge_tx_buff_alloc_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
req->tx_pkt_buff[i] =
cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
HCLGE_BUF_SIZE_UPDATE_EN_MSK);
}
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
ret);
return ret;
}
static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);
if (ret)
dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);
return ret;
}
static u32 hclge_get_tc_num(struct hclge_dev *hdev)
{
unsigned int i;
u32 cnt = 0;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
if (hdev->hw_tc_map & BIT(i))
cnt++;
return cnt;
}
/* Get the number of pfc enabled TCs, which have private buffer */
static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_priv_buf *priv;
unsigned int i;
int cnt = 0;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
priv->enable)
cnt++;
}
return cnt;
}
/* Get the number of pfc disabled TCs, which have private buffer */
static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_priv_buf *priv;
unsigned int i;
int cnt = 0;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (hdev->hw_tc_map & BIT(i) &&
!(hdev->tm_info.hw_pfc_map & BIT(i)) &&
priv->enable)
cnt++;
}
return cnt;
}
static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_priv_buf *priv;
u32 rx_priv = 0;
int i;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (priv->enable)
rx_priv += priv->buf_size;
}
return rx_priv;
}
static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
{
u32 i, total_tx_size = 0;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
return total_tx_size;
}
static bool hclge_is_rx_buf_ok(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc,
u32 rx_all)
{
u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
u32 tc_num = hclge_get_tc_num(hdev);
u32 shared_buf, aligned_mps;
u32 rx_priv;
int i;
aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);
if (hnae3_dev_dcb_supported(hdev))
shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
hdev->dv_buf_size;
else
shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
+ hdev->dv_buf_size;
shared_buf_tc = tc_num * aligned_mps + aligned_mps;
shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
HCLGE_BUF_SIZE_UNIT);
rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
if (rx_all < rx_priv + shared_std)
return false;
shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
buf_alloc->s_buf.buf_size = shared_buf;
if (hnae3_dev_dcb_supported(hdev)) {
buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
HCLGE_BUF_SIZE_UNIT);
} else {
buf_alloc->s_buf.self.high = aligned_mps +
HCLGE_NON_DCB_ADDITIONAL_BUF;
buf_alloc->s_buf.self.low = aligned_mps;
}
if (hnae3_dev_dcb_supported(hdev)) {
hi_thrd = shared_buf - hdev->dv_buf_size;
if (tc_num <= NEED_RESERVE_TC_NUM)
hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
/ BUF_MAX_PERCENT;
if (tc_num)
hi_thrd = hi_thrd / tc_num;
hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
} else {
hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
lo_thrd = aligned_mps;
}
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
}
return true;
}
static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
u32 i, total_size;
total_size = hdev->pkt_buf_size;
/* alloc tx buffer for all enabled tc */
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
if (hdev->hw_tc_map & BIT(i)) {
if (total_size < hdev->tx_buf_size)
return -ENOMEM;
priv->tx_buf_size = hdev->tx_buf_size;
} else {
priv->tx_buf_size = 0;
}
total_size -= priv->tx_buf_size;
}
return 0;
}
static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
struct hclge_pkt_buf_alloc *buf_alloc)
{
u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
unsigned int i;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hdev->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
if (hdev->tm_info.hw_pfc_map & BIT(i)) {
priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
priv->wl.high = roundup(priv->wl.low + aligned_mps,
HCLGE_BUF_SIZE_UNIT);
} else {
priv->wl.low = 0;
priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
aligned_mps;
}
priv->buf_size = priv->wl.high + hdev->dv_buf_size;
}
return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}
static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
int i;
/* let the last to be cleared first */
for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
unsigned int mask = BIT((unsigned int)i);
if (hdev->hw_tc_map & mask &&
!(hdev->tm_info.hw_pfc_map & mask)) {
/* Clear the no pfc TC private buffer */
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
priv->enable = 0;
no_pfc_priv_num--;
}
if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
no_pfc_priv_num == 0)
break;
}
return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}
static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
int i;
/* let the last to be cleared first */
for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
unsigned int mask = BIT((unsigned int)i);
if (hdev->hw_tc_map & mask &&
hdev->tm_info.hw_pfc_map & mask) {
/* Reduce the number of pfc TC with private buffer */
priv->wl.low = 0;
priv->enable = 0;
priv->wl.high = 0;
priv->buf_size = 0;
pfc_priv_num--;
}
if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
pfc_priv_num == 0)
break;
}
return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}
static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
#define COMPENSATE_BUFFER 0x3C00
#define COMPENSATE_HALF_MPS_NUM 5
#define PRIV_WL_GAP 0x1800
u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
u32 tc_num = hclge_get_tc_num(hdev);
u32 half_mps = hdev->mps >> 1;
u32 min_rx_priv;
unsigned int i;
if (tc_num)
rx_priv = rx_priv / tc_num;
if (tc_num <= NEED_RESERVE_TC_NUM)
rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
COMPENSATE_HALF_MPS_NUM * half_mps;
min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
if (rx_priv < min_rx_priv)
return false;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hdev->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
priv->buf_size = rx_priv;
priv->wl.high = rx_priv - hdev->dv_buf_size;
priv->wl.low = priv->wl.high - PRIV_WL_GAP;
}
buf_alloc->s_buf.buf_size = 0;
return true;
}
/* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
* @hdev: pointer to struct hclge_dev
* @buf_alloc: pointer to buffer calculation data
* @return: 0: calculate sucessful, negative: fail
*/
static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
/* When DCB is not supported, rx private buffer is not allocated. */
if (!hnae3_dev_dcb_supported(hdev)) {
u32 rx_all = hdev->pkt_buf_size;
rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
return -ENOMEM;
return 0;
}
if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
return 0;
if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
return 0;
/* try to decrease the buffer size */
if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
return 0;
if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
return 0;
if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
return 0;
return -ENOMEM;
}
static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_rx_priv_buff_cmd *req;
struct hclge_desc desc;
int ret;
int i;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
req = (struct hclge_rx_priv_buff_cmd *)desc.data;
/* Alloc private buffer TCs */
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
req->buf_num[i] =
cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
req->buf_num[i] |=
cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
}
req->shared_buf =
cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
(1 << HCLGE_TC0_PRI_BUF_EN_B));
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"rx private buffer alloc cmd failed %d\n", ret);
return ret;
}
static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_rx_priv_wl_buf *req;
struct hclge_priv_buf *priv;
struct hclge_desc desc[2];
int i, j;
int ret;
for (i = 0; i < 2; i++) {
hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
false);
req = (struct hclge_rx_priv_wl_buf *)desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
else
desc[i].flag &= ~cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;
priv = &buf_alloc->priv_buf[idx];
req->tc_wl[j].high =
cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
req->tc_wl[j].high |=
cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
req->tc_wl[j].low =
cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
req->tc_wl[j].low |=
cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
}
}
/* Send 2 descriptor at one time */
ret = hclge_cmd_send(&hdev->hw, desc, 2);
if (ret)
dev_err(&hdev->pdev->dev,
"rx private waterline config cmd failed %d\n",
ret);
return ret;
}
static int hclge_common_thrd_config(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
struct hclge_rx_com_thrd *req;
struct hclge_desc desc[2];
struct hclge_tc_thrd *tc;
int i, j;
int ret;
for (i = 0; i < 2; i++) {
hclge_cmd_setup_basic_desc(&desc[i],
HCLGE_OPC_RX_COM_THRD_ALLOC, false);
req = (struct hclge_rx_com_thrd *)&desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
else
desc[i].flag &= ~cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];
req->com_thrd[j].high =
cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
req->com_thrd[j].high |=
cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
req->com_thrd[j].low =
cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
req->com_thrd[j].low |=
cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
}
}
/* Send 2 descriptors at one time */
ret = hclge_cmd_send(&hdev->hw, desc, 2);
if (ret)
dev_err(&hdev->pdev->dev,
"common threshold config cmd failed %d\n", ret);
return ret;
}
static int hclge_common_wl_config(struct hclge_dev *hdev,
struct hclge_pkt_buf_alloc *buf_alloc)
{
struct hclge_shared_buf *buf = &buf_alloc->s_buf;
struct hclge_rx_com_wl *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);
req = (struct hclge_rx_com_wl *)desc.data;
req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
req->com_wl.high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
req->com_wl.low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"common waterline config cmd failed %d\n", ret);
return ret;
}
int hclge_buffer_alloc(struct hclge_dev *hdev)
{
struct hclge_pkt_buf_alloc *pkt_buf;
int ret;
pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
if (!pkt_buf)
return -ENOMEM;
ret = hclge_tx_buffer_calc(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev,
"could not calc tx buffer size for all TCs %d\n", ret);
goto out;
}
ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev,
"could not alloc tx buffers %d\n", ret);
goto out;
}
ret = hclge_rx_buffer_calc(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev,
"could not calc rx priv buffer size for all TCs %d\n",
ret);
goto out;
}
ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
ret);
goto out;
}
if (hnae3_dev_dcb_supported(hdev)) {
ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev,
"could not configure rx private waterline %d\n",
ret);
goto out;
}
ret = hclge_common_thrd_config(hdev, pkt_buf);
if (ret) {
dev_err(&hdev->pdev->dev,
"could not configure common threshold %d\n",
ret);
goto out;
}
}
ret = hclge_common_wl_config(hdev, pkt_buf);
if (ret)
dev_err(&hdev->pdev->dev,
"could not configure common waterline %d\n", ret);
out:
kfree(pkt_buf);
return ret;
}
static int hclge_init_roce_base_info(struct hclge_vport *vport)
{
struct hnae3_handle *roce = &vport->roce;
struct hnae3_handle *nic = &vport->nic;
roce->rinfo.num_vectors = vport->back->num_roce_msi;
if (vport->back->num_msi_left < vport->roce.rinfo.num_vectors ||
vport->back->num_msi_left == 0)
return -EINVAL;
roce->rinfo.base_vector = vport->back->roce_base_vector;
roce->rinfo.netdev = nic->kinfo.netdev;
roce->rinfo.roce_io_base = vport->back->hw.io_base;
roce->pdev = nic->pdev;
roce->ae_algo = nic->ae_algo;
roce->numa_node_mask = nic->numa_node_mask;
return 0;
}
static int hclge_init_msi(struct hclge_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
int vectors;
int i;
vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
hdev->num_msi,
PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (vectors < 0) {
dev_err(&pdev->dev,
"failed(%d) to allocate MSI/MSI-X vectors\n",
vectors);
return vectors;
}
if (vectors < hdev->num_msi)
dev_warn(&hdev->pdev->dev,
"requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
hdev->num_msi, vectors);
hdev->num_msi = vectors;
hdev->num_msi_left = vectors;
hdev->base_msi_vector = pdev->irq;
hdev->roce_base_vector = hdev->base_msi_vector +
hdev->roce_base_msix_offset;
hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
sizeof(u16), GFP_KERNEL);
if (!hdev->vector_status) {
pci_free_irq_vectors(pdev);
return -ENOMEM;
}
for (i = 0; i < hdev->num_msi; i++)
hdev->vector_status[i] = HCLGE_INVALID_VPORT;
hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
sizeof(int), GFP_KERNEL);
if (!hdev->vector_irq) {
pci_free_irq_vectors(pdev);
return -ENOMEM;
}
return 0;
}
static u8 hclge_check_speed_dup(u8 duplex, int speed)
{
if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
duplex = HCLGE_MAC_FULL;
return duplex;
}
static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
u8 duplex)
{
struct hclge_config_mac_speed_dup_cmd *req;
struct hclge_desc desc;
int ret;
req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);
if (duplex)
hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);
switch (speed) {
case HCLGE_MAC_SPEED_10M:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 6);
break;
case HCLGE_MAC_SPEED_100M:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 7);
break;
case HCLGE_MAC_SPEED_1G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 0);
break;
case HCLGE_MAC_SPEED_10G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 1);
break;
case HCLGE_MAC_SPEED_25G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 2);
break;
case HCLGE_MAC_SPEED_40G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 3);
break;
case HCLGE_MAC_SPEED_50G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 4);
break;
case HCLGE_MAC_SPEED_100G:
hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M,
HCLGE_CFG_SPEED_S, 5);
break;
default:
dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
return -EINVAL;
}
hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
1);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"mac speed/duplex config cmd failed %d.\n", ret);
return ret;
}
return 0;
}
int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex)
{
int ret;
duplex = hclge_check_speed_dup(duplex, speed);
if (hdev->hw.mac.speed == speed && hdev->hw.mac.duplex == duplex)
return 0;
ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex);
if (ret)
return ret;
hdev->hw.mac.speed = speed;
hdev->hw.mac.duplex = duplex;
return 0;
}
static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
u8 duplex)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hclge_cfg_mac_speed_dup(hdev, speed, duplex);
}
static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
{
struct hclge_config_auto_neg_cmd *req;
struct hclge_desc desc;
u32 flag = 0;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);
req = (struct hclge_config_auto_neg_cmd *)desc.data;
if (enable)
hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
req->cfg_an_cmd_flag = cpu_to_le32(flag);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
ret);
return ret;
}
static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (!hdev->hw.mac.support_autoneg) {
if (enable) {
dev_err(&hdev->pdev->dev,
"autoneg is not supported by current port\n");
return -EOPNOTSUPP;
} else {
return 0;
}
}
return hclge_set_autoneg_en(hdev, enable);
}
static int hclge_get_autoneg(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct phy_device *phydev = hdev->hw.mac.phydev;
if (phydev)
return phydev->autoneg;
return hdev->hw.mac.autoneg;
}
static int hclge_restart_autoneg(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int ret;
dev_dbg(&hdev->pdev->dev, "restart autoneg\n");
ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
if (ret)
return ret;
return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
}
static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
return hclge_set_autoneg_en(hdev, !halt);
return 0;
}
static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
{
struct hclge_config_fec_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);
req = (struct hclge_config_fec_cmd *)desc.data;
if (fec_mode & BIT(HNAE3_FEC_AUTO))
hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
if (fec_mode & BIT(HNAE3_FEC_RS))
hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
if (fec_mode & BIT(HNAE3_FEC_BASER))
hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);
return ret;
}
static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_mac *mac = &hdev->hw.mac;
int ret;
if (fec_mode && !(mac->fec_ability & fec_mode)) {
dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
return -EINVAL;
}
ret = hclge_set_fec_hw(hdev, fec_mode);
if (ret)
return ret;
mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
return 0;
}
static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
u8 *fec_mode)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_mac *mac = &hdev->hw.mac;
if (fec_ability)
*fec_ability = mac->fec_ability;
if (fec_mode)
*fec_mode = mac->fec_mode;
}
static int hclge_mac_init(struct hclge_dev *hdev)
{
struct hclge_mac *mac = &hdev->hw.mac;
int ret;
hdev->support_sfp_query = true;
hdev->hw.mac.duplex = HCLGE_MAC_FULL;
ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
hdev->hw.mac.duplex);
if (ret) {
dev_err(&hdev->pdev->dev,
"Config mac speed dup fail ret=%d\n", ret);
return ret;
}
if (hdev->hw.mac.support_autoneg) {
ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
if (ret) {
dev_err(&hdev->pdev->dev,
"Config mac autoneg fail ret=%d\n", ret);
return ret;
}
}
mac->link = 0;
if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
if (ret) {
dev_err(&hdev->pdev->dev,
"Fec mode init fail, ret = %d\n", ret);
return ret;
}
}
ret = hclge_set_mac_mtu(hdev, hdev->mps);
if (ret) {
dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
return ret;
}
ret = hclge_set_default_loopback(hdev);
if (ret)
return ret;
ret = hclge_buffer_alloc(hdev);
if (ret)
dev_err(&hdev->pdev->dev,
"allocate buffer fail, ret=%d\n", ret);
return ret;
}
static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
{
if (!test_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state) &&
!test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state))
queue_work_on(cpumask_first(&hdev->affinity_mask), system_wq,
&hdev->mbx_service_task);
}
static void hclge_reset_task_schedule(struct hclge_dev *hdev)
{
if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
!test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
queue_work_on(cpumask_first(&hdev->affinity_mask), system_wq,
&hdev->rst_service_task);
}
void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
{
if (!test_bit(HCLGE_STATE_DOWN, &hdev->state) &&
!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
!test_and_set_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state)) {
hdev->hw_stats.stats_timer++;
hdev->fd_arfs_expire_timer++;
mod_delayed_work_on(cpumask_first(&hdev->affinity_mask),
system_wq, &hdev->service_task,
delay_time);
}
}
static int hclge_get_mac_link_status(struct hclge_dev *hdev)
{
struct hclge_link_status_cmd *req;
struct hclge_desc desc;
int link_status;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
ret);
return ret;
}
req = (struct hclge_link_status_cmd *)desc.data;
link_status = req->status & HCLGE_LINK_STATUS_UP_M;
return !!link_status;
}
static int hclge_get_mac_phy_link(struct hclge_dev *hdev)
{
unsigned int mac_state;
int link_stat;
if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
return 0;
mac_state = hclge_get_mac_link_status(hdev);
if (hdev->hw.mac.phydev) {
if (hdev->hw.mac.phydev->state == PHY_RUNNING)
link_stat = mac_state &
hdev->hw.mac.phydev->link;
else
link_stat = 0;
} else {
link_stat = mac_state;
}
return !!link_stat;
}
static void hclge_update_link_status(struct hclge_dev *hdev)
{
struct hnae3_client *rclient = hdev->roce_client;
struct hnae3_client *client = hdev->nic_client;
struct hnae3_handle *rhandle;
struct hnae3_handle *handle;
int state;
int i;
if (!client)
return;
state = hclge_get_mac_phy_link(hdev);
if (state != hdev->hw.mac.link) {
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
handle = &hdev->vport[i].nic;
client->ops->link_status_change(handle, state);
hclge_config_mac_tnl_int(hdev, state);
rhandle = &hdev->vport[i].roce;
if (rclient && rclient->ops->link_status_change)
rclient->ops->link_status_change(rhandle,
state);
}
hdev->hw.mac.link = state;
}
}
static void hclge_update_port_capability(struct hclge_mac *mac)
{
/* update fec ability by speed */
hclge_convert_setting_fec(mac);
/* firmware can not identify back plane type, the media type
* read from configuration can help deal it
*/
if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
mac->module_type = HNAE3_MODULE_TYPE_KR;
else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
mac->module_type = HNAE3_MODULE_TYPE_TP;
if (mac->support_autoneg == true) {
linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
linkmode_copy(mac->advertising, mac->supported);
} else {
linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
mac->supported);
linkmode_zero(mac->advertising);
}
}
static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
{
struct hclge_sfp_info_cmd *resp;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
resp = (struct hclge_sfp_info_cmd *)desc.data;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret == -EOPNOTSUPP) {
dev_warn(&hdev->pdev->dev,
"IMP do not support get SFP speed %d\n", ret);
return ret;
} else if (ret) {
dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
return ret;
}
*speed = le32_to_cpu(resp->speed);
return 0;
}
static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
{
struct hclge_sfp_info_cmd *resp;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
resp = (struct hclge_sfp_info_cmd *)desc.data;
resp->query_type = QUERY_ACTIVE_SPEED;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret == -EOPNOTSUPP) {
dev_warn(&hdev->pdev->dev,
"IMP does not support get SFP info %d\n", ret);
return ret;
} else if (ret) {
dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
return ret;
}
mac->speed = le32_to_cpu(resp->speed);
/* if resp->speed_ability is 0, it means it's an old version
* firmware, do not update these params
*/
if (resp->speed_ability) {
mac->module_type = le32_to_cpu(resp->module_type);
mac->speed_ability = le32_to_cpu(resp->speed_ability);
mac->autoneg = resp->autoneg;
mac->support_autoneg = resp->autoneg_ability;
mac->speed_type = QUERY_ACTIVE_SPEED;
if (!resp->active_fec)
mac->fec_mode = 0;
else
mac->fec_mode = BIT(resp->active_fec);
} else {
mac->speed_type = QUERY_SFP_SPEED;
}
return 0;
}
static int hclge_update_port_info(struct hclge_dev *hdev)
{
struct hclge_mac *mac = &hdev->hw.mac;
int speed = HCLGE_MAC_SPEED_UNKNOWN;
int ret;
/* get the port info from SFP cmd if not copper port */
if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
return 0;
/* if IMP does not support get SFP/qSFP info, return directly */
if (!hdev->support_sfp_query)
return 0;
if (hdev->pdev->revision >= 0x21)
ret = hclge_get_sfp_info(hdev, mac);
else
ret = hclge_get_sfp_speed(hdev, &speed);
if (ret == -EOPNOTSUPP) {
hdev->support_sfp_query = false;
return ret;
} else if (ret) {
return ret;
}
if (hdev->pdev->revision >= 0x21) {
if (mac->speed_type == QUERY_ACTIVE_SPEED) {
hclge_update_port_capability(mac);
return 0;
}
return hclge_cfg_mac_speed_dup(hdev, mac->speed,
HCLGE_MAC_FULL);
} else {
if (speed == HCLGE_MAC_SPEED_UNKNOWN)
return 0; /* do nothing if no SFP */
/* must config full duplex for SFP */
return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL);
}
}
static int hclge_get_status(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
hclge_update_link_status(hdev);
return hdev->hw.mac.link;
}
static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
{
if (pci_num_vf(hdev->pdev) == 0) {
dev_err(&hdev->pdev->dev,
"SRIOV is disabled, can not get vport(%d) info.\n", vf);
return NULL;
}
if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
dev_err(&hdev->pdev->dev,
"vf id(%d) is out of range(0 <= vfid < %d)\n",
vf, pci_num_vf(hdev->pdev));
return NULL;
}
/* VF start from 1 in vport */
vf += HCLGE_VF_VPORT_START_NUM;
return &hdev->vport[vf];
}
static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
struct ifla_vf_info *ivf)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
ivf->vf = vf;
ivf->linkstate = vport->vf_info.link_state;
ivf->spoofchk = vport->vf_info.spoofchk;
ivf->trusted = vport->vf_info.trusted;
ivf->min_tx_rate = 0;
ivf->max_tx_rate = vport->vf_info.max_tx_rate;
ether_addr_copy(ivf->mac, vport->vf_info.mac);
return 0;
}
static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
int link_state)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
vport->vf_info.link_state = link_state;
return 0;
}
static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
{
u32 rst_src_reg, cmdq_src_reg, msix_src_reg;
/* fetch the events from their corresponding regs */
rst_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
msix_src_reg = hclge_read_dev(&hdev->hw,
HCLGE_VECTOR0_PF_OTHER_INT_STS_REG);
/* Assumption: If by any chance reset and mailbox events are reported
* together then we will only process reset event in this go and will
* defer the processing of the mailbox events. Since, we would have not
* cleared RX CMDQ event this time we would receive again another
* interrupt from H/W just for the mailbox.
*
* check for vector0 reset event sources
*/
if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & rst_src_reg) {
dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state);
*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
hdev->rst_stats.imp_rst_cnt++;
return HCLGE_VECTOR0_EVENT_RST;
}
if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & rst_src_reg) {
dev_info(&hdev->pdev->dev, "global reset interrupt\n");
set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state);
set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
hdev->rst_stats.global_rst_cnt++;
return HCLGE_VECTOR0_EVENT_RST;
}
/* check for vector0 msix event source */
if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
dev_info(&hdev->pdev->dev, "received event 0x%x\n",
msix_src_reg);
*clearval = msix_src_reg;
return HCLGE_VECTOR0_EVENT_ERR;
}
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
*clearval = cmdq_src_reg;
return HCLGE_VECTOR0_EVENT_MBX;
}
/* print other vector0 event source */
dev_info(&hdev->pdev->dev,
"CMDQ INT status:0x%x, other INT status:0x%x\n",
cmdq_src_reg, msix_src_reg);
*clearval = msix_src_reg;
return HCLGE_VECTOR0_EVENT_OTHER;
}
static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
u32 regclr)
{
switch (event_type) {
case HCLGE_VECTOR0_EVENT_RST:
hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
break;
case HCLGE_VECTOR0_EVENT_MBX:
hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
break;
default:
break;
}
}
static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
{
hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
}
static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
{
writel(enable ? 1 : 0, vector->addr);
}
static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
{
struct hclge_dev *hdev = data;
u32 clearval = 0;
u32 event_cause;
hclge_enable_vector(&hdev->misc_vector, false);
event_cause = hclge_check_event_cause(hdev, &clearval);
/* vector 0 interrupt is shared with reset and mailbox source events.*/
switch (event_cause) {
case HCLGE_VECTOR0_EVENT_ERR:
/* we do not know what type of reset is required now. This could
* only be decided after we fetch the type of errors which
* caused this event. Therefore, we will do below for now:
* 1. Assert HNAE3_UNKNOWN_RESET type of reset. This means we
* have defered type of reset to be used.
* 2. Schedule the reset serivce task.
* 3. When service task receives HNAE3_UNKNOWN_RESET type it
* will fetch the correct type of reset. This would be done
* by first decoding the types of errors.
*/
set_bit(HNAE3_UNKNOWN_RESET, &hdev->reset_request);
/* fall through */
case HCLGE_VECTOR0_EVENT_RST:
hclge_reset_task_schedule(hdev);
break;
case HCLGE_VECTOR0_EVENT_MBX:
/* If we are here then,
* 1. Either we are not handling any mbx task and we are not
* scheduled as well
* OR
* 2. We could be handling a mbx task but nothing more is
* scheduled.
* In both cases, we should schedule mbx task as there are more
* mbx messages reported by this interrupt.
*/
hclge_mbx_task_schedule(hdev);
break;
default:
dev_warn(&hdev->pdev->dev,
"received unknown or unhandled event of vector0\n");
break;
}
hclge_clear_event_cause(hdev, event_cause, clearval);
/* Enable interrupt if it is not cause by reset. And when
* clearval equal to 0, it means interrupt status may be
* cleared by hardware before driver reads status register.
* For this case, vector0 interrupt also should be enabled.
*/
if (!clearval ||
event_cause == HCLGE_VECTOR0_EVENT_MBX) {
hclge_enable_vector(&hdev->misc_vector, true);
}
return IRQ_HANDLED;
}
static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
{
if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
dev_warn(&hdev->pdev->dev,
"vector(vector_id %d) has been freed.\n", vector_id);
return;
}
hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
hdev->num_msi_left += 1;
hdev->num_msi_used -= 1;
}
static void hclge_get_misc_vector(struct hclge_dev *hdev)
{
struct hclge_misc_vector *vector = &hdev->misc_vector;
vector->vector_irq = pci_irq_vector(hdev->pdev, 0);
vector->addr = hdev->hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
hdev->vector_status[0] = 0;
hdev->num_msi_left -= 1;
hdev->num_msi_used += 1;
}
static void hclge_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct hclge_dev *hdev = container_of(notify, struct hclge_dev,
affinity_notify);
cpumask_copy(&hdev->affinity_mask, mask);
}
static void hclge_irq_affinity_release(struct kref *ref)
{
}
static void hclge_misc_affinity_setup(struct hclge_dev *hdev)
{
irq_set_affinity_hint(hdev->misc_vector.vector_irq,
&hdev->affinity_mask);
hdev->affinity_notify.notify = hclge_irq_affinity_notify;
hdev->affinity_notify.release = hclge_irq_affinity_release;
irq_set_affinity_notifier(hdev->misc_vector.vector_irq,
&hdev->affinity_notify);
}
static void hclge_misc_affinity_teardown(struct hclge_dev *hdev)
{
irq_set_affinity_notifier(hdev->misc_vector.vector_irq, NULL);
irq_set_affinity_hint(hdev->misc_vector.vector_irq, NULL);
}
static int hclge_misc_irq_init(struct hclge_dev *hdev)
{
int ret;
hclge_get_misc_vector(hdev);
/* this would be explicitly freed in the end */
ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
0, "hclge_misc", hdev);
if (ret) {
hclge_free_vector(hdev, 0);
dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
hdev->misc_vector.vector_irq);
}
return ret;
}
static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
{
free_irq(hdev->misc_vector.vector_irq, hdev);
hclge_free_vector(hdev, 0);
}
int hclge_notify_client(struct hclge_dev *hdev,
enum hnae3_reset_notify_type type)
{
struct hnae3_client *client = hdev->nic_client;
u16 i;
if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
return 0;
if (!client->ops->reset_notify)
return -EOPNOTSUPP;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
struct hnae3_handle *handle = &hdev->vport[i].nic;
int ret;
ret = client->ops->reset_notify(handle, type);
if (ret) {
dev_err(&hdev->pdev->dev,
"notify nic client failed %d(%d)\n", type, ret);
return ret;
}
}
return 0;
}
static int hclge_notify_roce_client(struct hclge_dev *hdev,
enum hnae3_reset_notify_type type)
{
struct hnae3_client *client = hdev->roce_client;
int ret = 0;
u16 i;
if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
return 0;
if (!client->ops->reset_notify)
return -EOPNOTSUPP;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
struct hnae3_handle *handle = &hdev->vport[i].roce;
ret = client->ops->reset_notify(handle, type);
if (ret) {
dev_err(&hdev->pdev->dev,
"notify roce client failed %d(%d)",
type, ret);
return ret;
}
}
return ret;
}
static int hclge_reset_wait(struct hclge_dev *hdev)
{
#define HCLGE_RESET_WATI_MS 100
#define HCLGE_RESET_WAIT_CNT 200
u32 val, reg, reg_bit;
u32 cnt = 0;
switch (hdev->reset_type) {
case HNAE3_IMP_RESET:
reg = HCLGE_GLOBAL_RESET_REG;
reg_bit = HCLGE_IMP_RESET_BIT;
break;
case HNAE3_GLOBAL_RESET:
reg = HCLGE_GLOBAL_RESET_REG;
reg_bit = HCLGE_GLOBAL_RESET_BIT;
break;
case HNAE3_FUNC_RESET:
reg = HCLGE_FUN_RST_ING;
reg_bit = HCLGE_FUN_RST_ING_B;
break;
case HNAE3_FLR_RESET:
break;
default:
dev_err(&hdev->pdev->dev,
"Wait for unsupported reset type: %d\n",
hdev->reset_type);
return -EINVAL;
}
if (hdev->reset_type == HNAE3_FLR_RESET) {
while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
cnt++ < HCLGE_RESET_WAIT_CNT)
msleep(HCLGE_RESET_WATI_MS);
if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
dev_err(&hdev->pdev->dev,
"flr wait timeout: %d\n", cnt);
return -EBUSY;
}
return 0;
}
val = hclge_read_dev(&hdev->hw, reg);
while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
msleep(HCLGE_RESET_WATI_MS);
val = hclge_read_dev(&hdev->hw, reg);
cnt++;
}
if (cnt >= HCLGE_RESET_WAIT_CNT) {
dev_warn(&hdev->pdev->dev,
"Wait for reset timeout: %d\n", hdev->reset_type);
return -EBUSY;
}
return 0;
}
static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
{
struct hclge_vf_rst_cmd *req;
struct hclge_desc desc;
req = (struct hclge_vf_rst_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
req->dest_vfid = func_id;
if (reset)
req->vf_rst = 0x1;
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
{
int i;
for (i = hdev->num_vmdq_vport + 1; i < hdev->num_alloc_vport; i++) {
struct hclge_vport *vport = &hdev->vport[i];
int ret;
/* Send cmd to set/clear VF's FUNC_RST_ING */
ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
if (ret) {
dev_err(&hdev->pdev->dev,
"set vf(%d) rst failed %d!\n",
vport->vport_id, ret);
return ret;
}
if (!reset || !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
continue;
/* Inform VF to process the reset.
* hclge_inform_reset_assert_to_vf may fail if VF
* driver is not loaded.
*/
ret = hclge_inform_reset_assert_to_vf(vport);
if (ret)
dev_warn(&hdev->pdev->dev,
"inform reset to vf(%d) failed %d!\n",
vport->vport_id, ret);
}
return 0;
}
static int hclge_func_reset_sync_vf(struct hclge_dev *hdev)
{
struct hclge_pf_rst_sync_cmd *req;
struct hclge_desc desc;
int cnt = 0;
int ret;
req = (struct hclge_pf_rst_sync_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);
do {
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
/* for compatible with old firmware, wait
* 100 ms for VF to stop IO
*/
if (ret == -EOPNOTSUPP) {
msleep(HCLGE_RESET_SYNC_TIME);
return 0;
} else if (ret) {
dev_err(&hdev->pdev->dev, "sync with VF fail %d!\n",
ret);
return ret;
} else if (req->all_vf_ready) {
return 0;
}
msleep(HCLGE_PF_RESET_SYNC_TIME);
hclge_cmd_reuse_desc(&desc, true);
} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);
dev_err(&hdev->pdev->dev, "sync with VF timeout!\n");
return -ETIME;
}
void hclge_report_hw_error(struct hclge_dev *hdev,
enum hnae3_hw_error_type type)
{
struct hnae3_client *client = hdev->nic_client;
u16 i;
if (!client || !client->ops->process_hw_error ||
!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
return;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++)
client->ops->process_hw_error(&hdev->vport[i].nic, type);
}
static void hclge_handle_imp_error(struct hclge_dev *hdev)
{
u32 reg_val;
reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
}
if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
}
}
int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
{
struct hclge_desc desc;
struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
req->fun_reset_vfid = func_id;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"send function reset cmd fail, status =%d\n", ret);
return ret;
}
static void hclge_do_reset(struct hclge_dev *hdev)
{
struct hnae3_handle *handle = &hdev->vport[0].nic;
struct pci_dev *pdev = hdev->pdev;
u32 val;
if (hclge_get_hw_reset_stat(handle)) {
dev_info(&pdev->dev, "Hardware reset not finish\n");
dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
return;
}
switch (hdev->reset_type) {
case HNAE3_GLOBAL_RESET:
val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
dev_info(&pdev->dev, "Global Reset requested\n");
break;
case HNAE3_FUNC_RESET:
dev_info(&pdev->dev, "PF Reset requested\n");
/* schedule again to check later */
set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
hclge_reset_task_schedule(hdev);
break;
case HNAE3_FLR_RESET:
dev_info(&pdev->dev, "FLR requested\n");
/* schedule again to check later */
set_bit(HNAE3_FLR_RESET, &hdev->reset_pending);
hclge_reset_task_schedule(hdev);
break;
default:
dev_warn(&pdev->dev,
"Unsupported reset type: %d\n", hdev->reset_type);
break;
}
}
static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
unsigned long *addr)
{
enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
struct hclge_dev *hdev = ae_dev->priv;
/* first, resolve any unknown reset type to the known type(s) */
if (test_bit(HNAE3_UNKNOWN_RESET, addr)) {
/* we will intentionally ignore any errors from this function
* as we will end up in *some* reset request in any case
*/
hclge_handle_hw_msix_error(hdev, addr);
clear_bit(HNAE3_UNKNOWN_RESET, addr);
/* We defered the clearing of the error event which caused
* interrupt since it was not posssible to do that in
* interrupt context (and this is the reason we introduced
* new UNKNOWN reset type). Now, the errors have been
* handled and cleared in hardware we can safely enable
* interrupts. This is an exception to the norm.
*/
hclge_enable_vector(&hdev->misc_vector, true);
}
/* return the highest priority reset level amongst all */
if (test_bit(HNAE3_IMP_RESET, addr)) {
rst_level = HNAE3_IMP_RESET;
clear_bit(HNAE3_IMP_RESET, addr);
clear_bit(HNAE3_GLOBAL_RESET, addr);
clear_bit(HNAE3_FUNC_RESET, addr);
} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
rst_level = HNAE3_GLOBAL_RESET;
clear_bit(HNAE3_GLOBAL_RESET, addr);
clear_bit(HNAE3_FUNC_RESET, addr);
} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
rst_level = HNAE3_FUNC_RESET;
clear_bit(HNAE3_FUNC_RESET, addr);
} else if (test_bit(HNAE3_FLR_RESET, addr)) {
rst_level = HNAE3_FLR_RESET;
clear_bit(HNAE3_FLR_RESET, addr);
}
if (hdev->reset_type != HNAE3_NONE_RESET &&
rst_level < hdev->reset_type)
return HNAE3_NONE_RESET;
return rst_level;
}
static void hclge_clear_reset_cause(struct hclge_dev *hdev)
{
u32 clearval = 0;
switch (hdev->reset_type) {
case HNAE3_IMP_RESET:
clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
break;
case HNAE3_GLOBAL_RESET:
clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
break;
default:
break;
}
if (!clearval)
return;
/* For revision 0x20, the reset interrupt source
* can only be cleared after hardware reset done
*/
if (hdev->pdev->revision == 0x20)
hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
clearval);
hclge_enable_vector(&hdev->misc_vector, true);
}
static int hclge_reset_prepare_down(struct hclge_dev *hdev)
{
int ret = 0;
switch (hdev->reset_type) {
case HNAE3_FUNC_RESET:
/* fall through */
case HNAE3_FLR_RESET:
ret = hclge_set_all_vf_rst(hdev, true);
break;
default:
break;
}
return ret;
}
static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
{
u32 reg_val;
reg_val = hclge_read_dev(&hdev->hw, HCLGE_NIC_CSQ_DEPTH_REG);
if (enable)
reg_val |= HCLGE_NIC_SW_RST_RDY;
else
reg_val &= ~HCLGE_NIC_SW_RST_RDY;
hclge_write_dev(&hdev->hw, HCLGE_NIC_CSQ_DEPTH_REG, reg_val);
}
static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
{
u32 reg_val;
int ret = 0;
switch (hdev->reset_type) {
case HNAE3_FUNC_RESET:
/* to confirm whether all running VF is ready
* before request PF reset
*/
ret = hclge_func_reset_sync_vf(hdev);
if (ret)
return ret;
ret = hclge_func_reset_cmd(hdev, 0);
if (ret) {
dev_err(&hdev->pdev->dev,
"asserting function reset fail %d!\n", ret);
return ret;
}
/* After performaning pf reset, it is not necessary to do the
* mailbox handling or send any command to firmware, because
* any mailbox handling or command to firmware is only valid
* after hclge_cmd_init is called.
*/
set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state);
hdev->rst_stats.pf_rst_cnt++;
break;
case HNAE3_FLR_RESET:
/* to confirm whether all running VF is ready
* before request PF reset
*/
ret = hclge_func_reset_sync_vf(hdev);
if (ret)
return ret;
set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state);
set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
hdev->rst_stats.flr_rst_cnt++;
break;
case HNAE3_IMP_RESET:
hclge_handle_imp_error(hdev);
reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
break;
default:
break;
}
/* inform hardware that preparatory work is done */
msleep(HCLGE_RESET_SYNC_TIME);
hclge_reset_handshake(hdev, true);
dev_info(&hdev->pdev->dev, "prepare wait ok\n");
return ret;
}
static bool hclge_reset_err_handle(struct hclge_dev *hdev)
{
#define MAX_RESET_FAIL_CNT 5
if (hdev->reset_pending) {
dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
hdev->reset_pending);
return true;
} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
HCLGE_RESET_INT_M) {
dev_info(&hdev->pdev->dev,
"reset failed because new reset interrupt\n");
hclge_clear_reset_cause(hdev);
return false;
} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
hdev->rst_stats.reset_fail_cnt++;
set_bit(hdev->reset_type, &hdev->reset_pending);
dev_info(&hdev->pdev->dev,
"re-schedule reset task(%d)\n",
hdev->rst_stats.reset_fail_cnt);
return true;
}
hclge_clear_reset_cause(hdev);
/* recover the handshake status when reset fail */
hclge_reset_handshake(hdev, true);
dev_err(&hdev->pdev->dev, "Reset fail!\n");
return false;
}
static int hclge_set_rst_done(struct hclge_dev *hdev)
{
struct hclge_pf_rst_done_cmd *req;
struct hclge_desc desc;
req = (struct hclge_pf_rst_done_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_reset_prepare_up(struct hclge_dev *hdev)
{
int ret = 0;
switch (hdev->reset_type) {
case HNAE3_FUNC_RESET:
/* fall through */
case HNAE3_FLR_RESET:
ret = hclge_set_all_vf_rst(hdev, false);
break;
case HNAE3_GLOBAL_RESET:
/* fall through */
case HNAE3_IMP_RESET:
ret = hclge_set_rst_done(hdev);
break;
default:
break;
}
/* clear up the handshake status after re-initialize done */
hclge_reset_handshake(hdev, false);
return ret;
}
static int hclge_reset_stack(struct hclge_dev *hdev)
{
int ret;
ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
if (ret)
return ret;
ret = hclge_reset_ae_dev(hdev->ae_dev);
if (ret)
return ret;
ret = hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
if (ret)
return ret;
return hclge_notify_client(hdev, HNAE3_RESTORE_CLIENT);
}
static void hclge_reset(struct hclge_dev *hdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
enum hnae3_reset_type reset_level;
int ret;
/* Initialize ae_dev reset status as well, in case enet layer wants to
* know if device is undergoing reset
*/
ae_dev->reset_type = hdev->reset_type;
hdev->rst_stats.reset_cnt++;
/* perform reset of the stack & ae device for a client */
ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
if (ret)
goto err_reset;
ret = hclge_reset_prepare_down(hdev);
if (ret)
goto err_reset;
rtnl_lock();
ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
if (ret)
goto err_reset_lock;
rtnl_unlock();
ret = hclge_reset_prepare_wait(hdev);
if (ret)
goto err_reset;
if (hclge_reset_wait(hdev))
goto err_reset;
hdev->rst_stats.hw_reset_done_cnt++;
ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
if (ret)
goto err_reset;
rtnl_lock();
ret = hclge_reset_stack(hdev);
if (ret)
goto err_reset_lock;
hclge_clear_reset_cause(hdev);
ret = hclge_reset_prepare_up(hdev);
if (ret)
goto err_reset_lock;
rtnl_unlock();
ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
* times
*/
if (ret &&
hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
goto err_reset;
rtnl_lock();
ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
if (ret)
goto err_reset_lock;
rtnl_unlock();
ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
if (ret)
goto err_reset;
hdev->last_reset_time = jiffies;
hdev->rst_stats.reset_fail_cnt = 0;
hdev->rst_stats.reset_done_cnt++;
ae_dev->reset_type = HNAE3_NONE_RESET;
/* if default_reset_request has a higher level reset request,
* it should be handled as soon as possible. since some errors
* need this kind of reset to fix.
*/
reset_level = hclge_get_reset_level(ae_dev,
&hdev->default_reset_request);
if (reset_level != HNAE3_NONE_RESET)
set_bit(reset_level, &hdev->reset_request);
return;
err_reset_lock:
rtnl_unlock();
err_reset:
if (hclge_reset_err_handle(hdev))
hclge_reset_task_schedule(hdev);
}
static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
struct hclge_dev *hdev = ae_dev->priv;
/* We might end up getting called broadly because of 2 below cases:
* 1. Recoverable error was conveyed through APEI and only way to bring
* normalcy is to reset.
* 2. A new reset request from the stack due to timeout
*
* For the first case,error event might not have ae handle available.
* check if this is a new reset request and we are not here just because
* last reset attempt did not succeed and watchdog hit us again. We will
* know this if last reset request did not occur very recently (watchdog
* timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
* In case of new request we reset the "reset level" to PF reset.
* And if it is a repeat reset request of the most recent one then we
* want to make sure we throttle the reset request. Therefore, we will
* not allow it again before 3*HZ times.
*/
if (!handle)
handle = &hdev->vport[0].nic;
if (time_before(jiffies, (hdev->last_reset_time +
HCLGE_RESET_INTERVAL))) {
mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
return;
} else if (hdev->default_reset_request)
hdev->reset_level =
hclge_get_reset_level(ae_dev,
&hdev->default_reset_request);
else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ)))
hdev->reset_level = HNAE3_FUNC_RESET;
dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
hdev->reset_level);
/* request reset & schedule reset task */
set_bit(hdev->reset_level, &hdev->reset_request);
hclge_reset_task_schedule(hdev);
if (hdev->reset_level < HNAE3_GLOBAL_RESET)
hdev->reset_level++;
}
static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
enum hnae3_reset_type rst_type)
{
struct hclge_dev *hdev = ae_dev->priv;
set_bit(rst_type, &hdev->default_reset_request);
}
static void hclge_reset_timer(struct timer_list *t)
{
struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);
/* if default_reset_request has no value, it means that this reset
* request has already be handled, so just return here
*/
if (!hdev->default_reset_request)
return;
dev_info(&hdev->pdev->dev,
"triggering reset in reset timer\n");
hclge_reset_event(hdev->pdev, NULL);
}
static void hclge_reset_subtask(struct hclge_dev *hdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
/* check if there is any ongoing reset in the hardware. This status can
* be checked from reset_pending. If there is then, we need to wait for
* hardware to complete reset.
* a. If we are able to figure out in reasonable time that hardware
* has fully resetted then, we can proceed with driver, client
* reset.
* b. else, we can come back later to check this status so re-sched
* now.
*/
hdev->last_reset_time = jiffies;
hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
if (hdev->reset_type != HNAE3_NONE_RESET)
hclge_reset(hdev);
/* check if we got any *new* reset requests to be honored */
hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
if (hdev->reset_type != HNAE3_NONE_RESET)
hclge_do_reset(hdev);
hdev->reset_type = HNAE3_NONE_RESET;
}
static void hclge_reset_service_task(struct work_struct *work)
{
struct hclge_dev *hdev =
container_of(work, struct hclge_dev, rst_service_task);
if (test_and_set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
return;
clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
hclge_reset_subtask(hdev);
clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
}
static void hclge_mailbox_service_task(struct work_struct *work)
{
struct hclge_dev *hdev =
container_of(work, struct hclge_dev, mbx_service_task);
if (test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
return;
clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
hclge_mbx_handler(hdev);
clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
}
static void hclge_update_vport_alive(struct hclge_dev *hdev)
{
int i;
/* start from vport 1 for PF is always alive */
for (i = 1; i < hdev->num_alloc_vport; i++) {
struct hclge_vport *vport = &hdev->vport[i];
if (time_after(jiffies, vport->last_active_jiffies + 8 * HZ))
clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
/* If vf is not alive, set to default value */
if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
vport->mps = HCLGE_MAC_DEFAULT_FRAME;
}
}
static void hclge_service_task(struct work_struct *work)
{
struct hclge_dev *hdev =
container_of(work, struct hclge_dev, service_task.work);
clear_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state);
if (hdev->hw_stats.stats_timer >= HCLGE_STATS_TIMER_INTERVAL) {
hclge_update_stats_for_all(hdev);
hdev->hw_stats.stats_timer = 0;
}
hclge_update_port_info(hdev);
hclge_update_link_status(hdev);
hclge_update_vport_alive(hdev);
hclge_sync_vlan_filter(hdev);
if (hdev->fd_arfs_expire_timer >= HCLGE_FD_ARFS_EXPIRE_TIMER_INTERVAL) {
hclge_rfs_filter_expire(hdev);
hdev->fd_arfs_expire_timer = 0;
}
hclge_task_schedule(hdev, round_jiffies_relative(HZ));
}
struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
{
/* VF handle has no client */
if (!handle->client)
return container_of(handle, struct hclge_vport, nic);
else if (handle->client->type == HNAE3_CLIENT_ROCE)
return container_of(handle, struct hclge_vport, roce);
else
return container_of(handle, struct hclge_vport, nic);
}
static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
struct hnae3_vector_info *vector_info)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hnae3_vector_info *vector = vector_info;
struct hclge_dev *hdev = vport->back;
int alloc = 0;
int i, j;
vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
vector_num = min(hdev->num_msi_left, vector_num);
for (j = 0; j < vector_num; j++) {
for (i = 1; i < hdev->num_msi; i++) {
if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
vector->vector = pci_irq_vector(hdev->pdev, i);
vector->io_addr = hdev->hw.io_base +
HCLGE_VECTOR_REG_BASE +
(i - 1) * HCLGE_VECTOR_REG_OFFSET +
vport->vport_id *
HCLGE_VECTOR_VF_OFFSET;
hdev->vector_status[i] = vport->vport_id;
hdev->vector_irq[i] = vector->vector;
vector++;
alloc++;
break;
}
}
}
hdev->num_msi_left -= alloc;
hdev->num_msi_used += alloc;
return alloc;
}
static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
{
int i;
for (i = 0; i < hdev->num_msi; i++)
if (vector == hdev->vector_irq[i])
return i;
return -EINVAL;
}
static int hclge_put_vector(struct hnae3_handle *handle, int vector)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int vector_id;
vector_id = hclge_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&hdev->pdev->dev,
"Get vector index fail. vector_id =%d\n", vector_id);
return vector_id;
}
hclge_free_vector(hdev, vector_id);
return 0;
}
static u32 hclge_get_rss_key_size(struct hnae3_handle *handle)
{
return HCLGE_RSS_KEY_SIZE;
}
static u32 hclge_get_rss_indir_size(struct hnae3_handle *handle)
{
return HCLGE_RSS_IND_TBL_SIZE;
}
static int hclge_set_rss_algo_key(struct hclge_dev *hdev,
const u8 hfunc, const u8 *key)
{
struct hclge_rss_config_cmd *req;
unsigned int key_offset = 0;
struct hclge_desc desc;
int key_counts;
int key_size;
int ret;
key_counts = HCLGE_RSS_KEY_SIZE;
req = (struct hclge_rss_config_cmd *)desc.data;
while (key_counts) {
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_GENERIC_CONFIG,
false);
req->hash_config |= (hfunc & HCLGE_RSS_HASH_ALGO_MASK);
req->hash_config |= (key_offset << HCLGE_RSS_HASH_KEY_OFFSET_B);
key_size = min(HCLGE_RSS_HASH_KEY_NUM, key_counts);
memcpy(req->hash_key,
key + key_offset * HCLGE_RSS_HASH_KEY_NUM, key_size);
key_counts -= key_size;
key_offset++;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Configure RSS config fail, status = %d\n",
ret);
return ret;
}
}
return 0;
}
static int hclge_set_rss_indir_table(struct hclge_dev *hdev, const u8 *indir)
{
struct hclge_rss_indirection_table_cmd *req;
struct hclge_desc desc;
int i, j;
int ret;
req = (struct hclge_rss_indirection_table_cmd *)desc.data;
for (i = 0; i < HCLGE_RSS_CFG_TBL_NUM; i++) {
hclge_cmd_setup_basic_desc
(&desc, HCLGE_OPC_RSS_INDIR_TABLE, false);
req->start_table_index =
cpu_to_le16(i * HCLGE_RSS_CFG_TBL_SIZE);
req->rss_set_bitmap = cpu_to_le16(HCLGE_RSS_SET_BITMAP_MSK);
for (j = 0; j < HCLGE_RSS_CFG_TBL_SIZE; j++)
req->rss_result[j] =
indir[i * HCLGE_RSS_CFG_TBL_SIZE + j];
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Configure rss indir table fail,status = %d\n",
ret);
return ret;
}
}
return 0;
}
static int hclge_set_rss_tc_mode(struct hclge_dev *hdev, u16 *tc_valid,
u16 *tc_size, u16 *tc_offset)
{
struct hclge_rss_tc_mode_cmd *req;
struct hclge_desc desc;
int ret;
int i;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_TC_MODE, false);
req = (struct hclge_rss_tc_mode_cmd *)desc.data;
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
u16 mode = 0;
hnae3_set_bit(mode, HCLGE_RSS_TC_VALID_B, (tc_valid[i] & 0x1));
hnae3_set_field(mode, HCLGE_RSS_TC_SIZE_M,
HCLGE_RSS_TC_SIZE_S, tc_size[i]);
hnae3_set_field(mode, HCLGE_RSS_TC_OFFSET_M,
HCLGE_RSS_TC_OFFSET_S, tc_offset[i]);
req->rss_tc_mode[i] = cpu_to_le16(mode);
}
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"Configure rss tc mode fail, status = %d\n", ret);
return ret;
}
static void hclge_get_rss_type(struct hclge_vport *vport)
{
if (vport->rss_tuple_sets.ipv4_tcp_en ||
vport->rss_tuple_sets.ipv4_udp_en ||
vport->rss_tuple_sets.ipv4_sctp_en ||
vport->rss_tuple_sets.ipv6_tcp_en ||
vport->rss_tuple_sets.ipv6_udp_en ||
vport->rss_tuple_sets.ipv6_sctp_en)
vport->nic.kinfo.rss_type = PKT_HASH_TYPE_L4;
else if (vport->rss_tuple_sets.ipv4_fragment_en ||
vport->rss_tuple_sets.ipv6_fragment_en)
vport->nic.kinfo.rss_type = PKT_HASH_TYPE_L3;
else
vport->nic.kinfo.rss_type = PKT_HASH_TYPE_NONE;
}
static int hclge_set_rss_input_tuple(struct hclge_dev *hdev)
{
struct hclge_rss_input_tuple_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_INPUT_TUPLE, false);
req = (struct hclge_rss_input_tuple_cmd *)desc.data;
/* Get the tuple cfg from pf */
req->ipv4_tcp_en = hdev->vport[0].rss_tuple_sets.ipv4_tcp_en;
req->ipv4_udp_en = hdev->vport[0].rss_tuple_sets.ipv4_udp_en;
req->ipv4_sctp_en = hdev->vport[0].rss_tuple_sets.ipv4_sctp_en;
req->ipv4_fragment_en = hdev->vport[0].rss_tuple_sets.ipv4_fragment_en;
req->ipv6_tcp_en = hdev->vport[0].rss_tuple_sets.ipv6_tcp_en;
req->ipv6_udp_en = hdev->vport[0].rss_tuple_sets.ipv6_udp_en;
req->ipv6_sctp_en = hdev->vport[0].rss_tuple_sets.ipv6_sctp_en;
req->ipv6_fragment_en = hdev->vport[0].rss_tuple_sets.ipv6_fragment_en;
hclge_get_rss_type(&hdev->vport[0]);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"Configure rss input fail, status = %d\n", ret);
return ret;
}
static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
u8 *key, u8 *hfunc)
{
struct hclge_vport *vport = hclge_get_vport(handle);
int i;
/* Get hash algorithm */
if (hfunc) {
switch (vport->rss_algo) {
case HCLGE_RSS_HASH_ALGO_TOEPLITZ:
*hfunc = ETH_RSS_HASH_TOP;
break;
case HCLGE_RSS_HASH_ALGO_SIMPLE:
*hfunc = ETH_RSS_HASH_XOR;
break;
default:
*hfunc = ETH_RSS_HASH_UNKNOWN;
break;
}
}
/* Get the RSS Key required by the user */
if (key)
memcpy(key, vport->rss_hash_key, HCLGE_RSS_KEY_SIZE);
/* Get indirect table */
if (indir)
for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++)
indir[i] = vport->rss_indirection_tbl[i];
return 0;
}
static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u8 hash_algo;
int ret, i;
/* Set the RSS Hash Key if specififed by the user */
if (key) {
switch (hfunc) {
case ETH_RSS_HASH_TOP:
hash_algo = HCLGE_RSS_HASH_ALGO_TOEPLITZ;
break;
case ETH_RSS_HASH_XOR:
hash_algo = HCLGE_RSS_HASH_ALGO_SIMPLE;
break;
case ETH_RSS_HASH_NO_CHANGE:
hash_algo = vport->rss_algo;
break;
default:
return -EINVAL;
}
ret = hclge_set_rss_algo_key(hdev, hash_algo, key);
if (ret)
return ret;
/* Update the shadow RSS key with user specified qids */
memcpy(vport->rss_hash_key, key, HCLGE_RSS_KEY_SIZE);
vport->rss_algo = hash_algo;
}
/* Update the shadow RSS table with user specified qids */
for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++)
vport->rss_indirection_tbl[i] = indir[i];
/* Update the hardware */
return hclge_set_rss_indir_table(hdev, vport->rss_indirection_tbl);
}
static u8 hclge_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGE_S_PORT_BIT : 0;
if (nfc->data & RXH_L4_B_2_3)
hash_sets |= HCLGE_D_PORT_BIT;
else
hash_sets &= ~HCLGE_D_PORT_BIT;
if (nfc->data & RXH_IP_SRC)
hash_sets |= HCLGE_S_IP_BIT;
else
hash_sets &= ~HCLGE_S_IP_BIT;
if (nfc->data & RXH_IP_DST)
hash_sets |= HCLGE_D_IP_BIT;
else
hash_sets &= ~HCLGE_D_IP_BIT;
if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
hash_sets |= HCLGE_V_TAG_BIT;
return hash_sets;
}
static int hclge_set_rss_tuple(struct hnae3_handle *handle,
struct ethtool_rxnfc *nfc)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_rss_input_tuple_cmd *req;
struct hclge_desc desc;
u8 tuple_sets;
int ret;
if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3))
return -EINVAL;
req = (struct hclge_rss_input_tuple_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_INPUT_TUPLE, false);
req->ipv4_tcp_en = vport->rss_tuple_sets.ipv4_tcp_en;
req->ipv4_udp_en = vport->rss_tuple_sets.ipv4_udp_en;
req->ipv4_sctp_en = vport->rss_tuple_sets.ipv4_sctp_en;
req->ipv4_fragment_en = vport->rss_tuple_sets.ipv4_fragment_en;
req->ipv6_tcp_en = vport->rss_tuple_sets.ipv6_tcp_en;
req->ipv6_udp_en = vport->rss_tuple_sets.ipv6_udp_en;
req->ipv6_sctp_en = vport->rss_tuple_sets.ipv6_sctp_en;
req->ipv6_fragment_en = vport->rss_tuple_sets.ipv6_fragment_en;
tuple_sets = hclge_get_rss_hash_bits(nfc);
switch (nfc->flow_type) {
case TCP_V4_FLOW:
req->ipv4_tcp_en = tuple_sets;
break;
case TCP_V6_FLOW:
req->ipv6_tcp_en = tuple_sets;
break;
case UDP_V4_FLOW:
req->ipv4_udp_en = tuple_sets;
break;
case UDP_V6_FLOW:
req->ipv6_udp_en = tuple_sets;
break;
case SCTP_V4_FLOW:
req->ipv4_sctp_en = tuple_sets;
break;
case SCTP_V6_FLOW:
if ((nfc->data & RXH_L4_B_0_1) ||
(nfc->data & RXH_L4_B_2_3))
return -EINVAL;
req->ipv6_sctp_en = tuple_sets;
break;
case IPV4_FLOW:
req->ipv4_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER;
break;
case IPV6_FLOW:
req->ipv6_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER;
break;
default:
return -EINVAL;
}
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Set rss tuple fail, status = %d\n", ret);
return ret;
}
vport->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
vport->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
vport->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
vport->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
vport->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
vport->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
vport->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
vport->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
hclge_get_rss_type(vport);
return 0;
}
static int hclge_get_rss_tuple(struct hnae3_handle *handle,
struct ethtool_rxnfc *nfc)
{
struct hclge_vport *vport = hclge_get_vport(handle);
u8 tuple_sets;
nfc->data = 0;
switch (nfc->flow_type) {
case TCP_V4_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv4_tcp_en;
break;
case UDP_V4_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv4_udp_en;
break;
case TCP_V6_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv6_tcp_en;
break;
case UDP_V6_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv6_udp_en;
break;
case SCTP_V4_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv4_sctp_en;
break;
case SCTP_V6_FLOW:
tuple_sets = vport->rss_tuple_sets.ipv6_sctp_en;
break;
case IPV4_FLOW:
case IPV6_FLOW:
tuple_sets = HCLGE_S_IP_BIT | HCLGE_D_IP_BIT;
break;
default:
return -EINVAL;
}
if (!tuple_sets)
return 0;
if (tuple_sets & HCLGE_D_PORT_BIT)
nfc->data |= RXH_L4_B_2_3;
if (tuple_sets & HCLGE_S_PORT_BIT)
nfc->data |= RXH_L4_B_0_1;
if (tuple_sets & HCLGE_D_IP_BIT)
nfc->data |= RXH_IP_DST;
if (tuple_sets & HCLGE_S_IP_BIT)
nfc->data |= RXH_IP_SRC;
return 0;
}
static int hclge_get_tc_size(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hdev->rss_size_max;
}
int hclge_rss_init_hw(struct hclge_dev *hdev)
{
struct hclge_vport *vport = hdev->vport;
u8 *rss_indir = vport[0].rss_indirection_tbl;
u16 rss_size = vport[0].alloc_rss_size;
u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
u8 *key = vport[0].rss_hash_key;
u8 hfunc = vport[0].rss_algo;
u16 tc_valid[HCLGE_MAX_TC_NUM];
u16 roundup_size;
unsigned int i;
int ret;
ret = hclge_set_rss_indir_table(hdev, rss_indir);
if (ret)
return ret;
ret = hclge_set_rss_algo_key(hdev, hfunc, key);
if (ret)
return ret;
ret = hclge_set_rss_input_tuple(hdev);
if (ret)
return ret;
/* Each TC have the same queue size, and tc_size set to hardware is
* the log2 of roundup power of two of rss_size, the acutal queue
* size is limited by indirection table.
*/
if (rss_size > HCLGE_RSS_TC_SIZE_7 || rss_size == 0) {
dev_err(&hdev->pdev->dev,
"Configure rss tc size failed, invalid TC_SIZE = %d\n",
rss_size);
return -EINVAL;
}
roundup_size = roundup_pow_of_two(rss_size);
roundup_size = ilog2(roundup_size);
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
tc_valid[i] = 0;
if (!(hdev->hw_tc_map & BIT(i)))
continue;
tc_valid[i] = 1;
tc_size[i] = roundup_size;
tc_offset[i] = rss_size * i;
}
return hclge_set_rss_tc_mode(hdev, tc_valid, tc_size, tc_offset);
}
void hclge_rss_indir_init_cfg(struct hclge_dev *hdev)
{
struct hclge_vport *vport = hdev->vport;
int i, j;
for (j = 0; j < hdev->num_vmdq_vport + 1; j++) {
for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++)
vport[j].rss_indirection_tbl[i] =
i % vport[j].alloc_rss_size;
}
}
static void hclge_rss_init_cfg(struct hclge_dev *hdev)
{
int i, rss_algo = HCLGE_RSS_HASH_ALGO_TOEPLITZ;
struct hclge_vport *vport = hdev->vport;
if (hdev->pdev->revision >= 0x21)
rss_algo = HCLGE_RSS_HASH_ALGO_SIMPLE;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
vport[i].rss_tuple_sets.ipv4_tcp_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_tuple_sets.ipv4_udp_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_tuple_sets.ipv4_sctp_en =
HCLGE_RSS_INPUT_TUPLE_SCTP;
vport[i].rss_tuple_sets.ipv4_fragment_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_tuple_sets.ipv6_tcp_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_tuple_sets.ipv6_udp_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_tuple_sets.ipv6_sctp_en =
HCLGE_RSS_INPUT_TUPLE_SCTP;
vport[i].rss_tuple_sets.ipv6_fragment_en =
HCLGE_RSS_INPUT_TUPLE_OTHER;
vport[i].rss_algo = rss_algo;
memcpy(vport[i].rss_hash_key, hclge_hash_key,
HCLGE_RSS_KEY_SIZE);
}
hclge_rss_indir_init_cfg(hdev);
}
int hclge_bind_ring_with_vector(struct hclge_vport *vport,
int vector_id, bool en,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclge_dev *hdev = vport->back;
struct hnae3_ring_chain_node *node;
struct hclge_desc desc;
struct hclge_ctrl_vector_chain_cmd *req =
(struct hclge_ctrl_vector_chain_cmd *)desc.data;
enum hclge_cmd_status status;
enum hclge_opcode_type op;
u16 tqp_type_and_id;
int i;
op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
hclge_cmd_setup_basic_desc(&desc, op, false);
req->int_vector_id = vector_id;
i = 0;
for (node = ring_chain; node; node = node->next) {
tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
hnae3_set_field(tqp_type_and_id, HCLGE_INT_TYPE_M,
HCLGE_INT_TYPE_S,
hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
HCLGE_TQP_ID_S, node->tqp_index);
hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
HCLGE_INT_GL_IDX_S,
hnae3_get_field(node->int_gl_idx,
HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S));
req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
req->vfid = vport->vport_id;
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Map TQP fail, status is %d.\n",
status);
return -EIO;
}
i = 0;
hclge_cmd_setup_basic_desc(&desc,
op,
false);
req->int_vector_id = vector_id;
}
}
if (i > 0) {
req->int_cause_num = i;
req->vfid = vport->vport_id;
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Map TQP fail, status is %d.\n", status);
return -EIO;
}
}
return 0;
}
static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int vector_id;
vector_id = hclge_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&hdev->pdev->dev,
"Get vector index fail. vector_id =%d\n", vector_id);
return vector_id;
}
return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
}
static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int vector_id, ret;
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
return 0;
vector_id = hclge_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&handle->pdev->dev,
"Get vector index fail. ret =%d\n", vector_id);
return vector_id;
}
ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
if (ret)
dev_err(&handle->pdev->dev,
"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
vector_id, ret);
return ret;
}
static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev,
struct hclge_promisc_param *param)
{
struct hclge_promisc_cfg_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);
req = (struct hclge_promisc_cfg_cmd *)desc.data;
req->vf_id = param->vf_id;
/* HCLGE_PROMISC_TX_EN_B and HCLGE_PROMISC_RX_EN_B are not supported on
* pdev revision(0x20), new revision support them. The
* value of this two fields will not return error when driver
* send command to fireware in revision(0x20).
*/
req->flag = (param->enable << HCLGE_PROMISC_EN_B) |
HCLGE_PROMISC_TX_EN_B | HCLGE_PROMISC_RX_EN_B;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"Set promisc mode fail, status is %d.\n", ret);
return ret;
}
static void hclge_promisc_param_init(struct hclge_promisc_param *param,
bool en_uc, bool en_mc, bool en_bc,
int vport_id)
{
if (!param)
return;
memset(param, 0, sizeof(struct hclge_promisc_param));
if (en_uc)
param->enable = HCLGE_PROMISC_EN_UC;
if (en_mc)
param->enable |= HCLGE_PROMISC_EN_MC;
if (en_bc)
param->enable |= HCLGE_PROMISC_EN_BC;
param->vf_id = vport_id;
}
int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
bool en_mc_pmc, bool en_bc_pmc)
{
struct hclge_dev *hdev = vport->back;
struct hclge_promisc_param param;
hclge_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc,
vport->vport_id);
return hclge_cmd_set_promisc_mode(hdev, &param);
}
static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
bool en_mc_pmc)
{
struct hclge_vport *vport = hclge_get_vport(handle);
bool en_bc_pmc = true;
/* For revision 0x20, if broadcast promisc enabled, vlan filter is
* always bypassed. So broadcast promisc should be disabled until
* user enable promisc mode
*/
if (handle->pdev->revision == 0x20)
en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;
return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
en_bc_pmc);
}
static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
{
struct hclge_get_fd_mode_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);
req = (struct hclge_get_fd_mode_cmd *)desc.data;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
return ret;
}
*fd_mode = req->mode;
return ret;
}
static int hclge_get_fd_allocation(struct hclge_dev *hdev,
u32 *stage1_entry_num,
u32 *stage2_entry_num,
u16 *stage1_counter_num,
u16 *stage2_counter_num)
{
struct hclge_get_fd_allocation_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);
req = (struct hclge_get_fd_allocation_cmd *)desc.data;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
ret);
return ret;
}
*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);
return ret;
}
static int hclge_set_fd_key_config(struct hclge_dev *hdev, int stage_num)
{
struct hclge_set_fd_key_config_cmd *req;
struct hclge_fd_key_cfg *stage;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);
req = (struct hclge_set_fd_key_config_cmd *)desc.data;
stage = &hdev->fd_cfg.key_cfg[stage_num];
req->stage = stage_num;
req->key_select = stage->key_sel;
req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
req->tuple_mask = cpu_to_le32(~stage->tuple_active);
req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);
return ret;
}
static int hclge_init_fd_config(struct hclge_dev *hdev)
{
#define LOW_2_WORDS 0x03
struct hclge_fd_key_cfg *key_cfg;
int ret;
if (!hnae3_dev_fd_supported(hdev))
return 0;
ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
if (ret)
return ret;
switch (hdev->fd_cfg.fd_mode) {
case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
break;
case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
break;
default:
dev_err(&hdev->pdev->dev,
"Unsupported flow director mode %d\n",
hdev->fd_cfg.fd_mode);
return -EOPNOTSUPP;
}
hdev->fd_cfg.proto_support =
TCP_V4_FLOW | UDP_V4_FLOW | SCTP_V4_FLOW | TCP_V6_FLOW |
UDP_V6_FLOW | SCTP_V6_FLOW | IPV4_USER_FLOW | IPV6_USER_FLOW;
key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE,
key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
key_cfg->outer_sipv6_word_en = 0;
key_cfg->outer_dipv6_word_en = 0;
key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
/* If use max 400bit key, we can support tuples for ether type */
if (hdev->fd_cfg.max_key_length == MAX_KEY_LENGTH) {
hdev->fd_cfg.proto_support |= ETHER_FLOW;
key_cfg->tuple_active |=
BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
}
/* roce_type is used to filter roce frames
* dst_vport is used to specify the rule
*/
key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);
ret = hclge_get_fd_allocation(hdev,
&hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
&hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
&hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
&hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
if (ret)
return ret;
return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
}
static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
int loc, u8 *key, bool is_add)
{
struct hclge_fd_tcam_config_1_cmd *req1;
struct hclge_fd_tcam_config_2_cmd *req2;
struct hclge_fd_tcam_config_3_cmd *req3;
struct hclge_desc desc[3];
int ret;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);
req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;
req1->stage = stage;
req1->xy_sel = sel_x ? 1 : 0;
hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
req1->index = cpu_to_le32(loc);
req1->entry_vld = sel_x ? is_add : 0;
if (key) {
memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
sizeof(req2->tcam_data));
memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
}
ret = hclge_cmd_send(&hdev->hw, desc, 3);
if (ret)
dev_err(&hdev->pdev->dev,
"config tcam key fail, ret=%d\n",
ret);
return ret;
}
static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
struct hclge_fd_ad_data *action)
{
struct hclge_fd_ad_config_cmd *req;
struct hclge_desc desc;
u64 ad_data = 0;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);
req = (struct hclge_fd_ad_config_cmd *)desc.data;
req->index = cpu_to_le32(loc);
req->stage = stage;
hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
action->write_rule_id_to_bd);
hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
action->rule_id);
ad_data <<= 32;
hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
action->forward_to_direct_queue);
hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
action->queue_id);
hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
action->counter_id);
req->ad_data = cpu_to_le64(ad_data);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);
return ret;
}
static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
struct hclge_fd_rule *rule)
{
u16 tmp_x_s, tmp_y_s;
u32 tmp_x_l, tmp_y_l;
int i;
if (rule->unused_tuple & tuple_bit)
return true;
switch (tuple_bit) {
case 0:
return false;
case BIT(INNER_DST_MAC):
for (i = 0; i < ETH_ALEN; i++) {
calc_x(key_x[ETH_ALEN - 1 - i], rule->tuples.dst_mac[i],
rule->tuples_mask.dst_mac[i]);
calc_y(key_y[ETH_ALEN - 1 - i], rule->tuples.dst_mac[i],
rule->tuples_mask.dst_mac[i]);
}
return true;
case BIT(INNER_SRC_MAC):
for (i = 0; i < ETH_ALEN; i++) {
calc_x(key_x[ETH_ALEN - 1 - i], rule->tuples.src_mac[i],
rule->tuples.src_mac[i]);
calc_y(key_y[ETH_ALEN - 1 - i], rule->tuples.src_mac[i],
rule->tuples.src_mac[i]);
}
return true;
case BIT(INNER_VLAN_TAG_FST):
calc_x(tmp_x_s, rule->tuples.vlan_tag1,
rule->tuples_mask.vlan_tag1);
calc_y(tmp_y_s, rule->tuples.vlan_tag1,
rule->tuples_mask.vlan_tag1);
*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
return true;
case BIT(INNER_ETH_TYPE):
calc_x(tmp_x_s, rule->tuples.ether_proto,
rule->tuples_mask.ether_proto);
calc_y(tmp_y_s, rule->tuples.ether_proto,
rule->tuples_mask.ether_proto);
*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
return true;
case BIT(INNER_IP_TOS):
calc_x(*key_x, rule->tuples.ip_tos, rule->tuples_mask.ip_tos);
calc_y(*key_y, rule->tuples.ip_tos, rule->tuples_mask.ip_tos);
return true;
case BIT(INNER_IP_PROTO):
calc_x(*key_x, rule->tuples.ip_proto,
rule->tuples_mask.ip_proto);
calc_y(*key_y, rule->tuples.ip_proto,
rule->tuples_mask.ip_proto);
return true;
case BIT(INNER_SRC_IP):
calc_x(tmp_x_l, rule->tuples.src_ip[IPV4_INDEX],
rule->tuples_mask.src_ip[IPV4_INDEX]);
calc_y(tmp_y_l, rule->tuples.src_ip[IPV4_INDEX],
rule->tuples_mask.src_ip[IPV4_INDEX]);
*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
return true;
case BIT(INNER_DST_IP):
calc_x(tmp_x_l, rule->tuples.dst_ip[IPV4_INDEX],
rule->tuples_mask.dst_ip[IPV4_INDEX]);
calc_y(tmp_y_l, rule->tuples.dst_ip[IPV4_INDEX],
rule->tuples_mask.dst_ip[IPV4_INDEX]);
*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
return true;
case BIT(INNER_SRC_PORT):
calc_x(tmp_x_s, rule->tuples.src_port,
rule->tuples_mask.src_port);
calc_y(tmp_y_s, rule->tuples.src_port,
rule->tuples_mask.src_port);
*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
return true;
case BIT(INNER_DST_PORT):
calc_x(tmp_x_s, rule->tuples.dst_port,
rule->tuples_mask.dst_port);
calc_y(tmp_y_s, rule->tuples.dst_port,
rule->tuples_mask.dst_port);
*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
return true;
default:
return false;
}
}
static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
u8 vf_id, u8 network_port_id)
{
u32 port_number = 0;
if (port_type == HOST_PORT) {
hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
pf_id);
hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
vf_id);
hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
} else {
hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
HCLGE_NETWORK_PORT_ID_S, network_port_id);
hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
}
return port_number;
}
static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
__le32 *key_x, __le32 *key_y,
struct hclge_fd_rule *rule)
{
u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
u8 cur_pos = 0, tuple_size, shift_bits;
unsigned int i;
for (i = 0; i < MAX_META_DATA; i++) {
tuple_size = meta_data_key_info[i].key_length;
tuple_bit = key_cfg->meta_data_active & BIT(i);
switch (tuple_bit) {
case BIT(ROCE_TYPE):
hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
cur_pos += tuple_size;
break;
case BIT(DST_VPORT):
port_number = hclge_get_port_number(HOST_PORT, 0,
rule->vf_id, 0);
hnae3_set_field(meta_data,
GENMASK(cur_pos + tuple_size, cur_pos),
cur_pos, port_number);
cur_pos += tuple_size;
break;
default:
break;
}
}
calc_x(tmp_x, meta_data, 0xFFFFFFFF);
calc_y(tmp_y, meta_data, 0xFFFFFFFF);
shift_bits = sizeof(meta_data) * 8 - cur_pos;
*key_x = cpu_to_le32(tmp_x << shift_bits);
*key_y = cpu_to_le32(tmp_y << shift_bits);
}
/* A complete key is combined with meta data key and tuple key.
* Meta data key is stored at the MSB region, and tuple key is stored at
* the LSB region, unused bits will be filled 0.
*/
static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
struct hclge_fd_rule *rule)
{
struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
u8 *cur_key_x, *cur_key_y;
unsigned int i;
int ret, tuple_size;
u8 meta_data_region;
memset(key_x, 0, sizeof(key_x));
memset(key_y, 0, sizeof(key_y));
cur_key_x = key_x;
cur_key_y = key_y;
for (i = 0 ; i < MAX_TUPLE; i++) {
bool tuple_valid;
u32 check_tuple;
tuple_size = tuple_key_info[i].key_length / 8;
check_tuple = key_cfg->tuple_active & BIT(i);
tuple_valid = hclge_fd_convert_tuple(check_tuple, cur_key_x,
cur_key_y, rule);
if (tuple_valid) {
cur_key_x += tuple_size;
cur_key_y += tuple_size;
}
}
meta_data_region = hdev->fd_cfg.max_key_length / 8 -
MAX_META_DATA_LENGTH / 8;
hclge_fd_convert_meta_data(key_cfg,
(__le32 *)(key_x + meta_data_region),
(__le32 *)(key_y + meta_data_region),
rule);
ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
true);
if (ret) {
dev_err(&hdev->pdev->dev,
"fd key_y config fail, loc=%d, ret=%d\n",
rule->queue_id, ret);
return ret;
}
ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
true);
if (ret)
dev_err(&hdev->pdev->dev,
"fd key_x config fail, loc=%d, ret=%d\n",
rule->queue_id, ret);
return ret;
}
static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
struct hclge_fd_rule *rule)
{
struct hclge_fd_ad_data ad_data;
ad_data.ad_id = rule->location;
if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
ad_data.drop_packet = true;
ad_data.forward_to_direct_queue = false;
ad_data.queue_id = 0;
} else {
ad_data.drop_packet = false;
ad_data.forward_to_direct_queue = true;
ad_data.queue_id = rule->queue_id;
}
ad_data.use_counter = false;
ad_data.counter_id = 0;
ad_data.use_next_stage = false;
ad_data.next_input_key = 0;
ad_data.write_rule_id_to_bd = true;
ad_data.rule_id = rule->location;
return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
}
static int hclge_fd_check_spec(struct hclge_dev *hdev,
struct ethtool_rx_flow_spec *fs, u32 *unused)
{
struct ethtool_tcpip4_spec *tcp_ip4_spec;
struct ethtool_usrip4_spec *usr_ip4_spec;
struct ethtool_tcpip6_spec *tcp_ip6_spec;
struct ethtool_usrip6_spec *usr_ip6_spec;
struct ethhdr *ether_spec;
if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
return -EINVAL;
if (!(fs->flow_type & hdev->fd_cfg.proto_support))
return -EOPNOTSUPP;
if ((fs->flow_type & FLOW_EXT) &&
(fs->h_ext.data[0] != 0 || fs->h_ext.data[1] != 0)) {
dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
return -EOPNOTSUPP;
}
switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
case SCTP_V4_FLOW:
case TCP_V4_FLOW:
case UDP_V4_FLOW:
tcp_ip4_spec = &fs->h_u.tcp_ip4_spec;
*unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
if (!tcp_ip4_spec->ip4src)
*unused |= BIT(INNER_SRC_IP);
if (!tcp_ip4_spec->ip4dst)
*unused |= BIT(INNER_DST_IP);
if (!tcp_ip4_spec->psrc)
*unused |= BIT(INNER_SRC_PORT);
if (!tcp_ip4_spec->pdst)
*unused |= BIT(INNER_DST_PORT);
if (!tcp_ip4_spec->tos)
*unused |= BIT(INNER_IP_TOS);
break;
case IP_USER_FLOW:
usr_ip4_spec = &fs->h_u.usr_ip4_spec;
*unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
if (!usr_ip4_spec->ip4src)
*unused |= BIT(INNER_SRC_IP);
if (!usr_ip4_spec->ip4dst)
*unused |= BIT(INNER_DST_IP);
if (!usr_ip4_spec->tos)
*unused |= BIT(INNER_IP_TOS);
if (!usr_ip4_spec->proto)
*unused |= BIT(INNER_IP_PROTO);
if (usr_ip4_spec->l4_4_bytes)
return -EOPNOTSUPP;
if (usr_ip4_spec->ip_ver != ETH_RX_NFC_IP4)
return -EOPNOTSUPP;
break;
case SCTP_V6_FLOW:
case TCP_V6_FLOW:
case UDP_V6_FLOW:
tcp_ip6_spec = &fs->h_u.tcp_ip6_spec;
*unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
BIT(INNER_IP_TOS);
/* check whether src/dst ip address used */
if (!tcp_ip6_spec->ip6src[0] && !tcp_ip6_spec->ip6src[1] &&
!tcp_ip6_spec->ip6src[2] && !tcp_ip6_spec->ip6src[3])
*unused |= BIT(INNER_SRC_IP);
if (!tcp_ip6_spec->ip6dst[0] && !tcp_ip6_spec->ip6dst[1] &&
!tcp_ip6_spec->ip6dst[2] && !tcp_ip6_spec->ip6dst[3])
*unused |= BIT(INNER_DST_IP);
if (!tcp_ip6_spec->psrc)
*unused |= BIT(INNER_SRC_PORT);
if (!tcp_ip6_spec->pdst)
*unused |= BIT(INNER_DST_PORT);
if (tcp_ip6_spec->tclass)
return -EOPNOTSUPP;
break;
case IPV6_USER_FLOW:
usr_ip6_spec = &fs->h_u.usr_ip6_spec;
*unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
BIT(INNER_IP_TOS) | BIT(INNER_SRC_PORT) |
BIT(INNER_DST_PORT);
/* check whether src/dst ip address used */
if (!usr_ip6_spec->ip6src[0] && !usr_ip6_spec->ip6src[1] &&
!usr_ip6_spec->ip6src[2] && !usr_ip6_spec->ip6src[3])
*unused |= BIT(INNER_SRC_IP);
if (!usr_ip6_spec->ip6dst[0] && !usr_ip6_spec->ip6dst[1] &&
!usr_ip6_spec->ip6dst[2] && !usr_ip6_spec->ip6dst[3])
*unused |= BIT(INNER_DST_IP);
if (!usr_ip6_spec->l4_proto)
*unused |= BIT(INNER_IP_PROTO);
if (usr_ip6_spec->tclass)
return -EOPNOTSUPP;
if (usr_ip6_spec->l4_4_bytes)
return -EOPNOTSUPP;
break;
case ETHER_FLOW:
ether_spec = &fs->h_u.ether_spec;
*unused |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);
if (is_zero_ether_addr(ether_spec->h_source))
*unused |= BIT(INNER_SRC_MAC);
if (is_zero_ether_addr(ether_spec->h_dest))
*unused |= BIT(INNER_DST_MAC);
if (!ether_spec->h_proto)
*unused |= BIT(INNER_ETH_TYPE);
break;
default:
return -EOPNOTSUPP;
}
if ((fs->flow_type & FLOW_EXT)) {
if (fs->h_ext.vlan_etype)
return -EOPNOTSUPP;
if (!fs->h_ext.vlan_tci)
*unused |= BIT(INNER_VLAN_TAG_FST);
if (fs->m_ext.vlan_tci) {
if (be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID)
return -EINVAL;
}
} else {
*unused |= BIT(INNER_VLAN_TAG_FST);
}
if (fs->flow_type & FLOW_MAC_EXT) {
if (!(hdev->fd_cfg.proto_support & ETHER_FLOW))
return -EOPNOTSUPP;
if (is_zero_ether_addr(fs->h_ext.h_dest))
*unused |= BIT(INNER_DST_MAC);
else
*unused &= ~(BIT(INNER_DST_MAC));
}
return 0;
}
static bool hclge_fd_rule_exist(struct hclge_dev *hdev, u16 location)
{
struct hclge_fd_rule *rule = NULL;
struct hlist_node *node2;
spin_lock_bh(&hdev->fd_rule_lock);
hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
if (rule->location >= location)
break;
}
spin_unlock_bh(&hdev->fd_rule_lock);
return rule && rule->location == location;
}
/* make sure being called after lock up with fd_rule_lock */
static int hclge_fd_update_rule_list(struct hclge_dev *hdev,
struct hclge_fd_rule *new_rule,
u16 location,
bool is_add)
{
struct hclge_fd_rule *rule = NULL, *parent = NULL;
struct hlist_node *node2;
if (is_add && !new_rule)
return -EINVAL;
hlist_for_each_entry_safe(rule, node2,
&hdev->fd_rule_list, rule_node) {
if (rule->location >= location)
break;
parent = rule;
}
if (rule && rule->location == location) {
hlist_del(&rule->rule_node);
kfree(rule);
hdev->hclge_fd_rule_num--;
if (!is_add) {
if (!hdev->hclge_fd_rule_num)
hdev->fd_active_type = HCLGE_FD_RULE_NONE;
clear_bit(location, hdev->fd_bmap);
return 0;
}
} else if (!is_add) {
dev_err(&hdev->pdev->dev,
"delete fail, rule %d is inexistent\n",
location);
return -EINVAL;
}
INIT_HLIST_NODE(&new_rule->rule_node);
if (parent)
hlist_add_behind(&new_rule->rule_node, &parent->rule_node);
else
hlist_add_head(&new_rule->rule_node, &hdev->fd_rule_list);
set_bit(location, hdev->fd_bmap);
hdev->hclge_fd_rule_num++;
hdev->fd_active_type = new_rule->rule_type;
return 0;
}
static int hclge_fd_get_tuple(struct hclge_dev *hdev,
struct ethtool_rx_flow_spec *fs,
struct hclge_fd_rule *rule)
{
u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
switch (flow_type) {
case SCTP_V4_FLOW:
case TCP_V4_FLOW:
case UDP_V4_FLOW:
rule->tuples.src_ip[IPV4_INDEX] =
be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
rule->tuples_mask.src_ip[IPV4_INDEX] =
be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);
rule->tuples.dst_ip[IPV4_INDEX] =
be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
rule->tuples_mask.dst_ip[IPV4_INDEX] =
be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);
rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
rule->tuples_mask.src_port =
be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);
rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
rule->tuples_mask.dst_port =
be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);
rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;
rule->tuples.ether_proto = ETH_P_IP;
rule->tuples_mask.ether_proto = 0xFFFF;
break;
case IP_USER_FLOW:
rule->tuples.src_ip[IPV4_INDEX] =
be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
rule->tuples_mask.src_ip[IPV4_INDEX] =
be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);
rule->tuples.dst_ip[IPV4_INDEX] =
be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
rule->tuples_mask.dst_ip[IPV4_INDEX] =
be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);
rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;
rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;
rule->tuples.ether_proto = ETH_P_IP;
rule->tuples_mask.ether_proto = 0xFFFF;
break;
case SCTP_V6_FLOW:
case TCP_V6_FLOW:
case UDP_V6_FLOW:
be32_to_cpu_array(rule->tuples.src_ip,
fs->h_u.tcp_ip6_spec.ip6src, IPV6_SIZE);
be32_to_cpu_array(rule->tuples_mask.src_ip,
fs->m_u.tcp_ip6_spec.ip6src, IPV6_SIZE);
be32_to_cpu_array(rule->tuples.dst_ip,
fs->h_u.tcp_ip6_spec.ip6dst, IPV6_SIZE);
be32_to_cpu_array(rule->tuples_mask.dst_ip,
fs->m_u.tcp_ip6_spec.ip6dst, IPV6_SIZE);
rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
rule->tuples_mask.src_port =
be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);
rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
rule->tuples_mask.dst_port =
be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);
rule->tuples.ether_proto = ETH_P_IPV6;
rule->tuples_mask.ether_proto = 0xFFFF;
break;
case IPV6_USER_FLOW:
be32_to_cpu_array(rule->tuples.src_ip,
fs->h_u.usr_ip6_spec.ip6src, IPV6_SIZE);
be32_to_cpu_array(rule->tuples_mask.src_ip,
fs->m_u.usr_ip6_spec.ip6src, IPV6_SIZE);
be32_to_cpu_array(rule->tuples.dst_ip,
fs->h_u.usr_ip6_spec.ip6dst, IPV6_SIZE);
be32_to_cpu_array(rule->tuples_mask.dst_ip,
fs->m_u.usr_ip6_spec.ip6dst, IPV6_SIZE);
rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;
rule->tuples.ether_proto = ETH_P_IPV6;
rule->tuples_mask.ether_proto = 0xFFFF;
break;
case ETHER_FLOW:
ether_addr_copy(rule->tuples.src_mac,
fs->h_u.ether_spec.h_source);
ether_addr_copy(rule->tuples_mask.src_mac,
fs->m_u.ether_spec.h_source);
ether_addr_copy(rule->tuples.dst_mac,
fs->h_u.ether_spec.h_dest);
ether_addr_copy(rule->tuples_mask.dst_mac,
fs->m_u.ether_spec.h_dest);
rule->tuples.ether_proto =
be16_to_cpu(fs->h_u.ether_spec.h_proto);
rule->tuples_mask.ether_proto =
be16_to_cpu(fs->m_u.ether_spec.h_proto);
break;
default:
return -EOPNOTSUPP;
}
switch (flow_type) {
case SCTP_V4_FLOW:
case SCTP_V6_FLOW:
rule->tuples.ip_proto = IPPROTO_SCTP;
rule->tuples_mask.ip_proto = 0xFF;
break;
case TCP_V4_FLOW:
case TCP_V6_FLOW:
rule->tuples.ip_proto = IPPROTO_TCP;
rule->tuples_mask.ip_proto = 0xFF;
break;
case UDP_V4_FLOW:
case UDP_V6_FLOW:
rule->tuples.ip_proto = IPPROTO_UDP;
rule->tuples_mask.ip_proto = 0xFF;
break;
default:
break;
}
if ((fs->flow_type & FLOW_EXT)) {
rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
}
if (fs->flow_type & FLOW_MAC_EXT) {
ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
}
return 0;
}
/* make sure being called after lock up with fd_rule_lock */
static int hclge_fd_config_rule(struct hclge_dev *hdev,
struct hclge_fd_rule *rule)
{
int ret;
if (!rule) {
dev_err(&hdev->pdev->dev,
"The flow director rule is NULL\n");
return -EINVAL;
}
/* it will never fail here, so needn't to check return value */
hclge_fd_update_rule_list(hdev, rule, rule->location, true);
ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
if (ret)
goto clear_rule;
ret = hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
if (ret)
goto clear_rule;
return 0;
clear_rule:
hclge_fd_update_rule_list(hdev, rule, rule->location, false);
return ret;
}
static int hclge_add_fd_entry(struct hnae3_handle *handle,
struct ethtool_rxnfc *cmd)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u16 dst_vport_id = 0, q_index = 0;
struct ethtool_rx_flow_spec *fs;
struct hclge_fd_rule *rule;
u32 unused = 0;
u8 action;
int ret;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
if (!hdev->fd_en) {
dev_warn(&hdev->pdev->dev,
"Please enable flow director first\n");
return -EOPNOTSUPP;
}
fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
ret = hclge_fd_check_spec(hdev, fs, &unused);
if (ret) {
dev_err(&hdev->pdev->dev, "Check fd spec failed\n");
return ret;
}
if (fs->ring_cookie == RX_CLS_FLOW_DISC) {
action = HCLGE_FD_ACTION_DROP_PACKET;
} else {
u32 ring = ethtool_get_flow_spec_ring(fs->ring_cookie);
u8 vf = ethtool_get_flow_spec_ring_vf(fs->ring_cookie);
u16 tqps;
if (vf > hdev->num_req_vfs) {
dev_err(&hdev->pdev->dev,
"Error: vf id (%d) > max vf num (%d)\n",
vf, hdev->num_req_vfs);
return -EINVAL;
}
dst_vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
tqps = vf ? hdev->vport[vf].alloc_tqps : vport->alloc_tqps;
if (ring >= tqps) {
dev_err(&hdev->pdev->dev,
"Error: queue id (%d) > max tqp num (%d)\n",
ring, tqps - 1);
return -EINVAL;
}
action = HCLGE_FD_ACTION_ACCEPT_PACKET;
q_index = ring;
}
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
if (!rule)
return -ENOMEM;
ret = hclge_fd_get_tuple(hdev, fs, rule);
if (ret) {
kfree(rule);
return ret;
}
rule->flow_type = fs->flow_type;
rule->location = fs->location;
rule->unused_tuple = unused;
rule->vf_id = dst_vport_id;
rule->queue_id = q_index;
rule->action = action;
rule->rule_type = HCLGE_FD_EP_ACTIVE;
/* to avoid rule conflict, when user configure rule by ethtool,
* we need to clear all arfs rules
*/
hclge_clear_arfs_rules(handle);
spin_lock_bh(&hdev->fd_rule_lock);
ret = hclge_fd_config_rule(hdev, rule);
spin_unlock_bh(&hdev->fd_rule_lock);
return ret;
}
static int hclge_del_fd_entry(struct hnae3_handle *handle,
struct ethtool_rxnfc *cmd)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct ethtool_rx_flow_spec *fs;
int ret;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
return -EINVAL;
if (!hclge_fd_rule_exist(hdev, fs->location)) {
dev_err(&hdev->pdev->dev,
"Delete fail, rule %d is inexistent\n", fs->location);
return -ENOENT;
}
ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
NULL, false);
if (ret)
return ret;
spin_lock_bh(&hdev->fd_rule_lock);
ret = hclge_fd_update_rule_list(hdev, NULL, fs->location, false);
spin_unlock_bh(&hdev->fd_rule_lock);
return ret;
}
static void hclge_del_all_fd_entries(struct hnae3_handle *handle,
bool clear_list)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_fd_rule *rule;
struct hlist_node *node;
u16 location;
if (!hnae3_dev_fd_supported(hdev))
return;
spin_lock_bh(&hdev->fd_rule_lock);
for_each_set_bit(location, hdev->fd_bmap,
hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
NULL, false);
if (clear_list) {
hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
rule_node) {
hlist_del(&rule->rule_node);
kfree(rule);
}
hdev->fd_active_type = HCLGE_FD_RULE_NONE;
hdev->hclge_fd_rule_num = 0;
bitmap_zero(hdev->fd_bmap,
hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
}
spin_unlock_bh(&hdev->fd_rule_lock);
}
static int hclge_restore_fd_entries(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_fd_rule *rule;
struct hlist_node *node;
int ret;
/* Return ok here, because reset error handling will check this
* return value. If error is returned here, the reset process will
* fail.
*/
if (!hnae3_dev_fd_supported(hdev))
return 0;
/* if fd is disabled, should not restore it when reset */
if (!hdev->fd_en)
return 0;
spin_lock_bh(&hdev->fd_rule_lock);
hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
if (!ret)
ret = hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
if (ret) {
dev_warn(&hdev->pdev->dev,
"Restore rule %d failed, remove it\n",
rule->location);
clear_bit(rule->location, hdev->fd_bmap);
hlist_del(&rule->rule_node);
kfree(rule);
hdev->hclge_fd_rule_num--;
}
}
if (hdev->hclge_fd_rule_num)
hdev->fd_active_type = HCLGE_FD_EP_ACTIVE;
spin_unlock_bh(&hdev->fd_rule_lock);
return 0;
}
static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
struct ethtool_rxnfc *cmd)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
cmd->rule_cnt = hdev->hclge_fd_rule_num;
cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
return 0;
}
static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
struct ethtool_rxnfc *cmd)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_fd_rule *rule = NULL;
struct hclge_dev *hdev = vport->back;
struct ethtool_rx_flow_spec *fs;
struct hlist_node *node2;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
spin_lock_bh(&hdev->fd_rule_lock);
hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
if (rule->location >= fs->location)
break;
}
if (!rule || fs->location != rule->location) {
spin_unlock_bh(&hdev->fd_rule_lock);
return -ENOENT;
}
fs->flow_type = rule->flow_type;
switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
case SCTP_V4_FLOW:
case TCP_V4_FLOW:
case UDP_V4_FLOW:
fs->h_u.tcp_ip4_spec.ip4src =
cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
fs->m_u.tcp_ip4_spec.ip4src =
rule->unused_tuple & BIT(INNER_SRC_IP) ?
0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
fs->h_u.tcp_ip4_spec.ip4dst =
cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
fs->m_u.tcp_ip4_spec.ip4dst =
rule->unused_tuple & BIT(INNER_DST_IP) ?
0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(rule->tuples.src_port);
fs->m_u.tcp_ip4_spec.psrc =
rule->unused_tuple & BIT(INNER_SRC_PORT) ?
0 : cpu_to_be16(rule->tuples_mask.src_port);
fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(rule->tuples.dst_port);
fs->m_u.tcp_ip4_spec.pdst =
rule->unused_tuple & BIT(INNER_DST_PORT) ?
0 : cpu_to_be16(rule->tuples_mask.dst_port);
fs->h_u.tcp_ip4_spec.tos = rule->tuples.ip_tos;
fs->m_u.tcp_ip4_spec.tos =
rule->unused_tuple & BIT(INNER_IP_TOS) ?
0 : rule->tuples_mask.ip_tos;
break;
case IP_USER_FLOW:
fs->h_u.usr_ip4_spec.ip4src =
cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
fs->m_u.tcp_ip4_spec.ip4src =
rule->unused_tuple & BIT(INNER_SRC_IP) ?
0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
fs->h_u.usr_ip4_spec.ip4dst =
cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
fs->m_u.usr_ip4_spec.ip4dst =
rule->unused_tuple & BIT(INNER_DST_IP) ?
0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
fs->h_u.usr_ip4_spec.tos = rule->tuples.ip_tos;
fs->m_u.usr_ip4_spec.tos =
rule->unused_tuple & BIT(INNER_IP_TOS) ?
0 : rule->tuples_mask.ip_tos;
fs->h_u.usr_ip4_spec.proto = rule->tuples.ip_proto;
fs->m_u.usr_ip4_spec.proto =
rule->unused_tuple & BIT(INNER_IP_PROTO) ?
0 : rule->tuples_mask.ip_proto;
fs->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
break;
case SCTP_V6_FLOW:
case TCP_V6_FLOW:
case UDP_V6_FLOW:
cpu_to_be32_array(fs->h_u.tcp_ip6_spec.ip6src,
rule->tuples.src_ip, IPV6_SIZE);
if (rule->unused_tuple & BIT(INNER_SRC_IP))
memset(fs->m_u.tcp_ip6_spec.ip6src, 0,
sizeof(int) * IPV6_SIZE);
else
cpu_to_be32_array(fs->m_u.tcp_ip6_spec.ip6src,
rule->tuples_mask.src_ip, IPV6_SIZE);
cpu_to_be32_array(fs->h_u.tcp_ip6_spec.ip6dst,
rule->tuples.dst_ip, IPV6_SIZE);
if (rule->unused_tuple & BIT(INNER_DST_IP))
memset(fs->m_u.tcp_ip6_spec.ip6dst, 0,
sizeof(int) * IPV6_SIZE);
else
cpu_to_be32_array(fs->m_u.tcp_ip6_spec.ip6dst,
rule->tuples_mask.dst_ip, IPV6_SIZE);
fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(rule->tuples.src_port);
fs->m_u.tcp_ip6_spec.psrc =
rule->unused_tuple & BIT(INNER_SRC_PORT) ?
0 : cpu_to_be16(rule->tuples_mask.src_port);
fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(rule->tuples.dst_port);
fs->m_u.tcp_ip6_spec.pdst =
rule->unused_tuple & BIT(INNER_DST_PORT) ?
0 : cpu_to_be16(rule->tuples_mask.dst_port);
break;
case IPV6_USER_FLOW:
cpu_to_be32_array(fs->h_u.usr_ip6_spec.ip6src,
rule->tuples.src_ip, IPV6_SIZE);
if (rule->unused_tuple & BIT(INNER_SRC_IP))
memset(fs->m_u.usr_ip6_spec.ip6src, 0,
sizeof(int) * IPV6_SIZE);
else
cpu_to_be32_array(fs->m_u.usr_ip6_spec.ip6src,
rule->tuples_mask.src_ip, IPV6_SIZE);
cpu_to_be32_array(fs->h_u.usr_ip6_spec.ip6dst,
rule->tuples.dst_ip, IPV6_SIZE);
if (rule->unused_tuple & BIT(INNER_DST_IP))
memset(fs->m_u.usr_ip6_spec.ip6dst, 0,
sizeof(int) * IPV6_SIZE);
else
cpu_to_be32_array(fs->m_u.usr_ip6_spec.ip6dst,
rule->tuples_mask.dst_ip, IPV6_SIZE);
fs->h_u.usr_ip6_spec.l4_proto = rule->tuples.ip_proto;
fs->m_u.usr_ip6_spec.l4_proto =
rule->unused_tuple & BIT(INNER_IP_PROTO) ?
0 : rule->tuples_mask.ip_proto;
break;
case ETHER_FLOW:
ether_addr_copy(fs->h_u.ether_spec.h_source,
rule->tuples.src_mac);
if (rule->unused_tuple & BIT(INNER_SRC_MAC))
eth_zero_addr(fs->m_u.ether_spec.h_source);
else
ether_addr_copy(fs->m_u.ether_spec.h_source,
rule->tuples_mask.src_mac);
ether_addr_copy(fs->h_u.ether_spec.h_dest,
rule->tuples.dst_mac);
if (rule->unused_tuple & BIT(INNER_DST_MAC))
eth_zero_addr(fs->m_u.ether_spec.h_dest);
else
ether_addr_copy(fs->m_u.ether_spec.h_dest,
rule->tuples_mask.dst_mac);
fs->h_u.ether_spec.h_proto =
cpu_to_be16(rule->tuples.ether_proto);
fs->m_u.ether_spec.h_proto =
rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
0 : cpu_to_be16(rule->tuples_mask.ether_proto);
break;
default:
spin_unlock_bh(&hdev->fd_rule_lock);
return -EOPNOTSUPP;
}
if (fs->flow_type & FLOW_EXT) {
fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
fs->m_ext.vlan_tci =
rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
cpu_to_be16(VLAN_VID_MASK) :
cpu_to_be16(rule->tuples_mask.vlan_tag1);
}
if (fs->flow_type & FLOW_MAC_EXT) {
ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
if (rule->unused_tuple & BIT(INNER_DST_MAC))
eth_zero_addr(fs->m_u.ether_spec.h_dest);
else
ether_addr_copy(fs->m_u.ether_spec.h_dest,
rule->tuples_mask.dst_mac);
}
if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
fs->ring_cookie = RX_CLS_FLOW_DISC;
} else {
u64 vf_id;
fs->ring_cookie = rule->queue_id;
vf_id = rule->vf_id;
vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
fs->ring_cookie |= vf_id;
}
spin_unlock_bh(&hdev->fd_rule_lock);
return 0;
}
static int hclge_get_all_rules(struct hnae3_handle *handle,
struct ethtool_rxnfc *cmd, u32 *rule_locs)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_fd_rule *rule;
struct hlist_node *node2;
int cnt = 0;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
spin_lock_bh(&hdev->fd_rule_lock);
hlist_for_each_entry_safe(rule, node2,
&hdev->fd_rule_list, rule_node) {
if (cnt == cmd->rule_cnt) {
spin_unlock_bh(&hdev->fd_rule_lock);
return -EMSGSIZE;
}
rule_locs[cnt] = rule->location;
cnt++;
}
spin_unlock_bh(&hdev->fd_rule_lock);
cmd->rule_cnt = cnt;
return 0;
}
static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
struct hclge_fd_rule_tuples *tuples)
{
tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
tuples->ip_proto = fkeys->basic.ip_proto;
tuples->dst_port = be16_to_cpu(fkeys->ports.dst);
if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
} else {
memcpy(tuples->src_ip,
fkeys->addrs.v6addrs.src.in6_u.u6_addr32,
sizeof(tuples->src_ip));
memcpy(tuples->dst_ip,
fkeys->addrs.v6addrs.dst.in6_u.u6_addr32,
sizeof(tuples->dst_ip));
}
}
/* traverse all rules, check whether an existed rule has the same tuples */
static struct hclge_fd_rule *
hclge_fd_search_flow_keys(struct hclge_dev *hdev,
const struct hclge_fd_rule_tuples *tuples)
{
struct hclge_fd_rule *rule = NULL;
struct hlist_node *node;
hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
return rule;
}
return NULL;
}
static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
struct hclge_fd_rule *rule)
{
rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
BIT(INNER_SRC_PORT);
rule->action = 0;
rule->vf_id = 0;
rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
if (tuples->ether_proto == ETH_P_IP) {
if (tuples->ip_proto == IPPROTO_TCP)
rule->flow_type = TCP_V4_FLOW;
else
rule->flow_type = UDP_V4_FLOW;
} else {
if (tuples->ip_proto == IPPROTO_TCP)
rule->flow_type = TCP_V6_FLOW;
else
rule->flow_type = UDP_V6_FLOW;
}
memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
}
static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
u16 flow_id, struct flow_keys *fkeys)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_fd_rule_tuples new_tuples;
struct hclge_dev *hdev = vport->back;
struct hclge_fd_rule *rule;
u16 tmp_queue_id;
u16 bit_id;
int ret;
if (!hnae3_dev_fd_supported(hdev))
return -EOPNOTSUPP;
memset(&new_tuples, 0, sizeof(new_tuples));
hclge_fd_get_flow_tuples(fkeys, &new_tuples);
spin_lock_bh(&hdev->fd_rule_lock);
/* when there is already fd rule existed add by user,
* arfs should not work
*/
if (hdev->fd_active_type == HCLGE_FD_EP_ACTIVE) {
spin_unlock_bh(&hdev->fd_rule_lock);
return -EOPNOTSUPP;
}
/* check is there flow director filter existed for this flow,
* if not, create a new filter for it;
* if filter exist with different queue id, modify the filter;
* if filter exist with same queue id, do nothing
*/
rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
if (!rule) {
bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
spin_unlock_bh(&hdev->fd_rule_lock);
return -ENOSPC;
}
rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
if (!rule) {
spin_unlock_bh(&hdev->fd_rule_lock);
return -ENOMEM;
}
set_bit(bit_id, hdev->fd_bmap);
rule->location = bit_id;
rule->flow_id = flow_id;
rule->queue_id = queue_id;
hclge_fd_build_arfs_rule(&new_tuples, rule);
ret = hclge_fd_config_rule(hdev, rule);
spin_unlock_bh(&hdev->fd_rule_lock);
if (ret)
return ret;
return rule->location;
}
spin_unlock_bh(&hdev->fd_rule_lock);
if (rule->queue_id == queue_id)
return rule->location;
tmp_queue_id = rule->queue_id;
rule->queue_id = queue_id;
ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
if (ret) {
rule->queue_id = tmp_queue_id;
return ret;
}
return rule->location;
}
static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
{
#ifdef CONFIG_RFS_ACCEL
struct hnae3_handle *handle = &hdev->vport[0].nic;
struct hclge_fd_rule *rule;
struct hlist_node *node;
HLIST_HEAD(del_list);
spin_lock_bh(&hdev->fd_rule_lock);
if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
spin_unlock_bh(&hdev->fd_rule_lock);
return;
}
hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
if (rps_may_expire_flow(handle->netdev, rule->queue_id,
rule->flow_id, rule->location)) {
hlist_del_init(&rule->rule_node);
hlist_add_head(&rule->rule_node, &del_list);
hdev->hclge_fd_rule_num--;
clear_bit(rule->location, hdev->fd_bmap);
}
}
spin_unlock_bh(&hdev->fd_rule_lock);
hlist_for_each_entry_safe(rule, node, &del_list, rule_node) {
hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
rule->location, NULL, false);
kfree(rule);
}
#endif
}
static void hclge_clear_arfs_rules(struct hnae3_handle *handle)
{
#ifdef CONFIG_RFS_ACCEL
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE)
hclge_del_all_fd_entries(handle, true);
#endif
}
static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
}
static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
}
static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hdev->rst_stats.hw_reset_done_cnt;
}
static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
bool clear;
hdev->fd_en = enable;
clear = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;
if (!enable)
hclge_del_all_fd_entries(handle, clear);
else
hclge_restore_fd_entries(handle);
}
static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
{
struct hclge_desc desc;
struct hclge_config_mac_mode_cmd *req =
(struct hclge_config_mac_mode_cmd *)desc.data;
u32 loop_en = 0;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);
if (enable) {
hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
}
req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"mac enable fail, ret =%d.\n", ret);
}
static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
u8 switch_param, u8 param_mask)
{
struct hclge_mac_vlan_switch_cmd *req;
struct hclge_desc desc;
u32 func_id;
int ret;
func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
req = (struct hclge_mac_vlan_switch_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
false);
req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
req->func_id = cpu_to_le32(func_id);
req->switch_param = switch_param;
req->param_mask = param_mask;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"set mac vlan switch parameter fail, ret = %d\n", ret);
return ret;
}
static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
int link_ret)
{
#define HCLGE_PHY_LINK_STATUS_NUM 200
struct phy_device *phydev = hdev->hw.mac.phydev;
int i = 0;
int ret;
do {
ret = phy_read_status(phydev);
if (ret) {
dev_err(&hdev->pdev->dev,
"phy update link status fail, ret = %d\n", ret);
return;
}
if (phydev->link == link_ret)
break;
msleep(HCLGE_LINK_STATUS_MS);
} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
}
static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret)
{
#define HCLGE_MAC_LINK_STATUS_NUM 100
int i = 0;
int ret;
do {
ret = hclge_get_mac_link_status(hdev);
if (ret < 0)
return ret;
else if (ret == link_ret)
return 0;
msleep(HCLGE_LINK_STATUS_MS);
} while (++i < HCLGE_MAC_LINK_STATUS_NUM);
return -EBUSY;
}
static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
bool is_phy)
{
#define HCLGE_LINK_STATUS_DOWN 0
#define HCLGE_LINK_STATUS_UP 1
int link_ret;
link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
if (is_phy)
hclge_phy_link_status_wait(hdev, link_ret);
return hclge_mac_link_status_wait(hdev, link_ret);
}
static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
{
struct hclge_config_mac_mode_cmd *req;
struct hclge_desc desc;
u32 loop_en;
int ret;
req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
/* 1 Read out the MAC mode config at first */
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"mac loopback get fail, ret =%d.\n", ret);
return ret;
}
/* 2 Then setup the loopback flag */
loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);
hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, en ? 1 : 0);
hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, en ? 1 : 0);
req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
/* 3 Config mac work mode with loopback flag
* and its original configure parameters
*/
hclge_cmd_reuse_desc(&desc, false);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"mac loopback set fail, ret =%d.\n", ret);
return ret;
}
static int hclge_cfg_serdes_loopback(struct hclge_dev *hdev, bool en,
enum hnae3_loop loop_mode)
{
#define HCLGE_SERDES_RETRY_MS 10
#define HCLGE_SERDES_RETRY_NUM 100
struct hclge_serdes_lb_cmd *req;
struct hclge_desc desc;
int ret, i = 0;
u8 loop_mode_b;
req = (struct hclge_serdes_lb_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SERDES_LOOPBACK, false);
switch (loop_mode) {
case HNAE3_LOOP_SERIAL_SERDES:
loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
break;
case HNAE3_LOOP_PARALLEL_SERDES:
loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
break;
default:
dev_err(&hdev->pdev->dev,
"unsupported serdes loopback mode %d\n", loop_mode);
return -ENOTSUPP;
}
if (en) {
req->enable = loop_mode_b;
req->mask = loop_mode_b;
} else {
req->mask = loop_mode_b;
}
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"serdes loopback set fail, ret = %d\n", ret);
return ret;
}
do {
msleep(HCLGE_SERDES_RETRY_MS);
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SERDES_LOOPBACK,
true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"serdes loopback get, ret = %d\n", ret);
return ret;
}
} while (++i < HCLGE_SERDES_RETRY_NUM &&
!(req->result & HCLGE_CMD_SERDES_DONE_B));
if (!(req->result & HCLGE_CMD_SERDES_DONE_B)) {
dev_err(&hdev->pdev->dev, "serdes loopback set timeout\n");
return -EBUSY;
} else if (!(req->result & HCLGE_CMD_SERDES_SUCCESS_B)) {
dev_err(&hdev->pdev->dev, "serdes loopback set failed in fw\n");
return -EIO;
}
return ret;
}
static int hclge_set_serdes_loopback(struct hclge_dev *hdev, bool en,
enum hnae3_loop loop_mode)
{
int ret;
ret = hclge_cfg_serdes_loopback(hdev, en, loop_mode);
if (ret)
return ret;
hclge_cfg_mac_mode(hdev, en);
ret = hclge_mac_phy_link_status_wait(hdev, en, FALSE);
if (ret)
dev_err(&hdev->pdev->dev,
"serdes loopback config mac mode timeout\n");
return ret;
}
static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
struct phy_device *phydev)
{
int ret;
if (!phydev->suspended) {
ret = phy_suspend(phydev);
if (ret)
return ret;
}
ret = phy_resume(phydev);
if (ret)
return ret;
return phy_loopback(phydev, true);
}
static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
struct phy_device *phydev)
{
int ret;
ret = phy_loopback(phydev, false);
if (ret)
return ret;
return phy_suspend(phydev);
}
static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
{
struct phy_device *phydev = hdev->hw.mac.phydev;
int ret;
if (!phydev)
return -ENOTSUPP;
if (en)
ret = hclge_enable_phy_loopback(hdev, phydev);
else
ret = hclge_disable_phy_loopback(hdev, phydev);
if (ret) {
dev_err(&hdev->pdev->dev,
"set phy loopback fail, ret = %d\n", ret);
return ret;
}
hclge_cfg_mac_mode(hdev, en);
ret = hclge_mac_phy_link_status_wait(hdev, en, TRUE);
if (ret)
dev_err(&hdev->pdev->dev,
"phy loopback config mac mode timeout\n");
return ret;
}
static int hclge_tqp_enable(struct hclge_dev *hdev, unsigned int tqp_id,
int stream_id, bool enable)
{
struct hclge_desc desc;
struct hclge_cfg_com_tqp_queue_cmd *req =
(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
req->tqp_id = cpu_to_le16(tqp_id & HCLGE_RING_ID_MASK);
req->stream_id = cpu_to_le16(stream_id);
if (enable)
req->enable |= 1U << HCLGE_TQP_ENABLE_B;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"Tqp enable fail, status =%d.\n", ret);
return ret;
}
static int hclge_set_loopback(struct hnae3_handle *handle,
enum hnae3_loop loop_mode, bool en)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hnae3_knic_private_info *kinfo;
struct hclge_dev *hdev = vport->back;
int i, ret;
/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
* default, SSU loopback is enabled, so if the SMAC and the DMAC are
* the same, the packets are looped back in the SSU. If SSU loopback
* is disabled, packets can reach MAC even if SMAC is the same as DMAC.
*/
if (hdev->pdev->revision >= 0x21) {
u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);
ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
HCLGE_SWITCH_ALW_LPBK_MASK);
if (ret)
return ret;
}
switch (loop_mode) {
case HNAE3_LOOP_APP:
ret = hclge_set_app_loopback(hdev, en);
break;
case HNAE3_LOOP_SERIAL_SERDES:
case HNAE3_LOOP_PARALLEL_SERDES:
ret = hclge_set_serdes_loopback(hdev, en, loop_mode);
break;
case HNAE3_LOOP_PHY:
ret = hclge_set_phy_loopback(hdev, en);
break;
default:
ret = -ENOTSUPP;
dev_err(&hdev->pdev->dev,
"loop_mode %d is not supported\n", loop_mode);
break;
}
if (ret)
return ret;
kinfo = &vport->nic.kinfo;
for (i = 0; i < kinfo->num_tqps; i++) {
ret = hclge_tqp_enable(hdev, i, 0, en);
if (ret)
return ret;
}
return 0;
}
static int hclge_set_default_loopback(struct hclge_dev *hdev)
{
int ret;
ret = hclge_set_app_loopback(hdev, false);
if (ret)
return ret;
ret = hclge_cfg_serdes_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
if (ret)
return ret;
return hclge_cfg_serdes_loopback(hdev, false,
HNAE3_LOOP_PARALLEL_SERDES);
}
static void hclge_reset_tqp_stats(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hnae3_knic_private_info *kinfo;
struct hnae3_queue *queue;
struct hclge_tqp *tqp;
int i;
kinfo = &vport->nic.kinfo;
for (i = 0; i < kinfo->num_tqps; i++) {
queue = handle->kinfo.tqp[i];
tqp = container_of(queue, struct hclge_tqp, q);
memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
}
}
static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (enable) {
hclge_task_schedule(hdev, round_jiffies_relative(HZ));
} else {
/* Set the DOWN flag here to disable the service to be
* scheduled again
*/
set_bit(HCLGE_STATE_DOWN, &hdev->state);
cancel_delayed_work_sync(&hdev->service_task);
clear_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state);
}
}
static int hclge_ae_start(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
/* mac enable */
hclge_cfg_mac_mode(hdev, true);
clear_bit(HCLGE_STATE_DOWN, &hdev->state);
hdev->hw.mac.link = 0;
/* reset tqp stats */
hclge_reset_tqp_stats(handle);
hclge_mac_start_phy(hdev);
return 0;
}
static void hclge_ae_stop(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int i;
set_bit(HCLGE_STATE_DOWN, &hdev->state);
hclge_clear_arfs_rules(handle);
/* If it is not PF reset, the firmware will disable the MAC,
* so it only need to stop phy here.
*/
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) &&
hdev->reset_type != HNAE3_FUNC_RESET) {
hclge_mac_stop_phy(hdev);
hclge_update_link_status(hdev);
return;
}
for (i = 0; i < handle->kinfo.num_tqps; i++)
hclge_reset_tqp(handle, i);
hclge_config_mac_tnl_int(hdev, false);
/* Mac disable */
hclge_cfg_mac_mode(hdev, false);
hclge_mac_stop_phy(hdev);
/* reset tqp stats */
hclge_reset_tqp_stats(handle);
hclge_update_link_status(hdev);
}
int hclge_vport_start(struct hclge_vport *vport)
{
set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
vport->last_active_jiffies = jiffies;
return 0;
}
void hclge_vport_stop(struct hclge_vport *vport)
{
clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
}
static int hclge_client_start(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_vport_start(vport);
}
static void hclge_client_stop(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
hclge_vport_stop(vport);
}
static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
u16 cmdq_resp, u8 resp_code,
enum hclge_mac_vlan_tbl_opcode op)
{
struct hclge_dev *hdev = vport->back;
if (cmdq_resp) {
dev_err(&hdev->pdev->dev,
"cmdq execute failed for get_mac_vlan_cmd_status,status=%d.\n",
cmdq_resp);
return -EIO;
}
if (op == HCLGE_MAC_VLAN_ADD) {
if ((!resp_code) || (resp_code == 1)) {
return 0;
} else if (resp_code == HCLGE_ADD_UC_OVERFLOW) {
dev_err(&hdev->pdev->dev,
"add mac addr failed for uc_overflow.\n");
return -ENOSPC;
} else if (resp_code == HCLGE_ADD_MC_OVERFLOW) {
dev_err(&hdev->pdev->dev,
"add mac addr failed for mc_overflow.\n");
return -ENOSPC;
}
dev_err(&hdev->pdev->dev,
"add mac addr failed for undefined, code=%u.\n",
resp_code);
return -EIO;
} else if (op == HCLGE_MAC_VLAN_REMOVE) {
if (!resp_code) {
return 0;
} else if (resp_code == 1) {
dev_dbg(&hdev->pdev->dev,
"remove mac addr failed for miss.\n");
return -ENOENT;
}
dev_err(&hdev->pdev->dev,
"remove mac addr failed for undefined, code=%u.\n",
resp_code);
return -EIO;
} else if (op == HCLGE_MAC_VLAN_LKUP) {
if (!resp_code) {
return 0;
} else if (resp_code == 1) {
dev_dbg(&hdev->pdev->dev,
"lookup mac addr failed for miss.\n");
return -ENOENT;
}
dev_err(&hdev->pdev->dev,
"lookup mac addr failed for undefined, code=%u.\n",
resp_code);
return -EIO;
}
dev_err(&hdev->pdev->dev,
"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);
return -EINVAL;
}
static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
{
#define HCLGE_VF_NUM_IN_FIRST_DESC 192
unsigned int word_num;
unsigned int bit_num;
if (vfid > 255 || vfid < 0)
return -EIO;
if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
word_num = vfid / 32;
bit_num = vfid % 32;
if (clr)
desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
else
desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
} else {
word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
bit_num = vfid % 32;
if (clr)
desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
else
desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
}
return 0;
}
static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
{
#define HCLGE_DESC_NUMBER 3
#define HCLGE_FUNC_NUMBER_PER_DESC 6
int i, j;
for (i = 1; i < HCLGE_DESC_NUMBER; i++)
for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
if (desc[i].data[j])
return false;
return true;
}
static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
const u8 *addr, bool is_mc)
{
const unsigned char *mac_addr = addr;
u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
(mac_addr[0]) | (mac_addr[1] << 8);
u32 low_val = mac_addr[4] | (mac_addr[5] << 8);
hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
if (is_mc) {
hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
}
new_req->mac_addr_hi32 = cpu_to_le32(high_val);
new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
}
static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
struct hclge_mac_vlan_tbl_entry_cmd *req)
{
struct hclge_dev *hdev = vport->back;
struct hclge_desc desc;
u8 resp_code;
u16 retval;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);
memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"del mac addr failed for cmd_send, ret =%d.\n",
ret);
return ret;
}
resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
retval = le16_to_cpu(desc.retval);
return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
HCLGE_MAC_VLAN_REMOVE);
}
static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
struct hclge_mac_vlan_tbl_entry_cmd *req,
struct hclge_desc *desc,
bool is_mc)
{
struct hclge_dev *hdev = vport->back;
u8 resp_code;
u16 retval;
int ret;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
if (is_mc) {
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
memcpy(desc[0].data,
req,
sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
hclge_cmd_setup_basic_desc(&desc[1],
HCLGE_OPC_MAC_VLAN_ADD,
true);
desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[2],
HCLGE_OPC_MAC_VLAN_ADD,
true);
ret = hclge_cmd_send(&hdev->hw, desc, 3);
} else {
memcpy(desc[0].data,
req,
sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
ret = hclge_cmd_send(&hdev->hw, desc, 1);
}
if (ret) {
dev_err(&hdev->pdev->dev,
"lookup mac addr failed for cmd_send, ret =%d.\n",
ret);
return ret;
}
resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
retval = le16_to_cpu(desc[0].retval);
return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
HCLGE_MAC_VLAN_LKUP);
}
static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
struct hclge_mac_vlan_tbl_entry_cmd *req,
struct hclge_desc *mc_desc)
{
struct hclge_dev *hdev = vport->back;
int cfg_status;
u8 resp_code;
u16 retval;
int ret;
if (!mc_desc) {
struct hclge_desc desc;
hclge_cmd_setup_basic_desc(&desc,
HCLGE_OPC_MAC_VLAN_ADD,
false);
memcpy(desc.data, req,
sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
retval = le16_to_cpu(desc.retval);
cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
resp_code,
HCLGE_MAC_VLAN_ADD);
} else {
hclge_cmd_reuse_desc(&mc_desc[0], false);
mc_desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_reuse_desc(&mc_desc[1], false);
mc_desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_reuse_desc(&mc_desc[2], false);
mc_desc[2].flag &= cpu_to_le16(~HCLGE_CMD_FLAG_NEXT);
memcpy(mc_desc[0].data, req,
sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
retval = le16_to_cpu(mc_desc[0].retval);
cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
resp_code,
HCLGE_MAC_VLAN_ADD);
}
if (ret) {
dev_err(&hdev->pdev->dev,
"add mac addr failed for cmd_send, ret =%d.\n",
ret);
return ret;
}
return cfg_status;
}
static int hclge_init_umv_space(struct hclge_dev *hdev)
{
u16 allocated_size = 0;
int ret;
ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size,
true);
if (ret)
return ret;
if (allocated_size < hdev->wanted_umv_size)
dev_warn(&hdev->pdev->dev,
"Alloc umv space failed, want %d, get %d\n",
hdev->wanted_umv_size, allocated_size);
mutex_init(&hdev->umv_mutex);
hdev->max_umv_size = allocated_size;
/* divide max_umv_size by (hdev->num_req_vfs + 2), in order to
* preserve some unicast mac vlan table entries shared by pf
* and its vfs.
*/
hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_req_vfs + 2);
hdev->share_umv_size = hdev->priv_umv_size +
hdev->max_umv_size % (hdev->num_req_vfs + 2);
return 0;
}
static int hclge_uninit_umv_space(struct hclge_dev *hdev)
{
int ret;
if (hdev->max_umv_size > 0) {
ret = hclge_set_umv_space(hdev, hdev->max_umv_size, NULL,
false);
if (ret)
return ret;
hdev->max_umv_size = 0;
}
mutex_destroy(&hdev->umv_mutex);
return 0;
}
static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
u16 *allocated_size, bool is_alloc)
{
struct hclge_umv_spc_alc_cmd *req;
struct hclge_desc desc;
int ret;
req = (struct hclge_umv_spc_alc_cmd *)desc.data;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);
if (!is_alloc)
hnae3_set_bit(req->allocate, HCLGE_UMV_SPC_ALC_B, 1);
req->space_size = cpu_to_le32(space_size);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"%s umv space failed for cmd_send, ret =%d\n",
is_alloc ? "allocate" : "free", ret);
return ret;
}
if (is_alloc && allocated_size)
*allocated_size = le32_to_cpu(desc.data[1]);
return 0;
}
static void hclge_reset_umv_space(struct hclge_dev *hdev)
{
struct hclge_vport *vport;
int i;
for (i = 0; i < hdev->num_alloc_vport; i++) {
vport = &hdev->vport[i];
vport->used_umv_num = 0;
}
mutex_lock(&hdev->umv_mutex);
hdev->share_umv_size = hdev->priv_umv_size +
hdev->max_umv_size % (hdev->num_req_vfs + 2);
mutex_unlock(&hdev->umv_mutex);
}
static bool hclge_is_umv_space_full(struct hclge_vport *vport)
{
struct hclge_dev *hdev = vport->back;
bool is_full;
mutex_lock(&hdev->umv_mutex);
is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
hdev->share_umv_size == 0);
mutex_unlock(&hdev->umv_mutex);
return is_full;
}
static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
{
struct hclge_dev *hdev = vport->back;
mutex_lock(&hdev->umv_mutex);
if (is_free) {
if (vport->used_umv_num > hdev->priv_umv_size)
hdev->share_umv_size++;
if (vport->used_umv_num > 0)
vport->used_umv_num--;
} else {
if (vport->used_umv_num >= hdev->priv_umv_size &&
hdev->share_umv_size > 0)
hdev->share_umv_size--;
vport->used_umv_num++;
}
mutex_unlock(&hdev->umv_mutex);
}
static int hclge_add_uc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_add_uc_addr_common(vport, addr);
}
int hclge_add_uc_addr_common(struct hclge_vport *vport,
const unsigned char *addr)
{
struct hclge_dev *hdev = vport->back;
struct hclge_mac_vlan_tbl_entry_cmd req;
struct hclge_desc desc;
u16 egress_port = 0;
int ret;
/* mac addr check */
if (is_zero_ether_addr(addr) ||
is_broadcast_ether_addr(addr) ||
is_multicast_ether_addr(addr)) {
dev_err(&hdev->pdev->dev,
"Set_uc mac err! invalid mac:%pM. is_zero:%d,is_br=%d,is_mul=%d\n",
addr, is_zero_ether_addr(addr),
is_broadcast_ether_addr(addr),
is_multicast_ether_addr(addr));
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
req.egress_port = cpu_to_le16(egress_port);
hclge_prepare_mac_addr(&req, addr, false);
/* Lookup the mac address in the mac_vlan table, and add
* it if the entry is inexistent. Repeated unicast entry
* is not allowed in the mac vlan table.
*/
ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
if (ret == -ENOENT) {
if (!hclge_is_umv_space_full(vport)) {
ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
if (!ret)
hclge_update_umv_space(vport, false);
return ret;
}
dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
hdev->priv_umv_size);
return -ENOSPC;
}
/* check if we just hit the duplicate */
if (!ret) {
dev_warn(&hdev->pdev->dev, "VF %d mac(%pM) exists\n",
vport->vport_id, addr);
return 0;
}
dev_err(&hdev->pdev->dev,
"PF failed to add unicast entry(%pM) in the MAC table\n",
addr);
return ret;
}
static int hclge_rm_uc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_rm_uc_addr_common(vport, addr);
}
int hclge_rm_uc_addr_common(struct hclge_vport *vport,
const unsigned char *addr)
{
struct hclge_dev *hdev = vport->back;
struct hclge_mac_vlan_tbl_entry_cmd req;
int ret;
/* mac addr check */
if (is_zero_ether_addr(addr) ||
is_broadcast_ether_addr(addr) ||
is_multicast_ether_addr(addr)) {
dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%pM.\n",
addr);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
hclge_prepare_mac_addr(&req, addr, false);
ret = hclge_remove_mac_vlan_tbl(vport, &req);
if (!ret)
hclge_update_umv_space(vport, true);
return ret;
}
static int hclge_add_mc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_add_mc_addr_common(vport, addr);
}
int hclge_add_mc_addr_common(struct hclge_vport *vport,
const unsigned char *addr)
{
struct hclge_dev *hdev = vport->back;
struct hclge_mac_vlan_tbl_entry_cmd req;
struct hclge_desc desc[3];
int status;
/* mac addr check */
if (!is_multicast_ether_addr(addr)) {
dev_err(&hdev->pdev->dev,
"Add mc mac err! invalid mac:%pM.\n",
addr);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
hclge_prepare_mac_addr(&req, addr, true);
status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
if (status) {
/* This mac addr do not exist, add new entry for it */
memset(desc[0].data, 0, sizeof(desc[0].data));
memset(desc[1].data, 0, sizeof(desc[0].data));
memset(desc[2].data, 0, sizeof(desc[0].data));
}
status = hclge_update_desc_vfid(desc, vport->vport_id, false);
if (status)
return status;
status = hclge_add_mac_vlan_tbl(vport, &req, desc);
if (status == -ENOSPC)
dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
return status;
}
static int hclge_rm_mc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_rm_mc_addr_common(vport, addr);
}
int hclge_rm_mc_addr_common(struct hclge_vport *vport,
const unsigned char *addr)
{
struct hclge_dev *hdev = vport->back;
struct hclge_mac_vlan_tbl_entry_cmd req;
enum hclge_cmd_status status;
struct hclge_desc desc[3];
/* mac addr check */
if (!is_multicast_ether_addr(addr)) {
dev_dbg(&hdev->pdev->dev,
"Remove mc mac err! invalid mac:%pM.\n",
addr);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
hclge_prepare_mac_addr(&req, addr, true);
status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
if (!status) {
/* This mac addr exist, remove this handle's VFID for it */
status = hclge_update_desc_vfid(desc, vport->vport_id, true);
if (status)
return status;
if (hclge_is_all_function_id_zero(desc))
/* All the vfid is zero, so need to delete this entry */
status = hclge_remove_mac_vlan_tbl(vport, &req);
else
/* Not all the vfid is zero, update the vfid */
status = hclge_add_mac_vlan_tbl(vport, &req, desc);
} else {
/* Maybe this mac address is in mta table, but it cannot be
* deleted here because an entry of mta represents an address
* range rather than a specific address. the delete action to
* all entries will take effect in update_mta_status called by
* hns3_nic_set_rx_mode.
*/
status = 0;
}
return status;
}
void hclge_add_vport_mac_table(struct hclge_vport *vport, const u8 *mac_addr,
enum HCLGE_MAC_ADDR_TYPE mac_type)
{
struct hclge_vport_mac_addr_cfg *mac_cfg;
struct list_head *list;
if (!vport->vport_id)
return;
mac_cfg = kzalloc(sizeof(*mac_cfg), GFP_KERNEL);
if (!mac_cfg)
return;
mac_cfg->hd_tbl_status = true;
memcpy(mac_cfg->mac_addr, mac_addr, ETH_ALEN);
list = (mac_type == HCLGE_MAC_ADDR_UC) ?
&vport->uc_mac_list : &vport->mc_mac_list;
list_add_tail(&mac_cfg->node, list);
}
void hclge_rm_vport_mac_table(struct hclge_vport *vport, const u8 *mac_addr,
bool is_write_tbl,
enum HCLGE_MAC_ADDR_TYPE mac_type)
{
struct hclge_vport_mac_addr_cfg *mac_cfg, *tmp;
struct list_head *list;
bool uc_flag, mc_flag;
list = (mac_type == HCLGE_MAC_ADDR_UC) ?
&vport->uc_mac_list : &vport->mc_mac_list;
uc_flag = is_write_tbl && mac_type == HCLGE_MAC_ADDR_UC;
mc_flag = is_write_tbl && mac_type == HCLGE_MAC_ADDR_MC;
list_for_each_entry_safe(mac_cfg, tmp, list, node) {
if (strncmp(mac_cfg->mac_addr, mac_addr, ETH_ALEN) == 0) {
if (uc_flag && mac_cfg->hd_tbl_status)
hclge_rm_uc_addr_common(vport, mac_addr);
if (mc_flag && mac_cfg->hd_tbl_status)
hclge_rm_mc_addr_common(vport, mac_addr);
list_del(&mac_cfg->node);
kfree(mac_cfg);
break;
}
}
}
void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
enum HCLGE_MAC_ADDR_TYPE mac_type)
{
struct hclge_vport_mac_addr_cfg *mac_cfg, *tmp;
struct list_head *list;
list = (mac_type == HCLGE_MAC_ADDR_UC) ?
&vport->uc_mac_list : &vport->mc_mac_list;
list_for_each_entry_safe(mac_cfg, tmp, list, node) {
if (mac_type == HCLGE_MAC_ADDR_UC && mac_cfg->hd_tbl_status)
hclge_rm_uc_addr_common(vport, mac_cfg->mac_addr);
if (mac_type == HCLGE_MAC_ADDR_MC && mac_cfg->hd_tbl_status)
hclge_rm_mc_addr_common(vport, mac_cfg->mac_addr);
mac_cfg->hd_tbl_status = false;
if (is_del_list) {
list_del(&mac_cfg->node);
kfree(mac_cfg);
}
}
}
void hclge_uninit_vport_mac_table(struct hclge_dev *hdev)
{
struct hclge_vport_mac_addr_cfg *mac, *tmp;
struct hclge_vport *vport;
int i;
mutex_lock(&hdev->vport_cfg_mutex);
for (i = 0; i < hdev->num_alloc_vport; i++) {
vport = &hdev->vport[i];
list_for_each_entry_safe(mac, tmp, &vport->uc_mac_list, node) {
list_del(&mac->node);
kfree(mac);
}
list_for_each_entry_safe(mac, tmp, &vport->mc_mac_list, node) {
list_del(&mac->node);
kfree(mac);
}
}
mutex_unlock(&hdev->vport_cfg_mutex);
}
static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
u16 cmdq_resp, u8 resp_code)
{
#define HCLGE_ETHERTYPE_SUCCESS_ADD 0
#define HCLGE_ETHERTYPE_ALREADY_ADD 1
#define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW 2
#define HCLGE_ETHERTYPE_KEY_CONFLICT 3
int return_status;
if (cmdq_resp) {
dev_err(&hdev->pdev->dev,
"cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
cmdq_resp);
return -EIO;
}
switch (resp_code) {
case HCLGE_ETHERTYPE_SUCCESS_ADD:
case HCLGE_ETHERTYPE_ALREADY_ADD:
return_status = 0;
break;
case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
dev_err(&hdev->pdev->dev,
"add mac ethertype failed for manager table overflow.\n");
return_status = -EIO;
break;
case HCLGE_ETHERTYPE_KEY_CONFLICT:
dev_err(&hdev->pdev->dev,
"add mac ethertype failed for key conflict.\n");
return_status = -EIO;
break;
default:
dev_err(&hdev->pdev->dev,
"add mac ethertype failed for undefined, code=%d.\n",
resp_code);
return_status = -EIO;
}
return return_status;
}
static bool hclge_check_vf_mac_exist(struct hclge_vport *vport, int vf_idx,
u8 *mac_addr)
{
struct hclge_mac_vlan_tbl_entry_cmd req;
struct hclge_dev *hdev = vport->back;
struct hclge_desc desc;
u16 egress_port = 0;
int i;
if (is_zero_ether_addr(mac_addr))
return false;
memset(&req, 0, sizeof(req));
hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
req.egress_port = cpu_to_le16(egress_port);
hclge_prepare_mac_addr(&req, mac_addr, false);
if (hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false) != -ENOENT)
return true;
vf_idx += HCLGE_VF_VPORT_START_NUM;
for (i = hdev->num_vmdq_vport + 1; i < hdev->num_alloc_vport; i++)
if (i != vf_idx &&
ether_addr_equal(mac_addr, hdev->vport[i].vf_info.mac))
return true;
return false;
}
static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
u8 *mac_addr)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
dev_info(&hdev->pdev->dev,
"Specified MAC(=%pM) is same as before, no change committed!\n",
mac_addr);
return 0;
}
if (hclge_check_vf_mac_exist(vport, vf, mac_addr)) {
dev_err(&hdev->pdev->dev, "Specified MAC(=%pM) exists!\n",
mac_addr);
return -EEXIST;
}
ether_addr_copy(vport->vf_info.mac, mac_addr);
dev_info(&hdev->pdev->dev,
"MAC of VF %d has been set to %pM, and it will be reinitialized!\n",
vf, mac_addr);
return hclge_inform_reset_assert_to_vf(vport);
}
static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
const struct hclge_mac_mgr_tbl_entry_cmd *req)
{
struct hclge_desc desc;
u8 resp_code;
u16 retval;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"add mac ethertype failed for cmd_send, ret =%d.\n",
ret);
return ret;
}
resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
retval = le16_to_cpu(desc.retval);
return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
}
static int init_mgr_tbl(struct hclge_dev *hdev)
{
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
if (ret) {
dev_err(&hdev->pdev->dev,
"add mac ethertype failed, ret =%d.\n",
ret);
return ret;
}
}
return 0;
}
static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
ether_addr_copy(p, hdev->hw.mac.mac_addr);
}
static int hclge_set_mac_addr(struct hnae3_handle *handle, void *p,
bool is_first)
{
const unsigned char *new_addr = (const unsigned char *)p;
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int ret;
/* mac addr check */
if (is_zero_ether_addr(new_addr) ||
is_broadcast_ether_addr(new_addr) ||
is_multicast_ether_addr(new_addr)) {
dev_err(&hdev->pdev->dev,
"Change uc mac err! invalid mac:%pM.\n",
new_addr);
return -EINVAL;
}
if ((!is_first || is_kdump_kernel()) &&
hclge_rm_uc_addr(handle, hdev->hw.mac.mac_addr))
dev_warn(&hdev->pdev->dev,
"remove old uc mac address fail.\n");
ret = hclge_add_uc_addr(handle, new_addr);
if (ret) {
dev_err(&hdev->pdev->dev,
"add uc mac address fail, ret =%d.\n",
ret);
if (!is_first &&
hclge_add_uc_addr(handle, hdev->hw.mac.mac_addr))
dev_err(&hdev->pdev->dev,
"restore uc mac address fail.\n");
return -EIO;
}
ret = hclge_pause_addr_cfg(hdev, new_addr);
if (ret) {
dev_err(&hdev->pdev->dev,
"configure mac pause address fail, ret =%d.\n",
ret);
return -EIO;
}
ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
return 0;
}
static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
int cmd)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (!hdev->hw.mac.phydev)
return -EOPNOTSUPP;
return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
}
static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
u8 fe_type, bool filter_en, u8 vf_id)
{
struct hclge_vlan_filter_ctrl_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, false);
req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
req->vlan_type = vlan_type;
req->vlan_fe = filter_en ? fe_type : 0;
req->vf_id = vf_id;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev, "set vlan filter fail, ret =%d.\n",
ret);
return ret;
}
#define HCLGE_FILTER_TYPE_VF 0
#define HCLGE_FILTER_TYPE_PORT 1
#define HCLGE_FILTER_FE_EGRESS_V1_B BIT(0)
#define HCLGE_FILTER_FE_NIC_INGRESS_B BIT(0)
#define HCLGE_FILTER_FE_NIC_EGRESS_B BIT(1)
#define HCLGE_FILTER_FE_ROCE_INGRESS_B BIT(2)
#define HCLGE_FILTER_FE_ROCE_EGRESS_B BIT(3)
#define HCLGE_FILTER_FE_EGRESS (HCLGE_FILTER_FE_NIC_EGRESS_B \
| HCLGE_FILTER_FE_ROCE_EGRESS_B)
#define HCLGE_FILTER_FE_INGRESS (HCLGE_FILTER_FE_NIC_INGRESS_B \
| HCLGE_FILTER_FE_ROCE_INGRESS_B)
static void hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (hdev->pdev->revision >= 0x21) {
hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
HCLGE_FILTER_FE_EGRESS, enable, 0);
hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
HCLGE_FILTER_FE_INGRESS, enable, 0);
} else {
hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
HCLGE_FILTER_FE_EGRESS_V1_B, enable,
0);
}
if (enable)
handle->netdev_flags |= HNAE3_VLAN_FLTR;
else
handle->netdev_flags &= ~HNAE3_VLAN_FLTR;
}
static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
bool is_kill, u16 vlan,
__be16 proto)
{
#define HCLGE_MAX_VF_BYTES 16
struct hclge_vport *vport = &hdev->vport[vfid];
struct hclge_vlan_filter_vf_cfg_cmd *req0;
struct hclge_vlan_filter_vf_cfg_cmd *req1;
struct hclge_desc desc[2];
u8 vf_byte_val;
u8 vf_byte_off;
int ret;
/* if vf vlan table is full, firmware will close vf vlan filter, it
* is unable and unnecessary to add new vlan id to vf vlan filter.
* If spoof check is enable, and vf vlan is full, it shouldn't add
* new vlan, because tx packets with these vlan id will be dropped.
*/
if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
if (vport->vf_info.spoofchk && vlan) {
dev_err(&hdev->pdev->dev,
"Can't add vlan due to spoof check is on and vf vlan table is full\n");
return -EPERM;
}
return 0;
}
hclge_cmd_setup_basic_desc(&desc[0],
HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
hclge_cmd_setup_basic_desc(&desc[1],
HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
vf_byte_off = vfid / 8;
vf_byte_val = 1 << (vfid % 8);
req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;
req0->vlan_id = cpu_to_le16(vlan);
req0->vlan_cfg = is_kill;
if (vf_byte_off < HCLGE_MAX_VF_BYTES)
req0->vf_bitmap[vf_byte_off] = vf_byte_val;
else
req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;
ret = hclge_cmd_send(&hdev->hw, desc, 2);
if (ret) {
dev_err(&hdev->pdev->dev,
"Send vf vlan command fail, ret =%d.\n",
ret);
return ret;
}
if (!is_kill) {
#define HCLGE_VF_VLAN_NO_ENTRY 2
if (!req0->resp_code || req0->resp_code == 1)
return 0;
if (req0->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
set_bit(vfid, hdev->vf_vlan_full);
dev_warn(&hdev->pdev->dev,
"vf vlan table is full, vf vlan filter is disabled\n");
return 0;
}
dev_err(&hdev->pdev->dev,
"Add vf vlan filter fail, ret =%d.\n",
req0->resp_code);
} else {
#define HCLGE_VF_VLAN_DEL_NO_FOUND 1
if (!req0->resp_code)
return 0;
/* vf vlan filter is disabled when vf vlan table is full,
* then new vlan id will not be added into vf vlan table.
* Just return 0 without warning, avoid massive verbose
* print logs when unload.
*/
if (req0->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
return 0;
dev_err(&hdev->pdev->dev,
"Kill vf vlan filter fail, ret =%d.\n",
req0->resp_code);
}
return -EIO;
}
static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
u16 vlan_id, bool is_kill)
{
struct hclge_vlan_filter_pf_cfg_cmd *req;
struct hclge_desc desc;
u8 vlan_offset_byte_val;
u8 vlan_offset_byte;
u8 vlan_offset_160;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);
vlan_offset_160 = vlan_id / 160;
vlan_offset_byte = (vlan_id % 160) / 8;
vlan_offset_byte_val = 1 << (vlan_id % 8);
req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
req->vlan_offset = vlan_offset_160;
req->vlan_cfg = is_kill;
req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"port vlan command, send fail, ret =%d.\n", ret);
return ret;
}
static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
u16 vport_id, u16 vlan_id,
bool is_kill)
{
u16 vport_idx, vport_num = 0;
int ret;
if (is_kill && !vlan_id)
return 0;
ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id,
proto);
if (ret) {
dev_err(&hdev->pdev->dev,
"Set %d vport vlan filter config fail, ret =%d.\n",
vport_id, ret);
return ret;
}
/* vlan 0 may be added twice when 8021q module is enabled */
if (!is_kill && !vlan_id &&
test_bit(vport_id, hdev->vlan_table[vlan_id]))
return 0;
if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
dev_err(&hdev->pdev->dev,
"Add port vlan failed, vport %d is already in vlan %d\n",
vport_id, vlan_id);
return -EINVAL;
}
if (is_kill &&
!test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
dev_err(&hdev->pdev->dev,
"Delete port vlan failed, vport %d is not in vlan %d\n",
vport_id, vlan_id);
return -EINVAL;
}
for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
vport_num++;
if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
is_kill);
return ret;
}
static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
{
struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
struct hclge_vport_vtag_tx_cfg_cmd *req;
struct hclge_dev *hdev = vport->back;
struct hclge_desc desc;
u16 bmap_index;
int status;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);
req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
vcfg->accept_tag1 ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
vcfg->accept_untag1 ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
vcfg->accept_tag2 ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
vcfg->accept_untag2 ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
vcfg->insert_tag1_en ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
vcfg->insert_tag2_en ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);
req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
HCLGE_VF_NUM_PER_BYTE;
req->vf_bitmap[bmap_index] =
1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"Send port txvlan cfg command fail, ret =%d\n",
status);
return status;
}
static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
{
struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
struct hclge_vport_vtag_rx_cfg_cmd *req;
struct hclge_dev *hdev = vport->back;
struct hclge_desc desc;
u16 bmap_index;
int status;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);
req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
vcfg->strip_tag1_en ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
vcfg->strip_tag2_en ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
vcfg->vlan1_vlan_prionly ? 1 : 0);
hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
vcfg->vlan2_vlan_prionly ? 1 : 0);
req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
HCLGE_VF_NUM_PER_BYTE;
req->vf_bitmap[bmap_index] =
1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"Send port rxvlan cfg command fail, ret =%d\n",
status);
return status;
}
static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
u16 port_base_vlan_state,
u16 vlan_tag)
{
int ret;
if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
vport->txvlan_cfg.accept_tag1 = true;
vport->txvlan_cfg.insert_tag1_en = false;
vport->txvlan_cfg.default_tag1 = 0;
} else {
vport->txvlan_cfg.accept_tag1 = false;
vport->txvlan_cfg.insert_tag1_en = true;
vport->txvlan_cfg.default_tag1 = vlan_tag;
}
vport->txvlan_cfg.accept_untag1 = true;
/* accept_tag2 and accept_untag2 are not supported on
* pdev revision(0x20), new revision support them,
* this two fields can not be configured by user.
*/
vport->txvlan_cfg.accept_tag2 = true;
vport->txvlan_cfg.accept_untag2 = true;
vport->txvlan_cfg.insert_tag2_en = false;
vport->txvlan_cfg.default_tag2 = 0;
if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
vport->rxvlan_cfg.strip_tag1_en = false;
vport->rxvlan_cfg.strip_tag2_en =
vport->rxvlan_cfg.rx_vlan_offload_en;
} else {
vport->rxvlan_cfg.strip_tag1_en =
vport->rxvlan_cfg.rx_vlan_offload_en;
vport->rxvlan_cfg.strip_tag2_en = true;
}
vport->rxvlan_cfg.vlan1_vlan_prionly = false;
vport->rxvlan_cfg.vlan2_vlan_prionly = false;
ret = hclge_set_vlan_tx_offload_cfg(vport);
if (ret)
return ret;
return hclge_set_vlan_rx_offload_cfg(vport);
}
static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
{
struct hclge_rx_vlan_type_cfg_cmd *rx_req;
struct hclge_tx_vlan_type_cfg_cmd *tx_req;
struct hclge_desc desc;
int status;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
rx_req->ot_fst_vlan_type =
cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
rx_req->ot_sec_vlan_type =
cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
rx_req->in_fst_vlan_type =
cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
rx_req->in_sec_vlan_type =
cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Send rxvlan protocol type command fail, ret =%d\n",
status);
return status;
}
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);
tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);
status = hclge_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"Send txvlan protocol type command fail, ret =%d\n",
status);
return status;
}
static int hclge_init_vlan_config(struct hclge_dev *hdev)
{
#define HCLGE_DEF_VLAN_TYPE 0x8100
struct hnae3_handle *handle = &hdev->vport[0].nic;
struct hclge_vport *vport;
int ret;
int i;
if (hdev->pdev->revision >= 0x21) {
/* for revision 0x21, vf vlan filter is per function */
for (i = 0; i < hdev->num_alloc_vport; i++) {
vport = &hdev->vport[i];
ret = hclge_set_vlan_filter_ctrl(hdev,
HCLGE_FILTER_TYPE_VF,
HCLGE_FILTER_FE_EGRESS,
true,
vport->vport_id);
if (ret)
return ret;
}
ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
HCLGE_FILTER_FE_INGRESS, true,
0);
if (ret)
return ret;
} else {
ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
HCLGE_FILTER_FE_EGRESS_V1_B,
true, 0);
if (ret)
return ret;
}
handle->netdev_flags |= HNAE3_VLAN_FLTR;
hdev->vlan_type_cfg.rx_in_fst_vlan_type = HCLGE_DEF_VLAN_TYPE;
hdev->vlan_type_cfg.rx_in_sec_vlan_type = HCLGE_DEF_VLAN_TYPE;
hdev->vlan_type_cfg.rx_ot_fst_vlan_type = HCLGE_DEF_VLAN_TYPE;
hdev->vlan_type_cfg.rx_ot_sec_vlan_type = HCLGE_DEF_VLAN_TYPE;
hdev->vlan_type_cfg.tx_ot_vlan_type = HCLGE_DEF_VLAN_TYPE;
hdev->vlan_type_cfg.tx_in_vlan_type = HCLGE_DEF_VLAN_TYPE;
ret = hclge_set_vlan_protocol_type(hdev);
if (ret)
return ret;
for (i = 0; i < hdev->num_alloc_vport; i++) {
u16 vlan_tag;
vport = &hdev->vport[i];
vlan_tag = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
ret = hclge_vlan_offload_cfg(vport,
vport->port_base_vlan_cfg.state,
vlan_tag);
if (ret)
return ret;
}
return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
}
static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
bool writen_to_tbl)
{
struct hclge_vport_vlan_cfg *vlan;
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan)
return;
vlan->hd_tbl_status = writen_to_tbl;
vlan->vlan_id = vlan_id;
list_add_tail(&vlan->node, &vport->vlan_list);
}
static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
{
struct hclge_vport_vlan_cfg *vlan, *tmp;
struct hclge_dev *hdev = vport->back;
int ret;
list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
if (!vlan->hd_tbl_status) {
ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
vport->vport_id,
vlan->vlan_id, false);
if (ret) {
dev_err(&hdev->pdev->dev,
"restore vport vlan list failed, ret=%d\n",
ret);
return ret;
}
}
vlan->hd_tbl_status = true;
}
return 0;
}
static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
bool is_write_tbl)
{
struct hclge_vport_vlan_cfg *vlan, *tmp;
struct hclge_dev *hdev = vport->back;
list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
if (vlan->vlan_id == vlan_id) {
if (is_write_tbl && vlan->hd_tbl_status)
hclge_set_vlan_filter_hw(hdev,
htons(ETH_P_8021Q),
vport->vport_id,
vlan_id,
true);
list_del(&vlan->node);
kfree(vlan);
break;
}
}
}
void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
{
struct hclge_vport_vlan_cfg *vlan, *tmp;
struct hclge_dev *hdev = vport->back;
list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
if (vlan->hd_tbl_status)
hclge_set_vlan_filter_hw(hdev,
htons(ETH_P_8021Q),
vport->vport_id,
vlan->vlan_id,
true);
vlan->hd_tbl_status = false;
if (is_del_list) {
list_del(&vlan->node);
kfree(vlan);
}
}
}
void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
{
struct hclge_vport_vlan_cfg *vlan, *tmp;
struct hclge_vport *vport;
int i;
mutex_lock(&hdev->vport_cfg_mutex);
for (i = 0; i < hdev->num_alloc_vport; i++) {
vport = &hdev->vport[i];
list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
list_del(&vlan->node);
kfree(vlan);
}
}
mutex_unlock(&hdev->vport_cfg_mutex);
}
static void hclge_restore_vlan_table(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_vport_vlan_cfg *vlan, *tmp;
struct hclge_dev *hdev = vport->back;
u16 vlan_proto;
u16 state, vlan_id;
int i;
mutex_lock(&hdev->vport_cfg_mutex);
for (i = 0; i < hdev->num_alloc_vport; i++) {
vport = &hdev->vport[i];
vlan_proto = vport->port_base_vlan_cfg.vlan_info.vlan_proto;
vlan_id = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
state = vport->port_base_vlan_cfg.state;
if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
vport->vport_id, vlan_id,
false);
continue;
}
list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
int ret;
if (!vlan->hd_tbl_status)
continue;
ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
vport->vport_id,
vlan->vlan_id, false);
if (ret)
break;
}
}
mutex_unlock(&hdev->vport_cfg_mutex);
}
int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
vport->rxvlan_cfg.strip_tag1_en = false;
vport->rxvlan_cfg.strip_tag2_en = enable;
} else {
vport->rxvlan_cfg.strip_tag1_en = enable;
vport->rxvlan_cfg.strip_tag2_en = true;
}
vport->rxvlan_cfg.vlan1_vlan_prionly = false;
vport->rxvlan_cfg.vlan2_vlan_prionly = false;
vport->rxvlan_cfg.rx_vlan_offload_en = enable;
return hclge_set_vlan_rx_offload_cfg(vport);
}
static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
u16 port_base_vlan_state,
struct hclge_vlan_info *new_info,
struct hclge_vlan_info *old_info)
{
struct hclge_dev *hdev = vport->back;
int ret;
if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
hclge_rm_vport_all_vlan_table(vport, false);
return hclge_set_vlan_filter_hw(hdev,
htons(new_info->vlan_proto),
vport->vport_id,
new_info->vlan_tag,
false);
}
ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
vport->vport_id, old_info->vlan_tag,
true);
if (ret)
return ret;
return hclge_add_vport_all_vlan_table(vport);
}
int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
struct hclge_vlan_info *vlan_info)
{
struct hnae3_handle *nic = &vport->nic;
struct hclge_vlan_info *old_vlan_info;
struct hclge_dev *hdev = vport->back;
int ret;
old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;
ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag);
if (ret)
return ret;
if (state == HNAE3_PORT_BASE_VLAN_MODIFY) {
/* add new VLAN tag */
ret = hclge_set_vlan_filter_hw(hdev,
htons(vlan_info->vlan_proto),
vport->vport_id,
vlan_info->vlan_tag,
false);
if (ret)
return ret;
/* remove old VLAN tag */
ret = hclge_set_vlan_filter_hw(hdev,
htons(old_vlan_info->vlan_proto),
vport->vport_id,
old_vlan_info->vlan_tag,
true);
if (ret)
return ret;
goto update;
}
ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
old_vlan_info);
if (ret)
return ret;
/* update state only when disable/enable port based VLAN */
vport->port_base_vlan_cfg.state = state;
if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
else
nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
update:
vport->port_base_vlan_cfg.vlan_info.vlan_tag = vlan_info->vlan_tag;
vport->port_base_vlan_cfg.vlan_info.qos = vlan_info->qos;
vport->port_base_vlan_cfg.vlan_info.vlan_proto = vlan_info->vlan_proto;
return 0;
}
static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
enum hnae3_port_base_vlan_state state,
u16 vlan)
{
if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
if (!vlan)
return HNAE3_PORT_BASE_VLAN_NOCHANGE;
else
return HNAE3_PORT_BASE_VLAN_ENABLE;
} else {
if (!vlan)
return HNAE3_PORT_BASE_VLAN_DISABLE;
else if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan)
return HNAE3_PORT_BASE_VLAN_NOCHANGE;
else
return HNAE3_PORT_BASE_VLAN_MODIFY;
}
}
static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
u16 vlan, u8 qos, __be16 proto)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct hclge_vlan_info vlan_info;
u16 state;
int ret;
if (hdev->pdev->revision == 0x20)
return -EOPNOTSUPP;
/* qos is a 3 bits value, so can not be bigger than 7 */
if (vfid >= hdev->num_alloc_vfs || vlan > VLAN_N_VID - 1 || qos > 7)
return -EINVAL;
if (proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
vport = &hdev->vport[vfid];
state = hclge_get_port_base_vlan_state(vport,
vport->port_base_vlan_cfg.state,
vlan);
if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
return 0;
vlan_info.vlan_tag = vlan;
vlan_info.qos = qos;
vlan_info.vlan_proto = ntohs(proto);
/* update port based VLAN for PF */
if (!vfid) {
hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
hclge_notify_client(hdev, HNAE3_UP_CLIENT);
return ret;
}
if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
return hclge_update_port_base_vlan_cfg(vport, state,
&vlan_info);
} else {
ret = hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
(u8)vfid, state,
vlan, qos,
ntohs(proto));
return ret;
}
}
int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
u16 vlan_id, bool is_kill)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
bool writen_to_tbl = false;
int ret = 0;
/* When device is resetting, firmware is unable to handle
* mailbox. Just record the vlan id, and remove it after
* reset finished.
*/
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) && is_kill) {
set_bit(vlan_id, vport->vlan_del_fail_bmap);
return -EBUSY;
}
/* when port base vlan enabled, we use port base vlan as the vlan
* filter entry. In this case, we don't update vlan filter table
* when user add new vlan or remove exist vlan, just update the vport
* vlan list. The vlan id in vlan list will be writen in vlan filter
* table until port base vlan disabled
*/
if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
vlan_id, is_kill);
writen_to_tbl = true;
}
if (!ret) {
if (is_kill)
hclge_rm_vport_vlan_table(vport, vlan_id, false);
else
hclge_add_vport_vlan_table(vport, vlan_id,
writen_to_tbl);
} else if (is_kill) {
/* when remove hw vlan filter failed, record the vlan id,
* and try to remove it from hw later, to be consistence
* with stack
*/
set_bit(vlan_id, vport->vlan_del_fail_bmap);
}
return ret;
}
static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
{
#define HCLGE_MAX_SYNC_COUNT 60
int i, ret, sync_cnt = 0;
u16 vlan_id;
/* start from vport 1 for PF is always alive */
for (i = 0; i < hdev->num_alloc_vport; i++) {
struct hclge_vport *vport = &hdev->vport[i];
vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
VLAN_N_VID);
while (vlan_id != VLAN_N_VID) {
ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
vport->vport_id, vlan_id,
true);
if (ret && ret != -EINVAL)
return;
clear_bit(vlan_id, vport->vlan_del_fail_bmap);
hclge_rm_vport_vlan_table(vport, vlan_id, false);
sync_cnt++;
if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
return;
vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
VLAN_N_VID);
}
}
}
static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
{
struct hclge_config_max_frm_size_cmd *req;
struct hclge_desc desc;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);
req = (struct hclge_config_max_frm_size_cmd *)desc.data;
req->max_frm_size = cpu_to_le16(new_mps);
req->min_frm_size = HCLGE_MAC_MIN_FRAME;
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
struct hclge_vport *vport = hclge_get_vport(handle);
return hclge_set_vport_mtu(vport, new_mtu);
}
int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
{
struct hclge_dev *hdev = vport->back;
int i, max_frm_size, ret;
max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
max_frm_size > HCLGE_MAC_MAX_FRAME)
return -EINVAL;
max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
mutex_lock(&hdev->vport_lock);
/* VF's mps must fit within hdev->mps */
if (vport->vport_id && max_frm_size > hdev->mps) {
mutex_unlock(&hdev->vport_lock);
return -EINVAL;
} else if (vport->vport_id) {
vport->mps = max_frm_size;
mutex_unlock(&hdev->vport_lock);
return 0;
}
/* PF's mps must be greater then VF's mps */
for (i = 1; i < hdev->num_alloc_vport; i++)
if (max_frm_size < hdev->vport[i].mps) {
mutex_unlock(&hdev->vport_lock);
return -EINVAL;
}
hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
ret = hclge_set_mac_mtu(hdev, max_frm_size);
if (ret) {
dev_err(&hdev->pdev->dev,
"Change mtu fail, ret =%d\n", ret);
goto out;
}
hdev->mps = max_frm_size;
vport->mps = max_frm_size;
ret = hclge_buffer_alloc(hdev);
if (ret)
dev_err(&hdev->pdev->dev,
"Allocate buffer fail, ret =%d\n", ret);
out:
hclge_notify_client(hdev, HNAE3_UP_CLIENT);
mutex_unlock(&hdev->vport_lock);
return ret;
}
static int hclge_send_reset_tqp_cmd(struct hclge_dev *hdev, u16 queue_id,
bool enable)
{
struct hclge_reset_tqp_queue_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);
req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = cpu_to_le16(queue_id & HCLGE_RING_ID_MASK);
if (enable)
hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Send tqp reset cmd error, status =%d\n", ret);
return ret;
}
return 0;
}
static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id)
{
struct hclge_reset_tqp_queue_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);
req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = cpu_to_le16(queue_id & HCLGE_RING_ID_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get reset status error, status =%d\n", ret);
return ret;
}
return hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);
}
u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
struct hnae3_queue *queue;
struct hclge_tqp *tqp;
queue = handle->kinfo.tqp[queue_id];
tqp = container_of(queue, struct hclge_tqp, q);
return tqp->index;
}
int hclge_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int reset_try_times = 0;
int reset_status;
u16 queue_gid;
int ret;
queue_gid = hclge_covert_handle_qid_global(handle, queue_id);
ret = hclge_tqp_enable(hdev, queue_id, 0, false);
if (ret) {
dev_err(&hdev->pdev->dev, "Disable tqp fail, ret = %d\n", ret);
return ret;
}
ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, true);
if (ret) {
dev_err(&hdev->pdev->dev,
"Send reset tqp cmd fail, ret = %d\n", ret);
return ret;
}
while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
reset_status = hclge_get_reset_status(hdev, queue_gid);
if (reset_status)
break;
/* Wait for tqp hw reset */
usleep_range(1000, 1200);
}
if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
dev_err(&hdev->pdev->dev, "Reset TQP fail\n");
return ret;
}
ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, false);
if (ret)
dev_err(&hdev->pdev->dev,
"Deassert the soft reset fail, ret = %d\n", ret);
return ret;
}
void hclge_reset_vf_queue(struct hclge_vport *vport, u16 queue_id)
{
struct hclge_dev *hdev = vport->back;
int reset_try_times = 0;
int reset_status;
u16 queue_gid;
int ret;
queue_gid = hclge_covert_handle_qid_global(&vport->nic, queue_id);
ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, true);
if (ret) {
dev_warn(&hdev->pdev->dev,
"Send reset tqp cmd fail, ret = %d\n", ret);
return;
}
while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
reset_status = hclge_get_reset_status(hdev, queue_gid);
if (reset_status)
break;
/* Wait for tqp hw reset */
usleep_range(1000, 1200);
}
if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
dev_warn(&hdev->pdev->dev, "Reset TQP fail\n");
return;
}
ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, false);
if (ret)
dev_warn(&hdev->pdev->dev,
"Deassert the soft reset fail, ret = %d\n", ret);
}
static u32 hclge_get_fw_version(struct hnae3_handle *handle)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hdev->fw_version;
}
static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
{
struct phy_device *phydev = hdev->hw.mac.phydev;
if (!phydev)
return;
phy_set_asym_pause(phydev, rx_en, tx_en);
}
static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
{
int ret;
if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
return 0;
ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
if (ret)
dev_err(&hdev->pdev->dev,
"configure pauseparam error, ret = %d.\n", ret);
return ret;
}
int hclge_cfg_flowctrl(struct hclge_dev *hdev)
{
struct phy_device *phydev = hdev->hw.mac.phydev;
u16 remote_advertising = 0;
u16 local_advertising;
u32 rx_pause, tx_pause;
u8 flowctl;
if (!phydev->link || !phydev->autoneg)
return 0;
local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);
if (phydev->pause)
remote_advertising = LPA_PAUSE_CAP;
if (phydev->asym_pause)
remote_advertising |= LPA_PAUSE_ASYM;
flowctl = mii_resolve_flowctrl_fdx(local_advertising,
remote_advertising);
tx_pause = flowctl & FLOW_CTRL_TX;
rx_pause = flowctl & FLOW_CTRL_RX;
if (phydev->duplex == HCLGE_MAC_HALF) {
tx_pause = 0;
rx_pause = 0;
}
return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
}
static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
u32 *rx_en, u32 *tx_en)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct phy_device *phydev = hdev->hw.mac.phydev;
*auto_neg = phydev ? hclge_get_autoneg(handle) : 0;
if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
*rx_en = 0;
*tx_en = 0;
return;
}
if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
*rx_en = 1;
*tx_en = 0;
} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
*tx_en = 1;
*rx_en = 0;
} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
*rx_en = 1;
*tx_en = 1;
} else {
*rx_en = 0;
*tx_en = 0;
}
}
static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
u32 rx_en, u32 tx_en)
{
if (rx_en && tx_en)
hdev->fc_mode_last_time = HCLGE_FC_FULL;
else if (rx_en && !tx_en)
hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
else if (!rx_en && tx_en)
hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
else
hdev->fc_mode_last_time = HCLGE_FC_NONE;
hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
}
static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
u32 rx_en, u32 tx_en)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct phy_device *phydev = hdev->hw.mac.phydev;
u32 fc_autoneg;
if (phydev) {
fc_autoneg = hclge_get_autoneg(handle);
if (auto_neg != fc_autoneg) {
dev_info(&hdev->pdev->dev,
"To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
return -EOPNOTSUPP;
}
}
if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
dev_info(&hdev->pdev->dev,
"Priority flow control enabled. Cannot set link flow control.\n");
return -EOPNOTSUPP;
}
hclge_set_flowctrl_adv(hdev, rx_en, tx_en);
hclge_record_user_pauseparam(hdev, rx_en, tx_en);
if (!auto_neg)
return hclge_cfg_pauseparam(hdev, rx_en, tx_en);
if (phydev)
return phy_start_aneg(phydev);
return -EOPNOTSUPP;
}
static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
u8 *auto_neg, u32 *speed, u8 *duplex)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (speed)
*speed = hdev->hw.mac.speed;
if (duplex)
*duplex = hdev->hw.mac.duplex;
if (auto_neg)
*auto_neg = hdev->hw.mac.autoneg;
}
static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
u8 *module_type)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
if (media_type)
*media_type = hdev->hw.mac.media_type;
if (module_type)
*module_type = hdev->hw.mac.module_type;
}
static void hclge_get_mdix_mode(struct hnae3_handle *handle,
u8 *tp_mdix_ctrl, u8 *tp_mdix)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
struct phy_device *phydev = hdev->hw.mac.phydev;
int mdix_ctrl, mdix, is_resolved;
unsigned int retval;
if (!phydev) {
*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
*tp_mdix = ETH_TP_MDI_INVALID;
return;
}
phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);
retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
HCLGE_PHY_MDIX_CTRL_S);
retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);
phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);
switch (mdix_ctrl) {
case 0x0:
*tp_mdix_ctrl = ETH_TP_MDI;
break;
case 0x1:
*tp_mdix_ctrl = ETH_TP_MDI_X;
break;
case 0x3:
*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
break;
default:
*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
break;
}
if (!is_resolved)
*tp_mdix = ETH_TP_MDI_INVALID;
else if (mdix)
*tp_mdix = ETH_TP_MDI_X;
else
*tp_mdix = ETH_TP_MDI;
}
static void hclge_info_show(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
dev_info(dev, "PF info begin:\n");
dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
dev_info(dev, "Numbers of vmdp vports: %d\n", hdev->num_vmdq_vport);
dev_info(dev, "Numbers of VF for this PF: %d\n", hdev->num_req_vfs);
dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
dev_info(dev, "Total buffer size for TX/RX: %d\n", hdev->pkt_buf_size);
dev_info(dev, "TX buffer size for each TC: %d\n", hdev->tx_buf_size);
dev_info(dev, "DV buffer size for each TC: %d\n", hdev->dv_buf_size);
dev_info(dev, "This is %s PF\n",
hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
dev_info(dev, "DCB %s\n",
hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable");
dev_info(dev, "MQPRIO %s\n",
hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable");
dev_info(dev, "PF info end.\n");
}
static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
struct hclge_vport *vport)
{
struct hnae3_client *client = vport->nic.client;
struct hclge_dev *hdev = ae_dev->priv;
int rst_cnt;
int ret;
rst_cnt = hdev->rst_stats.reset_cnt;
ret = client->ops->init_instance(&vport->nic);
if (ret)
return ret;
set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
rst_cnt != hdev->rst_stats.reset_cnt) {
ret = -EBUSY;
goto init_nic_err;
}
/* Enable nic hw error interrupts */
ret = hclge_config_nic_hw_error(hdev, true);
if (ret) {
dev_err(&ae_dev->pdev->dev,
"fail(%d) to enable hw error interrupts\n", ret);
goto init_nic_err;
}
hnae3_set_client_init_flag(client, ae_dev, 1);
if (netif_msg_drv(&hdev->vport->nic))
hclge_info_show(hdev);
return ret;
init_nic_err:
clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
msleep(HCLGE_WAIT_RESET_DONE);
client->ops->uninit_instance(&vport->nic, 0);
return ret;
}
static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
struct hclge_vport *vport)
{
struct hnae3_client *client = vport->roce.client;
struct hclge_dev *hdev = ae_dev->priv;
int rst_cnt;
int ret;
if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
!hdev->nic_client)
return 0;
client = hdev->roce_client;
ret = hclge_init_roce_base_info(vport);
if (ret)
return ret;
rst_cnt = hdev->rst_stats.reset_cnt;
ret = client->ops->init_instance(&vport->roce);
if (ret)
return ret;
set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
rst_cnt != hdev->rst_stats.reset_cnt) {
ret = -EBUSY;
goto init_roce_err;
}
/* Enable roce ras interrupts */
ret = hclge_config_rocee_ras_interrupt(hdev, true);
if (ret) {
dev_err(&ae_dev->pdev->dev,
"fail(%d) to enable roce ras interrupts\n", ret);
goto init_roce_err;
}
hnae3_set_client_init_flag(client, ae_dev, 1);
return 0;
init_roce_err:
clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
msleep(HCLGE_WAIT_RESET_DONE);
hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
return ret;
}
static int hclge_init_client_instance(struct hnae3_client *client,
struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct hclge_vport *vport;
int i, ret;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
vport = &hdev->vport[i];
switch (client->type) {
case HNAE3_CLIENT_KNIC:
hdev->nic_client = client;
vport->nic.client = client;
ret = hclge_init_nic_client_instance(ae_dev, vport);
if (ret)
goto clear_nic;
ret = hclge_init_roce_client_instance(ae_dev, vport);
if (ret)
goto clear_roce;
break;
case HNAE3_CLIENT_ROCE:
if (hnae3_dev_roce_supported(hdev)) {
hdev->roce_client = client;
vport->roce.client = client;
}
ret = hclge_init_roce_client_instance(ae_dev, vport);
if (ret)
goto clear_roce;
break;
default:
return -EINVAL;
}
}
return 0;
clear_nic:
hdev->nic_client = NULL;
vport->nic.client = NULL;
return ret;
clear_roce:
hdev->roce_client = NULL;
vport->roce.client = NULL;
return ret;
}
static void hclge_uninit_client_instance(struct hnae3_client *client,
struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct hclge_vport *vport;
int i;
for (i = 0; i < hdev->num_vmdq_vport + 1; i++) {
vport = &hdev->vport[i];
if (hdev->roce_client) {
clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
msleep(HCLGE_WAIT_RESET_DONE);
hdev->roce_client->ops->uninit_instance(&vport->roce,
0);
hdev->roce_client = NULL;
vport->roce.client = NULL;
}
if (client->type == HNAE3_CLIENT_ROCE)
return;
if (hdev->nic_client && client->ops->uninit_instance) {
clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
msleep(HCLGE_WAIT_RESET_DONE);
client->ops->uninit_instance(&vport->nic, 0);
hdev->nic_client = NULL;
vport->nic.client = NULL;
}
}
}
static int hclge_pci_init(struct hclge_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
struct hclge_hw *hw;
int ret;
ret = pci_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "failed to enable PCI device\n");
return ret;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev,
"can't set consistent PCI DMA");
goto err_disable_device;
}
dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
}
ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
goto err_disable_device;
}
pci_set_master(pdev);
hw = &hdev->hw;
hw->io_base = pcim_iomap(pdev, 2, 0);
if (!hw->io_base) {
dev_err(&pdev->dev, "Can't map configuration register space\n");
ret = -ENOMEM;
goto err_clr_master;
}
hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);
return 0;
err_clr_master:
pci_clear_master(pdev);
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return ret;
}
static void hclge_pci_uninit(struct hclge_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
pcim_iounmap(pdev, hdev->hw.io_base);
pci_free_irq_vectors(pdev);
pci_clear_master(pdev);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
static void hclge_state_init(struct hclge_dev *hdev)
{
set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
set_bit(HCLGE_STATE_DOWN, &hdev->state);
clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
}
static void hclge_state_uninit(struct hclge_dev *hdev)
{
set_bit(HCLGE_STATE_DOWN, &hdev->state);
set_bit(HCLGE_STATE_REMOVING, &hdev->state);
if (hdev->reset_timer.function)
del_timer_sync(&hdev->reset_timer);
if (hdev->service_task.work.func)
cancel_delayed_work_sync(&hdev->service_task);
if (hdev->rst_service_task.func)
cancel_work_sync(&hdev->rst_service_task);
if (hdev->mbx_service_task.func)
cancel_work_sync(&hdev->mbx_service_task);
}
static void hclge_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
#define HCLGE_FLR_WAIT_MS 100
#define HCLGE_FLR_WAIT_CNT 50
struct hclge_dev *hdev = ae_dev->priv;
int cnt = 0;
clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
hclge_reset_event(hdev->pdev, NULL);
while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
cnt++ < HCLGE_FLR_WAIT_CNT)
msleep(HCLGE_FLR_WAIT_MS);
if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
dev_err(&hdev->pdev->dev,
"flr wait down timeout: %d\n", cnt);
}
static void hclge_flr_done(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
}
static void hclge_clear_resetting_state(struct hclge_dev *hdev)
{
u16 i;
for (i = 0; i < hdev->num_alloc_vport; i++) {
struct hclge_vport *vport = &hdev->vport[i];
int ret;
/* Send cmd to clear VF's FUNC_RST_ING */
ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
if (ret)
dev_warn(&hdev->pdev->dev,
"clear vf(%d) rst failed %d!\n",
vport->vport_id, ret);
}
}
static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
struct pci_dev *pdev = ae_dev->pdev;
struct hclge_dev *hdev;
int ret;
hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
if (!hdev) {
ret = -ENOMEM;
goto out;
}
hdev->pdev = pdev;
hdev->ae_dev = ae_dev;
hdev->reset_type = HNAE3_NONE_RESET;
hdev->reset_level = HNAE3_FUNC_RESET;
ae_dev->priv = hdev;
hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
mutex_init(&hdev->vport_lock);
mutex_init(&hdev->vport_cfg_mutex);
spin_lock_init(&hdev->fd_rule_lock);
ret = hclge_pci_init(hdev);
if (ret) {
dev_err(&pdev->dev, "PCI init failed\n");
goto out;
}
/* Firmware command queue initialize */
ret = hclge_cmd_queue_init(hdev);
if (ret) {
dev_err(&pdev->dev, "Cmd queue init failed, ret = %d.\n", ret);
goto err_pci_uninit;
}
/* Firmware command initialize */
ret = hclge_cmd_init(hdev);
if (ret)
goto err_cmd_uninit;
ret = hclge_get_cap(hdev);
if (ret) {
dev_err(&pdev->dev, "get hw capability error, ret = %d.\n",
ret);
goto err_cmd_uninit;
}
ret = hclge_configure(hdev);
if (ret) {
dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
goto err_cmd_uninit;
}
ret = hclge_init_msi(hdev);
if (ret) {
dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
goto err_cmd_uninit;
}
ret = hclge_misc_irq_init(hdev);
if (ret) {
dev_err(&pdev->dev,
"Misc IRQ(vector0) init error, ret = %d.\n",
ret);
goto err_msi_uninit;
}
ret = hclge_alloc_tqps(hdev);
if (ret) {
dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
goto err_msi_irq_uninit;
}
ret = hclge_alloc_vport(hdev);
if (ret) {
dev_err(&pdev->dev, "Allocate vport error, ret = %d.\n", ret);
goto err_msi_irq_uninit;
}
ret = hclge_map_tqp(hdev);
if (ret) {
dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
goto err_msi_irq_uninit;
}
if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) {
ret = hclge_mac_mdio_config(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"mdio config fail ret=%d\n", ret);
goto err_msi_irq_uninit;
}
}
ret = hclge_init_umv_space(hdev);
if (ret) {
dev_err(&pdev->dev, "umv space init error, ret=%d.\n", ret);
goto err_mdiobus_unreg;
}
ret = hclge_mac_init(hdev);
if (ret) {
dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
goto err_mdiobus_unreg;
}
ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
if (ret) {
dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
goto err_mdiobus_unreg;
}
ret = hclge_config_gro(hdev, true);
if (ret)
goto err_mdiobus_unreg;
ret = hclge_init_vlan_config(hdev);
if (ret) {
dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
goto err_mdiobus_unreg;
}
ret = hclge_tm_schd_init(hdev);
if (ret) {
dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
goto err_mdiobus_unreg;
}
hclge_rss_init_cfg(hdev);
ret = hclge_rss_init_hw(hdev);
if (ret) {
dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
goto err_mdiobus_unreg;
}
ret = init_mgr_tbl(hdev);
if (ret) {
dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
goto err_mdiobus_unreg;
}
ret = hclge_init_fd_config(hdev);
if (ret) {
dev_err(&pdev->dev,
"fd table init fail, ret=%d\n", ret);
goto err_mdiobus_unreg;
}
INIT_KFIFO(hdev->mac_tnl_log);
hclge_dcb_ops_set(hdev);
timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);
INIT_WORK(&hdev->rst_service_task, hclge_reset_service_task);
INIT_WORK(&hdev->mbx_service_task, hclge_mailbox_service_task);
/* Setup affinity after service timer setup because add_timer_on
* is called in affinity notify.
*/
hclge_misc_affinity_setup(hdev);
hclge_clear_all_event_cause(hdev);
hclge_clear_resetting_state(hdev);
/* Log and clear the hw errors those already occurred */
hclge_handle_all_hns_hw_errors(ae_dev);
/* request delayed reset for the error recovery because an immediate
* global reset on a PF affecting pending initialization of other PFs
*/
if (ae_dev->hw_err_reset_req) {
enum hnae3_reset_type reset_level;
reset_level = hclge_get_reset_level(ae_dev,
&ae_dev->hw_err_reset_req);
hclge_set_def_reset_request(ae_dev, reset_level);
mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
}
/* Enable MISC vector(vector0) */
hclge_enable_vector(&hdev->misc_vector, true);
hclge_state_init(hdev);
hdev->last_reset_time = jiffies;
dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
HCLGE_DRIVER_NAME);
return 0;
err_mdiobus_unreg:
if (hdev->hw.mac.phydev)
mdiobus_unregister(hdev->hw.mac.mdio_bus);
err_msi_irq_uninit:
hclge_misc_irq_uninit(hdev);
err_msi_uninit:
pci_free_irq_vectors(pdev);
err_cmd_uninit:
hclge_cmd_uninit(hdev);
err_pci_uninit:
pcim_iounmap(pdev, hdev->hw.io_base);
pci_clear_master(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
out:
return ret;
}
static void hclge_stats_clear(struct hclge_dev *hdev)
{
memset(&hdev->hw_stats, 0, sizeof(hdev->hw_stats));
}
static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
{
return hclge_config_switch_param(hdev, vf, enable,
HCLGE_SWITCH_ANTI_SPOOF_MASK);
}
static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
{
return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
HCLGE_FILTER_FE_NIC_INGRESS_B,
enable, vf);
}
static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
{
int ret;
ret = hclge_set_mac_spoofchk(hdev, vf, enable);
if (ret) {
dev_err(&hdev->pdev->dev,
"Set vf %d mac spoof check %s failed, ret=%d\n",
vf, enable ? "on" : "off", ret);
return ret;
}
ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
if (ret)
dev_err(&hdev->pdev->dev,
"Set vf %d vlan spoof check %s failed, ret=%d\n",
vf, enable ? "on" : "off", ret);
return ret;
}
static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u32 new_spoofchk = enable ? 1 : 0;
int ret;
if (hdev->pdev->revision == 0x20)
return -EOPNOTSUPP;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
if (vport->vf_info.spoofchk == new_spoofchk)
return 0;
if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
dev_warn(&hdev->pdev->dev,
"vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
vf);
else if (enable && hclge_is_umv_space_full(vport))
dev_warn(&hdev->pdev->dev,
"vf %d mac table is full, enable spoof check may cause its packet send fail\n",
vf);
ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
if (ret)
return ret;
vport->vf_info.spoofchk = new_spoofchk;
return 0;
}
static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
{
struct hclge_vport *vport = hdev->vport;
int ret;
int i;
if (hdev->pdev->revision == 0x20)
return 0;
/* resume the vf spoof check state after reset */
for (i = 0; i < hdev->num_alloc_vport; i++) {
ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
vport->vf_info.spoofchk);
if (ret)
return ret;
vport++;
}
return 0;
}
static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u32 new_trusted = enable ? 1 : 0;
bool en_bc_pmc;
int ret;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
if (vport->vf_info.trusted == new_trusted)
return 0;
/* Disable promisc mode for VF if it is not trusted any more. */
if (!enable && vport->vf_info.promisc_enable) {
en_bc_pmc = hdev->pdev->revision != 0x20;
ret = hclge_set_vport_promisc_mode(vport, false, false,
en_bc_pmc);
if (ret)
return ret;
vport->vf_info.promisc_enable = 0;
hclge_inform_vf_promisc_info(vport);
}
vport->vf_info.trusted = new_trusted;
return 0;
}
static void hclge_reset_vf_rate(struct hclge_dev *hdev)
{
int ret;
int vf;
/* reset vf rate to default value */
for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
struct hclge_vport *vport = &hdev->vport[vf];
vport->vf_info.max_tx_rate = 0;
ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
if (ret)
dev_err(&hdev->pdev->dev,
"vf%d failed to reset to default, ret=%d\n",
vf - HCLGE_VF_VPORT_START_NUM, ret);
}
}
static int hclge_vf_rate_param_check(struct hclge_dev *hdev, int vf,
int min_tx_rate, int max_tx_rate)
{
if (min_tx_rate != 0 ||
max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
dev_err(&hdev->pdev->dev,
"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
return -EINVAL;
}
return 0;
}
static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
int min_tx_rate, int max_tx_rate, bool force)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int ret;
ret = hclge_vf_rate_param_check(hdev, vf, min_tx_rate, max_tx_rate);
if (ret)
return ret;
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
return 0;
ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
if (ret)
return ret;
vport->vf_info.max_tx_rate = max_tx_rate;
return 0;
}
static int hclge_resume_vf_rate(struct hclge_dev *hdev)
{
struct hnae3_handle *handle = &hdev->vport->nic;
struct hclge_vport *vport;
int ret;
int vf;
/* resume the vf max_tx_rate after reset */
for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
vport = hclge_get_vf_vport(hdev, vf);
if (!vport)
return -EINVAL;
/* zero means max rate, after reset, firmware already set it to
* max rate, so just continue.
*/
if (!vport->vf_info.max_tx_rate)
continue;
ret = hclge_set_vf_rate(handle, vf, 0,
vport->vf_info.max_tx_rate, true);
if (ret) {
dev_err(&hdev->pdev->dev,
"vf%d failed to resume tx_rate:%u, ret=%d\n",
vf, vport->vf_info.max_tx_rate, ret);
return ret;
}
}
return 0;
}
static void hclge_reset_vport_state(struct hclge_dev *hdev)
{
struct hclge_vport *vport = hdev->vport;
int i;
for (i = 0; i < hdev->num_alloc_vport; i++) {
hclge_vport_stop(vport);
vport++;
}
}
static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct pci_dev *pdev = ae_dev->pdev;
int ret;
set_bit(HCLGE_STATE_DOWN, &hdev->state);
hclge_stats_clear(hdev);
memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
ret = hclge_cmd_init(hdev);
if (ret) {
dev_err(&pdev->dev, "Cmd queue init failed\n");
return ret;
}
ret = hclge_map_tqp(hdev);
if (ret) {
dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
return ret;
}
hclge_reset_umv_space(hdev);
ret = hclge_mac_init(hdev);
if (ret) {
dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
return ret;
}
ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
if (ret) {
dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
return ret;
}
ret = hclge_config_gro(hdev, true);
if (ret)
return ret;
ret = hclge_init_vlan_config(hdev);
if (ret) {
dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
return ret;
}
ret = hclge_tm_init_hw(hdev, true);
if (ret) {
dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
return ret;
}
ret = hclge_rss_init_hw(hdev);
if (ret) {
dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
return ret;
}
ret = hclge_init_fd_config(hdev);
if (ret) {
dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
return ret;
}
/* Re-enable the hw error interrupts because
* the interrupts get disabled on global reset.
*/
ret = hclge_config_nic_hw_error(hdev, true);
if (ret) {
dev_err(&pdev->dev,
"fail(%d) to re-enable NIC hw error interrupts\n",
ret);
return ret;
}
if (hdev->roce_client) {
ret = hclge_config_rocee_ras_interrupt(hdev, true);
if (ret) {
dev_err(&pdev->dev,
"fail(%d) to re-enable roce ras interrupts\n",
ret);
return ret;
}
}
hclge_reset_vport_state(hdev);
ret = hclge_reset_vport_spoofchk(hdev);
if (ret)
return ret;
ret = hclge_resume_vf_rate(hdev);
if (ret)
return ret;
dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
HCLGE_DRIVER_NAME);
return 0;
}
static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct hclge_mac *mac = &hdev->hw.mac;
hclge_reset_vf_rate(hdev);
hclge_misc_affinity_teardown(hdev);
hclge_state_uninit(hdev);
if (mac->phydev)
mdiobus_unregister(mac->mdio_bus);
hclge_uninit_umv_space(hdev);
/* Disable MISC vector(vector0) */
hclge_enable_vector(&hdev->misc_vector, false);
synchronize_irq(hdev->misc_vector.vector_irq);
/* Disable all hw interrupts */
hclge_config_mac_tnl_int(hdev, false);
hclge_config_nic_hw_error(hdev, false);
hclge_config_rocee_ras_interrupt(hdev, false);
hclge_cmd_uninit(hdev);
hclge_misc_irq_uninit(hdev);
hclge_pci_uninit(hdev);
mutex_destroy(&hdev->vport_lock);
hclge_uninit_vport_mac_table(hdev);
hclge_uninit_vport_vlan_table(hdev);
mutex_destroy(&hdev->vport_cfg_mutex);
ae_dev->priv = NULL;
}
static u32 hclge_get_max_channels(struct hnae3_handle *handle)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return min_t(u32, hdev->rss_size_max,
vport->alloc_tqps / kinfo->num_tc);
}
static void hclge_get_channels(struct hnae3_handle *handle,
struct ethtool_channels *ch)
{
ch->max_combined = hclge_get_max_channels(handle);
ch->other_count = 1;
ch->max_other = 1;
ch->combined_count = handle->kinfo.rss_size;
}
static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
u16 *alloc_tqps, u16 *max_rss_size)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
*alloc_tqps = vport->alloc_tqps;
*max_rss_size = hdev->rss_size_max;
}
static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
bool rxfh_configured)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
struct hclge_dev *hdev = vport->back;
u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
int cur_rss_size = kinfo->rss_size;
int cur_tqps = kinfo->num_tqps;
u16 tc_valid[HCLGE_MAX_TC_NUM];
u16 roundup_size;
u32 *rss_indir;
unsigned int i;
int ret;
kinfo->req_rss_size = new_tqps_num;
ret = hclge_tm_vport_map_update(hdev);
if (ret) {
dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
return ret;
}
roundup_size = roundup_pow_of_two(kinfo->rss_size);
roundup_size = ilog2(roundup_size);
/* Set the RSS TC mode according to the new RSS size */
for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
tc_valid[i] = 0;
if (!(hdev->hw_tc_map & BIT(i)))
continue;
tc_valid[i] = 1;
tc_size[i] = roundup_size;
tc_offset[i] = kinfo->rss_size * i;
}
ret = hclge_set_rss_tc_mode(hdev, tc_valid, tc_size, tc_offset);
if (ret)
return ret;
/* RSS indirection table has been configuared by user */
if (rxfh_configured)
goto out;
/* Reinitializes the rss indirect table according to the new RSS size */
rss_indir = kcalloc(HCLGE_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
if (!rss_indir)
return -ENOMEM;
for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++)
rss_indir[i] = i % kinfo->rss_size;
ret = hclge_set_rss(handle, rss_indir, NULL, 0);
if (ret)
dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
ret);
kfree(rss_indir);
out:
if (!ret)
dev_info(&hdev->pdev->dev,
"Channels changed, rss_size from %d to %d, tqps from %d to %d",
cur_rss_size, kinfo->rss_size,
cur_tqps, kinfo->rss_size * kinfo->num_tc);
return ret;
}
static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit,
u32 *regs_num_64_bit)
{
struct hclge_desc desc;
u32 total_num;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query register number cmd failed, ret = %d.\n", ret);
return ret;
}
*regs_num_32_bit = le32_to_cpu(desc.data[0]);
*regs_num_64_bit = le32_to_cpu(desc.data[1]);
total_num = *regs_num_32_bit + *regs_num_64_bit;
if (!total_num)
return -EINVAL;
return 0;
}
static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num,
void *data)
{
#define HCLGE_32_BIT_REG_RTN_DATANUM 8
#define HCLGE_32_BIT_DESC_NODATA_LEN 2
struct hclge_desc *desc;
u32 *reg_val = data;
__le32 *desc_data;
int nodata_num;
int cmd_num;
int i, k, n;
int ret;
if (regs_num == 0)
return 0;
nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN;
cmd_num = DIV_ROUND_UP(regs_num + nodata_num,
HCLGE_32_BIT_REG_RTN_DATANUM);
desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true);
ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query 32 bit register cmd failed, ret = %d.\n", ret);
kfree(desc);
return ret;
}
for (i = 0; i < cmd_num; i++) {
if (i == 0) {
desc_data = (__le32 *)(&desc[i].data[0]);
n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num;
} else {
desc_data = (__le32 *)(&desc[i]);
n = HCLGE_32_BIT_REG_RTN_DATANUM;
}
for (k = 0; k < n; k++) {
*reg_val++ = le32_to_cpu(*desc_data++);
regs_num--;
if (!regs_num)
break;
}
}
kfree(desc);
return 0;
}
static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num,
void *data)
{
#define HCLGE_64_BIT_REG_RTN_DATANUM 4
#define HCLGE_64_BIT_DESC_NODATA_LEN 1
struct hclge_desc *desc;
u64 *reg_val = data;
__le64 *desc_data;
int nodata_len;
int cmd_num;
int i, k, n;
int ret;
if (regs_num == 0)
return 0;
nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN;
cmd_num = DIV_ROUND_UP(regs_num + nodata_len,
HCLGE_64_BIT_REG_RTN_DATANUM);
desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true);
ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query 64 bit register cmd failed, ret = %d.\n", ret);
kfree(desc);
return ret;
}
for (i = 0; i < cmd_num; i++) {
if (i == 0) {
desc_data = (__le64 *)(&desc[i].data[0]);
n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len;
} else {
desc_data = (__le64 *)(&desc[i]);
n = HCLGE_64_BIT_REG_RTN_DATANUM;
}
for (k = 0; k < n; k++) {
*reg_val++ = le64_to_cpu(*desc_data++);
regs_num--;
if (!regs_num)
break;
}
}
kfree(desc);
return 0;
}
#define MAX_SEPARATE_NUM 4
#define SEPARATOR_VALUE 0xFDFCFBFA
#define REG_NUM_PER_LINE 4
#define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
#define REG_SEPARATOR_LINE 1
#define REG_NUM_REMAIN_MASK 3
#define BD_LIST_MAX_NUM 30
int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc)
{
/*prepare 4 commands to query DFX BD number*/
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_DFX_BD_NUM, true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_DFX_BD_NUM, true);
desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_DFX_BD_NUM, true);
desc[2].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[3], HCLGE_OPC_DFX_BD_NUM, true);
return hclge_cmd_send(&hdev->hw, desc, 4);
}
static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev,
int *bd_num_list,
u32 type_num)
{
#define HCLGE_DFX_REG_BD_NUM 4
u32 entries_per_desc, desc_index, index, offset, i;
struct hclge_desc desc[HCLGE_DFX_REG_BD_NUM];
int ret;
ret = hclge_query_bd_num_cmd_send(hdev, desc);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get dfx bd num fail, status is %d.\n", ret);
return ret;
}
entries_per_desc = ARRAY_SIZE(desc[0].data);
for (i = 0; i < type_num; i++) {
offset = hclge_dfx_bd_offset_list[i];
index = offset % entries_per_desc;
desc_index = offset / entries_per_desc;
bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]);
}
return ret;
}
static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev,
struct hclge_desc *desc_src, int bd_num,
enum hclge_opcode_type cmd)
{
struct hclge_desc *desc = desc_src;
int i, ret;
hclge_cmd_setup_basic_desc(desc, cmd, true);
for (i = 0; i < bd_num - 1; i++) {
desc->flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
desc++;
hclge_cmd_setup_basic_desc(desc, cmd, true);
}
desc = desc_src;
ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
if (ret)
dev_err(&hdev->pdev->dev,
"Query dfx reg cmd(0x%x) send fail, status is %d.\n",
cmd, ret);
return ret;
}
static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num,
void *data)
{
int entries_per_desc, reg_num, separator_num, desc_index, index, i;
struct hclge_desc *desc = desc_src;
u32 *reg = data;
entries_per_desc = ARRAY_SIZE(desc->data);
reg_num = entries_per_desc * bd_num;
separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK);
for (i = 0; i < reg_num; i++) {
index = i % entries_per_desc;
desc_index = i / entries_per_desc;
*reg++ = le32_to_cpu(desc[desc_index].data[index]);
}
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
return reg_num + separator_num;
}
static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len)
{
u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
int data_len_per_desc, data_len, bd_num, i;
int bd_num_list[BD_LIST_MAX_NUM];
int ret;
ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get dfx reg bd num fail, status is %d.\n", ret);
return ret;
}
data_len_per_desc = FIELD_SIZEOF(struct hclge_desc, data);
*len = 0;
for (i = 0; i < dfx_reg_type_num; i++) {
bd_num = bd_num_list[i];
data_len = data_len_per_desc * bd_num;
*len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE;
}
return ret;
}
static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data)
{
u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
int bd_num, bd_num_max, buf_len, i;
int bd_num_list[BD_LIST_MAX_NUM];
struct hclge_desc *desc_src;
u32 *reg = data;
int ret;
ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get dfx reg bd num fail, status is %d.\n", ret);
return ret;
}
bd_num_max = bd_num_list[0];
for (i = 1; i < dfx_reg_type_num; i++)
bd_num_max = max_t(int, bd_num_max, bd_num_list[i]);
buf_len = sizeof(*desc_src) * bd_num_max;
desc_src = kzalloc(buf_len, GFP_KERNEL);
if (!desc_src) {
dev_err(&hdev->pdev->dev, "%s kzalloc failed\n", __func__);
return -ENOMEM;
}
for (i = 0; i < dfx_reg_type_num; i++) {
bd_num = bd_num_list[i];
ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num,
hclge_dfx_reg_opcode_list[i]);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get dfx reg fail, status is %d.\n", ret);
break;
}
reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg);
}
kfree(desc_src);
return ret;
}
static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
struct hnae3_knic_private_info *kinfo)
{
#define HCLGE_RING_REG_OFFSET 0x200
#define HCLGE_RING_INT_REG_OFFSET 0x4
int i, j, reg_num, separator_num;
int data_num_sum;
u32 *reg = data;
/* fetching per-PF registers valus from PF PCIe register space */
reg_num = ARRAY_SIZE(cmdq_reg_addr_list);
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (i = 0; i < reg_num; i++)
*reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
data_num_sum = reg_num + separator_num;
reg_num = ARRAY_SIZE(common_reg_addr_list);
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (i = 0; i < reg_num; i++)
*reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
data_num_sum += reg_num + separator_num;
reg_num = ARRAY_SIZE(ring_reg_addr_list);
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (j = 0; j < kinfo->num_tqps; j++) {
for (i = 0; i < reg_num; i++)
*reg++ = hclge_read_dev(&hdev->hw,
ring_reg_addr_list[i] +
HCLGE_RING_REG_OFFSET * j);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
}
data_num_sum += (reg_num + separator_num) * kinfo->num_tqps;
reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list);
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (j = 0; j < hdev->num_msi_used - 1; j++) {
for (i = 0; i < reg_num; i++)
*reg++ = hclge_read_dev(&hdev->hw,
tqp_intr_reg_addr_list[i] +
HCLGE_RING_INT_REG_OFFSET * j);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
}
data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1);
return data_num_sum;
}
static int hclge_get_regs_len(struct hnae3_handle *handle)
{
int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
int regs_num_32_bit, regs_num_64_bit, dfx_regs_len;
int regs_lines_32_bit, regs_lines_64_bit;
int ret;
ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get register number failed, ret = %d.\n", ret);
return ret;
}
ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get dfx reg len failed, ret = %d.\n", ret);
return ret;
}
cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE +
REG_SEPARATOR_LINE;
return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps +
tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit +
regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len;
}
static void hclge_get_regs(struct hnae3_handle *handle, u32 *version,
void *data)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
u32 regs_num_32_bit, regs_num_64_bit;
int i, reg_num, separator_num, ret;
u32 *reg = data;
*version = hdev->fw_version;
ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get register number failed, ret = %d.\n", ret);
return;
}
reg += hclge_fetch_pf_reg(hdev, reg, kinfo);
ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get 32 bit register failed, ret = %d.\n", ret);
return;
}
reg_num = regs_num_32_bit;
reg += reg_num;
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg);
if (ret) {
dev_err(&hdev->pdev->dev,
"Get 64 bit register failed, ret = %d.\n", ret);
return;
}
reg_num = regs_num_64_bit * 2;
reg += reg_num;
separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
for (i = 0; i < separator_num; i++)
*reg++ = SEPARATOR_VALUE;
ret = hclge_get_dfx_reg(hdev, reg);
if (ret)
dev_err(&hdev->pdev->dev,
"Get dfx register failed, ret = %d.\n", ret);
}
static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
{
struct hclge_set_led_state_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);
req = (struct hclge_set_led_state_cmd *)desc.data;
hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
HCLGE_LED_LOCATE_STATE_S, locate_led_status);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(&hdev->pdev->dev,
"Send set led state cmd error, ret =%d\n", ret);
return ret;
}
enum hclge_led_status {
HCLGE_LED_OFF,
HCLGE_LED_ON,
HCLGE_LED_NO_CHANGE = 0xFF,
};
static int hclge_set_led_id(struct hnae3_handle *handle,
enum ethtool_phys_id_state status)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
switch (status) {
case ETHTOOL_ID_ACTIVE:
return hclge_set_led_status(hdev, HCLGE_LED_ON);
case ETHTOOL_ID_INACTIVE:
return hclge_set_led_status(hdev, HCLGE_LED_OFF);
default:
return -EINVAL;
}
}
static void hclge_get_link_mode(struct hnae3_handle *handle,
unsigned long *supported,
unsigned long *advertising)
{
unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
unsigned int idx = 0;
for (; idx < size; idx++) {
supported[idx] = hdev->hw.mac.supported[idx];
advertising[idx] = hdev->hw.mac.advertising[idx];
}
}
static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
{
struct hclge_vport *vport = hclge_get_vport(handle);
struct hclge_dev *hdev = vport->back;
return hclge_config_gro(hdev, enable);
}
static const struct hnae3_ae_ops hclge_ops = {
.init_ae_dev = hclge_init_ae_dev,
.uninit_ae_dev = hclge_uninit_ae_dev,
.flr_prepare = hclge_flr_prepare,
.flr_done = hclge_flr_done,
.init_client_instance = hclge_init_client_instance,
.uninit_client_instance = hclge_uninit_client_instance,
.map_ring_to_vector = hclge_map_ring_to_vector,
.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
.get_vector = hclge_get_vector,
.put_vector = hclge_put_vector,
.set_promisc_mode = hclge_set_promisc_mode,
.set_loopback = hclge_set_loopback,
.start = hclge_ae_start,
.stop = hclge_ae_stop,
.client_start = hclge_client_start,
.client_stop = hclge_client_stop,
.get_status = hclge_get_status,
.get_ksettings_an_result = hclge_get_ksettings_an_result,
.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
.get_media_type = hclge_get_media_type,
.check_port_speed = hclge_check_port_speed,
.get_fec = hclge_get_fec,
.set_fec = hclge_set_fec,
.get_rss_key_size = hclge_get_rss_key_size,
.get_rss_indir_size = hclge_get_rss_indir_size,
.get_rss = hclge_get_rss,
.set_rss = hclge_set_rss,
.set_rss_tuple = hclge_set_rss_tuple,
.get_rss_tuple = hclge_get_rss_tuple,
.get_tc_size = hclge_get_tc_size,
.get_mac_addr = hclge_get_mac_addr,
.set_mac_addr = hclge_set_mac_addr,
.do_ioctl = hclge_do_ioctl,
.add_uc_addr = hclge_add_uc_addr,
.rm_uc_addr = hclge_rm_uc_addr,
.add_mc_addr = hclge_add_mc_addr,
.rm_mc_addr = hclge_rm_mc_addr,
.set_autoneg = hclge_set_autoneg,
.get_autoneg = hclge_get_autoneg,
.restart_autoneg = hclge_restart_autoneg,
.halt_autoneg = hclge_halt_autoneg,
.get_pauseparam = hclge_get_pauseparam,
.set_pauseparam = hclge_set_pauseparam,
.set_mtu = hclge_set_mtu,
.reset_queue = hclge_reset_tqp,
.get_stats = hclge_get_stats,
.get_mac_stats = hclge_get_mac_stat,
.update_stats = hclge_update_stats,
.get_strings = hclge_get_strings,
.get_sset_count = hclge_get_sset_count,
.get_fw_version = hclge_get_fw_version,
.get_mdix_mode = hclge_get_mdix_mode,
.enable_vlan_filter = hclge_enable_vlan_filter,
.set_vlan_filter = hclge_set_vlan_filter,
.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
.reset_event = hclge_reset_event,
.get_reset_level = hclge_get_reset_level,
.set_default_reset_request = hclge_set_def_reset_request,
.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
.set_channels = hclge_set_channels,
.get_channels = hclge_get_channels,
.get_regs_len = hclge_get_regs_len,
.get_regs = hclge_get_regs,
.set_led_id = hclge_set_led_id,
.get_link_mode = hclge_get_link_mode,
.add_fd_entry = hclge_add_fd_entry,
.del_fd_entry = hclge_del_fd_entry,
.del_all_fd_entries = hclge_del_all_fd_entries,
.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
.get_fd_rule_info = hclge_get_fd_rule_info,
.get_fd_all_rules = hclge_get_all_rules,
.restore_fd_rules = hclge_restore_fd_entries,
.enable_fd = hclge_enable_fd,
.add_arfs_entry = hclge_add_fd_entry_by_arfs,
.dbg_run_cmd = hclge_dbg_run_cmd,
.handle_hw_ras_error = hclge_handle_hw_ras_error,
.get_hw_reset_stat = hclge_get_hw_reset_stat,
.ae_dev_resetting = hclge_ae_dev_resetting,
.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
.set_gro_en = hclge_gro_en,
.get_global_queue_id = hclge_covert_handle_qid_global,
.set_timer_task = hclge_set_timer_task,
.mac_connect_phy = hclge_mac_connect_phy,
.mac_disconnect_phy = hclge_mac_disconnect_phy,
.restore_vlan_table = hclge_restore_vlan_table,
.get_vf_config = hclge_get_vf_config,
.set_vf_link_state = hclge_set_vf_link_state,
.set_vf_spoofchk = hclge_set_vf_spoofchk,
.set_vf_trust = hclge_set_vf_trust,
.set_vf_rate = hclge_set_vf_rate,
.set_vf_mac = hclge_set_vf_mac,
};
static struct hnae3_ae_algo ae_algo = {
.ops = &hclge_ops,
.pdev_id_table = ae_algo_pci_tbl,
};
static int hclge_init(void)
{
pr_info("%s is initializing\n", HCLGE_NAME);
hnae3_register_ae_algo(&ae_algo);
return 0;
}
static void hclge_exit(void)
{
hnae3_unregister_ae_algo(&ae_algo);
}
module_init(hclge_init);
module_exit(hclge_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGE Driver");
MODULE_VERSION(HCLGE_MOD_VERSION);