| .. SPDX-License-Identifier: GPL-2.0 |
| |
| =================================================================== |
| The Definitive KVM (Kernel-based Virtual Machine) API Documentation |
| =================================================================== |
| |
| 1. General description |
| ====================== |
| |
| The kvm API is a set of ioctls that are issued to control various aspects |
| of a virtual machine. The ioctls belong to the following classes: |
| |
| - System ioctls: These query and set global attributes which affect the |
| whole kvm subsystem. In addition a system ioctl is used to create |
| virtual machines. |
| |
| - VM ioctls: These query and set attributes that affect an entire virtual |
| machine, for example memory layout. In addition a VM ioctl is used to |
| create virtual cpus (vcpus) and devices. |
| |
| VM ioctls must be issued from the same process (address space) that was |
| used to create the VM. |
| |
| - vcpu ioctls: These query and set attributes that control the operation |
| of a single virtual cpu. |
| |
| vcpu ioctls should be issued from the same thread that was used to create |
| the vcpu, except for asynchronous vcpu ioctl that are marked as such in |
| the documentation. Otherwise, the first ioctl after switching threads |
| could see a performance impact. |
| |
| - device ioctls: These query and set attributes that control the operation |
| of a single device. |
| |
| device ioctls must be issued from the same process (address space) that |
| was used to create the VM. |
| |
| 2. File descriptors |
| =================== |
| |
| The kvm API is centered around file descriptors. An initial |
| open("/dev/kvm") obtains a handle to the kvm subsystem; this handle |
| can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this |
| handle will create a VM file descriptor which can be used to issue VM |
| ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will |
| create a virtual cpu or device and return a file descriptor pointing to |
| the new resource. Finally, ioctls on a vcpu or device fd can be used |
| to control the vcpu or device. For vcpus, this includes the important |
| task of actually running guest code. |
| |
| In general file descriptors can be migrated among processes by means |
| of fork() and the SCM_RIGHTS facility of unix domain socket. These |
| kinds of tricks are explicitly not supported by kvm. While they will |
| not cause harm to the host, their actual behavior is not guaranteed by |
| the API. See "General description" for details on the ioctl usage |
| model that is supported by KVM. |
| |
| It is important to note that although VM ioctls may only be issued from |
| the process that created the VM, a VM's lifecycle is associated with its |
| file descriptor, not its creator (process). In other words, the VM and |
| its resources, *including the associated address space*, are not freed |
| until the last reference to the VM's file descriptor has been released. |
| For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will |
| not be freed until both the parent (original) process and its child have |
| put their references to the VM's file descriptor. |
| |
| Because a VM's resources are not freed until the last reference to its |
| file descriptor is released, creating additional references to a VM |
| via fork(), dup(), etc... without careful consideration is strongly |
| discouraged and may have unwanted side effects, e.g. memory allocated |
| by and on behalf of the VM's process may not be freed/unaccounted when |
| the VM is shut down. |
| |
| |
| 3. Extensions |
| ============= |
| |
| As of Linux 2.6.22, the KVM ABI has been stabilized: no backward |
| incompatible change are allowed. However, there is an extension |
| facility that allows backward-compatible extensions to the API to be |
| queried and used. |
| |
| The extension mechanism is not based on the Linux version number. |
| Instead, kvm defines extension identifiers and a facility to query |
| whether a particular extension identifier is available. If it is, a |
| set of ioctls is available for application use. |
| |
| |
| 4. API description |
| ================== |
| |
| This section describes ioctls that can be used to control kvm guests. |
| For each ioctl, the following information is provided along with a |
| description: |
| |
| Capability: |
| which KVM extension provides this ioctl. Can be 'basic', |
| which means that is will be provided by any kernel that supports |
| API version 12 (see section 4.1), a KVM_CAP_xyz constant, which |
| means availability needs to be checked with KVM_CHECK_EXTENSION |
| (see section 4.4), or 'none' which means that while not all kernels |
| support this ioctl, there's no capability bit to check its |
| availability: for kernels that don't support the ioctl, |
| the ioctl returns -ENOTTY. |
| |
| Architectures: |
| which instruction set architectures provide this ioctl. |
| x86 includes both i386 and x86_64. |
| |
| Type: |
| system, vm, or vcpu. |
| |
| Parameters: |
| what parameters are accepted by the ioctl. |
| |
| Returns: |
| the return value. General error numbers (EBADF, ENOMEM, EINVAL) |
| are not detailed, but errors with specific meanings are. |
| |
| |
| 4.1 KVM_GET_API_VERSION |
| ----------------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: system ioctl |
| :Parameters: none |
| :Returns: the constant KVM_API_VERSION (=12) |
| |
| This identifies the API version as the stable kvm API. It is not |
| expected that this number will change. However, Linux 2.6.20 and |
| 2.6.21 report earlier versions; these are not documented and not |
| supported. Applications should refuse to run if KVM_GET_API_VERSION |
| returns a value other than 12. If this check passes, all ioctls |
| described as 'basic' will be available. |
| |
| |
| 4.2 KVM_CREATE_VM |
| ----------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: system ioctl |
| :Parameters: machine type identifier (KVM_VM_*) |
| :Returns: a VM fd that can be used to control the new virtual machine. |
| |
| The new VM has no virtual cpus and no memory. |
| You probably want to use 0 as machine type. |
| |
| In order to create user controlled virtual machines on S390, check |
| KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as |
| privileged user (CAP_SYS_ADMIN). |
| |
| To use hardware assisted virtualization on MIPS (VZ ASE) rather than |
| the default trap & emulate implementation (which changes the virtual |
| memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the |
| flag KVM_VM_MIPS_VZ. |
| |
| |
| On arm64, the physical address size for a VM (IPA Size limit) is limited |
| to 40bits by default. The limit can be configured if the host supports the |
| extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use |
| KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type |
| identifier, where IPA_Bits is the maximum width of any physical |
| address used by the VM. The IPA_Bits is encoded in bits[7-0] of the |
| machine type identifier. |
| |
| e.g, to configure a guest to use 48bit physical address size:: |
| |
| vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); |
| |
| The requested size (IPA_Bits) must be: |
| |
| == ========================================================= |
| 0 Implies default size, 40bits (for backward compatibility) |
| N Implies N bits, where N is a positive integer such that, |
| 32 <= N <= Host_IPA_Limit |
| == ========================================================= |
| |
| Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and |
| is dependent on the CPU capability and the kernel configuration. The limit can |
| be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION |
| ioctl() at run-time. |
| |
| Creation of the VM will fail if the requested IPA size (whether it is |
| implicit or explicit) is unsupported on the host. |
| |
| Please note that configuring the IPA size does not affect the capability |
| exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects |
| size of the address translated by the stage2 level (guest physical to |
| host physical address translations). |
| |
| |
| 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST |
| ---------------------------------------------------------- |
| |
| :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST |
| :Architectures: x86 |
| :Type: system ioctl |
| :Parameters: struct kvm_msr_list (in/out) |
| :Returns: 0 on success; -1 on error |
| |
| Errors: |
| |
| ====== ============================================================ |
| EFAULT the msr index list cannot be read from or written to |
| E2BIG the msr index list is too big to fit in the array specified by |
| the user. |
| ====== ============================================================ |
| |
| :: |
| |
| struct kvm_msr_list { |
| __u32 nmsrs; /* number of msrs in entries */ |
| __u32 indices[0]; |
| }; |
| |
| The user fills in the size of the indices array in nmsrs, and in return |
| kvm adjusts nmsrs to reflect the actual number of msrs and fills in the |
| indices array with their numbers. |
| |
| KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list |
| varies by kvm version and host processor, but does not change otherwise. |
| |
| Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are |
| not returned in the MSR list, as different vcpus can have a different number |
| of banks, as set via the KVM_X86_SETUP_MCE ioctl. |
| |
| KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed |
| to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities |
| and processor features that are exposed via MSRs (e.g., VMX capabilities). |
| This list also varies by kvm version and host processor, but does not change |
| otherwise. |
| |
| |
| 4.4 KVM_CHECK_EXTENSION |
| ----------------------- |
| |
| :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl |
| :Architectures: all |
| :Type: system ioctl, vm ioctl |
| :Parameters: extension identifier (KVM_CAP_*) |
| :Returns: 0 if unsupported; 1 (or some other positive integer) if supported |
| |
| The API allows the application to query about extensions to the core |
| kvm API. Userspace passes an extension identifier (an integer) and |
| receives an integer that describes the extension availability. |
| Generally 0 means no and 1 means yes, but some extensions may report |
| additional information in the integer return value. |
| |
| Based on their initialization different VMs may have different capabilities. |
| It is thus encouraged to use the vm ioctl to query for capabilities (available |
| with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) |
| |
| 4.5 KVM_GET_VCPU_MMAP_SIZE |
| -------------------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: system ioctl |
| :Parameters: none |
| :Returns: size of vcpu mmap area, in bytes |
| |
| The KVM_RUN ioctl (cf.) communicates with userspace via a shared |
| memory region. This ioctl returns the size of that region. See the |
| KVM_RUN documentation for details. |
| |
| Besides the size of the KVM_RUN communication region, other areas of |
| the VCPU file descriptor can be mmap-ed, including: |
| |
| - if KVM_CAP_COALESCED_MMIO is available, a page at |
| KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; for historical reasons, |
| this page is included in the result of KVM_GET_VCPU_MMAP_SIZE. |
| KVM_CAP_COALESCED_MMIO is not documented yet. |
| |
| - if KVM_CAP_DIRTY_LOG_RING is available, a number of pages at |
| KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For more information on |
| KVM_CAP_DIRTY_LOG_RING, see section 8.3. |
| |
| |
| 4.6 KVM_SET_MEMORY_REGION |
| ------------------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: struct kvm_memory_region (in) |
| :Returns: 0 on success, -1 on error |
| |
| This ioctl is obsolete and has been removed. |
| |
| |
| 4.7 KVM_CREATE_VCPU |
| ------------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: vcpu id (apic id on x86) |
| :Returns: vcpu fd on success, -1 on error |
| |
| This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. |
| The vcpu id is an integer in the range [0, max_vcpu_id). |
| |
| The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of |
| the KVM_CHECK_EXTENSION ioctl() at run-time. |
| The maximum possible value for max_vcpus can be retrieved using the |
| KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. |
| |
| If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 |
| cpus max. |
| If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is |
| same as the value returned from KVM_CAP_NR_VCPUS. |
| |
| The maximum possible value for max_vcpu_id can be retrieved using the |
| KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. |
| |
| If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id |
| is the same as the value returned from KVM_CAP_MAX_VCPUS. |
| |
| On powerpc using book3s_hv mode, the vcpus are mapped onto virtual |
| threads in one or more virtual CPU cores. (This is because the |
| hardware requires all the hardware threads in a CPU core to be in the |
| same partition.) The KVM_CAP_PPC_SMT capability indicates the number |
| of vcpus per virtual core (vcore). The vcore id is obtained by |
| dividing the vcpu id by the number of vcpus per vcore. The vcpus in a |
| given vcore will always be in the same physical core as each other |
| (though that might be a different physical core from time to time). |
| Userspace can control the threading (SMT) mode of the guest by its |
| allocation of vcpu ids. For example, if userspace wants |
| single-threaded guest vcpus, it should make all vcpu ids be a multiple |
| of the number of vcpus per vcore. |
| |
| For virtual cpus that have been created with S390 user controlled virtual |
| machines, the resulting vcpu fd can be memory mapped at page offset |
| KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual |
| cpu's hardware control block. |
| |
| |
| 4.8 KVM_GET_DIRTY_LOG (vm ioctl) |
| -------------------------------- |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: struct kvm_dirty_log (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| /* for KVM_GET_DIRTY_LOG */ |
| struct kvm_dirty_log { |
| __u32 slot; |
| __u32 padding; |
| union { |
| void __user *dirty_bitmap; /* one bit per page */ |
| __u64 padding; |
| }; |
| }; |
| |
| Given a memory slot, return a bitmap containing any pages dirtied |
| since the last call to this ioctl. Bit 0 is the first page in the |
| memory slot. Ensure the entire structure is cleared to avoid padding |
| issues. |
| |
| If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies |
| the address space for which you want to return the dirty bitmap. See |
| KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. |
| |
| The bits in the dirty bitmap are cleared before the ioctl returns, unless |
| KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, |
| see the description of the capability. |
| |
| 4.9 KVM_SET_MEMORY_ALIAS |
| ------------------------ |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_memory_alias (in) |
| :Returns: 0 (success), -1 (error) |
| |
| This ioctl is obsolete and has been removed. |
| |
| |
| 4.10 KVM_RUN |
| ------------ |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: vcpu ioctl |
| :Parameters: none |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| ======= ============================================================== |
| EINTR an unmasked signal is pending |
| ENOEXEC the vcpu hasn't been initialized or the guest tried to execute |
| instructions from device memory (arm64) |
| ENOSYS data abort outside memslots with no syndrome info and |
| KVM_CAP_ARM_NISV_TO_USER not enabled (arm64) |
| EPERM SVE feature set but not finalized (arm64) |
| ======= ============================================================== |
| |
| This ioctl is used to run a guest virtual cpu. While there are no |
| explicit parameters, there is an implicit parameter block that can be |
| obtained by mmap()ing the vcpu fd at offset 0, with the size given by |
| KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct |
| kvm_run' (see below). |
| |
| |
| 4.11 KVM_GET_REGS |
| ----------------- |
| |
| :Capability: basic |
| :Architectures: all except ARM, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_regs (out) |
| :Returns: 0 on success, -1 on error |
| |
| Reads the general purpose registers from the vcpu. |
| |
| :: |
| |
| /* x86 */ |
| struct kvm_regs { |
| /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ |
| __u64 rax, rbx, rcx, rdx; |
| __u64 rsi, rdi, rsp, rbp; |
| __u64 r8, r9, r10, r11; |
| __u64 r12, r13, r14, r15; |
| __u64 rip, rflags; |
| }; |
| |
| /* mips */ |
| struct kvm_regs { |
| /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ |
| __u64 gpr[32]; |
| __u64 hi; |
| __u64 lo; |
| __u64 pc; |
| }; |
| |
| |
| 4.12 KVM_SET_REGS |
| ----------------- |
| |
| :Capability: basic |
| :Architectures: all except ARM, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_regs (in) |
| :Returns: 0 on success, -1 on error |
| |
| Writes the general purpose registers into the vcpu. |
| |
| See KVM_GET_REGS for the data structure. |
| |
| |
| 4.13 KVM_GET_SREGS |
| ------------------ |
| |
| :Capability: basic |
| :Architectures: x86, ppc |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_sregs (out) |
| :Returns: 0 on success, -1 on error |
| |
| Reads special registers from the vcpu. |
| |
| :: |
| |
| /* x86 */ |
| struct kvm_sregs { |
| struct kvm_segment cs, ds, es, fs, gs, ss; |
| struct kvm_segment tr, ldt; |
| struct kvm_dtable gdt, idt; |
| __u64 cr0, cr2, cr3, cr4, cr8; |
| __u64 efer; |
| __u64 apic_base; |
| __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; |
| }; |
| |
| /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ |
| |
| interrupt_bitmap is a bitmap of pending external interrupts. At most |
| one bit may be set. This interrupt has been acknowledged by the APIC |
| but not yet injected into the cpu core. |
| |
| |
| 4.14 KVM_SET_SREGS |
| ------------------ |
| |
| :Capability: basic |
| :Architectures: x86, ppc |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_sregs (in) |
| :Returns: 0 on success, -1 on error |
| |
| Writes special registers into the vcpu. See KVM_GET_SREGS for the |
| data structures. |
| |
| |
| 4.15 KVM_TRANSLATE |
| ------------------ |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_translation (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| Translates a virtual address according to the vcpu's current address |
| translation mode. |
| |
| :: |
| |
| struct kvm_translation { |
| /* in */ |
| __u64 linear_address; |
| |
| /* out */ |
| __u64 physical_address; |
| __u8 valid; |
| __u8 writeable; |
| __u8 usermode; |
| __u8 pad[5]; |
| }; |
| |
| |
| 4.16 KVM_INTERRUPT |
| ------------------ |
| |
| :Capability: basic |
| :Architectures: x86, ppc, mips, riscv |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_interrupt (in) |
| :Returns: 0 on success, negative on failure. |
| |
| Queues a hardware interrupt vector to be injected. |
| |
| :: |
| |
| /* for KVM_INTERRUPT */ |
| struct kvm_interrupt { |
| /* in */ |
| __u32 irq; |
| }; |
| |
| X86: |
| ^^^^ |
| |
| :Returns: |
| |
| ========= =================================== |
| 0 on success, |
| -EEXIST if an interrupt is already enqueued |
| -EINVAL the irq number is invalid |
| -ENXIO if the PIC is in the kernel |
| -EFAULT if the pointer is invalid |
| ========= =================================== |
| |
| Note 'irq' is an interrupt vector, not an interrupt pin or line. This |
| ioctl is useful if the in-kernel PIC is not used. |
| |
| PPC: |
| ^^^^ |
| |
| Queues an external interrupt to be injected. This ioctl is overleaded |
| with 3 different irq values: |
| |
| a) KVM_INTERRUPT_SET |
| |
| This injects an edge type external interrupt into the guest once it's ready |
| to receive interrupts. When injected, the interrupt is done. |
| |
| b) KVM_INTERRUPT_UNSET |
| |
| This unsets any pending interrupt. |
| |
| Only available with KVM_CAP_PPC_UNSET_IRQ. |
| |
| c) KVM_INTERRUPT_SET_LEVEL |
| |
| This injects a level type external interrupt into the guest context. The |
| interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET |
| is triggered. |
| |
| Only available with KVM_CAP_PPC_IRQ_LEVEL. |
| |
| Note that any value for 'irq' other than the ones stated above is invalid |
| and incurs unexpected behavior. |
| |
| This is an asynchronous vcpu ioctl and can be invoked from any thread. |
| |
| MIPS: |
| ^^^^^ |
| |
| Queues an external interrupt to be injected into the virtual CPU. A negative |
| interrupt number dequeues the interrupt. |
| |
| This is an asynchronous vcpu ioctl and can be invoked from any thread. |
| |
| RISC-V: |
| ^^^^^^^ |
| |
| Queues an external interrupt to be injected into the virutal CPU. This ioctl |
| is overloaded with 2 different irq values: |
| |
| a) KVM_INTERRUPT_SET |
| |
| This sets external interrupt for a virtual CPU and it will receive |
| once it is ready. |
| |
| b) KVM_INTERRUPT_UNSET |
| |
| This clears pending external interrupt for a virtual CPU. |
| |
| This is an asynchronous vcpu ioctl and can be invoked from any thread. |
| |
| |
| 4.17 KVM_DEBUG_GUEST |
| -------------------- |
| |
| :Capability: basic |
| :Architectures: none |
| :Type: vcpu ioctl |
| :Parameters: none) |
| :Returns: -1 on error |
| |
| Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. |
| |
| |
| 4.18 KVM_GET_MSRS |
| ----------------- |
| |
| :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) |
| :Architectures: x86 |
| :Type: system ioctl, vcpu ioctl |
| :Parameters: struct kvm_msrs (in/out) |
| :Returns: number of msrs successfully returned; |
| -1 on error |
| |
| When used as a system ioctl: |
| Reads the values of MSR-based features that are available for the VM. This |
| is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. |
| The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST |
| in a system ioctl. |
| |
| When used as a vcpu ioctl: |
| Reads model-specific registers from the vcpu. Supported msr indices can |
| be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. |
| |
| :: |
| |
| struct kvm_msrs { |
| __u32 nmsrs; /* number of msrs in entries */ |
| __u32 pad; |
| |
| struct kvm_msr_entry entries[0]; |
| }; |
| |
| struct kvm_msr_entry { |
| __u32 index; |
| __u32 reserved; |
| __u64 data; |
| }; |
| |
| Application code should set the 'nmsrs' member (which indicates the |
| size of the entries array) and the 'index' member of each array entry. |
| kvm will fill in the 'data' member. |
| |
| |
| 4.19 KVM_SET_MSRS |
| ----------------- |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_msrs (in) |
| :Returns: number of msrs successfully set (see below), -1 on error |
| |
| Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the |
| data structures. |
| |
| Application code should set the 'nmsrs' member (which indicates the |
| size of the entries array), and the 'index' and 'data' members of each |
| array entry. |
| |
| It tries to set the MSRs in array entries[] one by one. If setting an MSR |
| fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated |
| by KVM, etc..., it stops processing the MSR list and returns the number of |
| MSRs that have been set successfully. |
| |
| |
| 4.20 KVM_SET_CPUID |
| ------------------ |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_cpuid (in) |
| :Returns: 0 on success, -1 on error |
| |
| Defines the vcpu responses to the cpuid instruction. Applications |
| should use the KVM_SET_CPUID2 ioctl if available. |
| |
| Caveat emptor: |
| - If this IOCTL fails, KVM gives no guarantees that previous valid CPUID |
| configuration (if there is) is not corrupted. Userspace can get a copy |
| of the resulting CPUID configuration through KVM_GET_CPUID2 in case. |
| - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e. changing the guest vCPU model |
| after running the guest, may cause guest instability. |
| - Using heterogeneous CPUID configurations, modulo APIC IDs, topology, etc... |
| may cause guest instability. |
| |
| :: |
| |
| struct kvm_cpuid_entry { |
| __u32 function; |
| __u32 eax; |
| __u32 ebx; |
| __u32 ecx; |
| __u32 edx; |
| __u32 padding; |
| }; |
| |
| /* for KVM_SET_CPUID */ |
| struct kvm_cpuid { |
| __u32 nent; |
| __u32 padding; |
| struct kvm_cpuid_entry entries[0]; |
| }; |
| |
| |
| 4.21 KVM_SET_SIGNAL_MASK |
| ------------------------ |
| |
| :Capability: basic |
| :Architectures: all |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_signal_mask (in) |
| :Returns: 0 on success, -1 on error |
| |
| Defines which signals are blocked during execution of KVM_RUN. This |
| signal mask temporarily overrides the threads signal mask. Any |
| unblocked signal received (except SIGKILL and SIGSTOP, which retain |
| their traditional behaviour) will cause KVM_RUN to return with -EINTR. |
| |
| Note the signal will only be delivered if not blocked by the original |
| signal mask. |
| |
| :: |
| |
| /* for KVM_SET_SIGNAL_MASK */ |
| struct kvm_signal_mask { |
| __u32 len; |
| __u8 sigset[0]; |
| }; |
| |
| |
| 4.22 KVM_GET_FPU |
| ---------------- |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_fpu (out) |
| :Returns: 0 on success, -1 on error |
| |
| Reads the floating point state from the vcpu. |
| |
| :: |
| |
| /* for KVM_GET_FPU and KVM_SET_FPU */ |
| struct kvm_fpu { |
| __u8 fpr[8][16]; |
| __u16 fcw; |
| __u16 fsw; |
| __u8 ftwx; /* in fxsave format */ |
| __u8 pad1; |
| __u16 last_opcode; |
| __u64 last_ip; |
| __u64 last_dp; |
| __u8 xmm[16][16]; |
| __u32 mxcsr; |
| __u32 pad2; |
| }; |
| |
| |
| 4.23 KVM_SET_FPU |
| ---------------- |
| |
| :Capability: basic |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_fpu (in) |
| :Returns: 0 on success, -1 on error |
| |
| Writes the floating point state to the vcpu. |
| |
| :: |
| |
| /* for KVM_GET_FPU and KVM_SET_FPU */ |
| struct kvm_fpu { |
| __u8 fpr[8][16]; |
| __u16 fcw; |
| __u16 fsw; |
| __u8 ftwx; /* in fxsave format */ |
| __u8 pad1; |
| __u16 last_opcode; |
| __u64 last_ip; |
| __u64 last_dp; |
| __u8 xmm[16][16]; |
| __u32 mxcsr; |
| __u32 pad2; |
| }; |
| |
| |
| 4.24 KVM_CREATE_IRQCHIP |
| ----------------------- |
| |
| :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) |
| :Architectures: x86, ARM, arm64, s390 |
| :Type: vm ioctl |
| :Parameters: none |
| :Returns: 0 on success, -1 on error |
| |
| Creates an interrupt controller model in the kernel. |
| On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up |
| future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both |
| PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. |
| On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of |
| KVM_CREATE_DEVICE, which also supports creating a GICv2. Using |
| KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. |
| On s390, a dummy irq routing table is created. |
| |
| Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled |
| before KVM_CREATE_IRQCHIP can be used. |
| |
| |
| 4.25 KVM_IRQ_LINE |
| ----------------- |
| |
| :Capability: KVM_CAP_IRQCHIP |
| :Architectures: x86, arm, arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_irq_level |
| :Returns: 0 on success, -1 on error |
| |
| Sets the level of a GSI input to the interrupt controller model in the kernel. |
| On some architectures it is required that an interrupt controller model has |
| been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered |
| interrupts require the level to be set to 1 and then back to 0. |
| |
| On real hardware, interrupt pins can be active-low or active-high. This |
| does not matter for the level field of struct kvm_irq_level: 1 always |
| means active (asserted), 0 means inactive (deasserted). |
| |
| x86 allows the operating system to program the interrupt polarity |
| (active-low/active-high) for level-triggered interrupts, and KVM used |
| to consider the polarity. However, due to bitrot in the handling of |
| active-low interrupts, the above convention is now valid on x86 too. |
| This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace |
| should not present interrupts to the guest as active-low unless this |
| capability is present (or unless it is not using the in-kernel irqchip, |
| of course). |
| |
| |
| ARM/arm64 can signal an interrupt either at the CPU level, or at the |
| in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to |
| use PPIs designated for specific cpus. The irq field is interpreted |
| like this:: |
| |
| bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | |
| field: | vcpu2_index | irq_type | vcpu_index | irq_id | |
| |
| The irq_type field has the following values: |
| |
| - irq_type[0]: |
| out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ |
| - irq_type[1]: |
| in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) |
| (the vcpu_index field is ignored) |
| - irq_type[2]: |
| in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) |
| |
| (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) |
| |
| In both cases, level is used to assert/deassert the line. |
| |
| When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is |
| identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index |
| must be zero. |
| |
| Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions |
| injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always |
| be used for a userspace interrupt controller. |
| |
| :: |
| |
| struct kvm_irq_level { |
| union { |
| __u32 irq; /* GSI */ |
| __s32 status; /* not used for KVM_IRQ_LEVEL */ |
| }; |
| __u32 level; /* 0 or 1 */ |
| }; |
| |
| |
| 4.26 KVM_GET_IRQCHIP |
| -------------------- |
| |
| :Capability: KVM_CAP_IRQCHIP |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_irqchip (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| Reads the state of a kernel interrupt controller created with |
| KVM_CREATE_IRQCHIP into a buffer provided by the caller. |
| |
| :: |
| |
| struct kvm_irqchip { |
| __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ |
| __u32 pad; |
| union { |
| char dummy[512]; /* reserving space */ |
| struct kvm_pic_state pic; |
| struct kvm_ioapic_state ioapic; |
| } chip; |
| }; |
| |
| |
| 4.27 KVM_SET_IRQCHIP |
| -------------------- |
| |
| :Capability: KVM_CAP_IRQCHIP |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_irqchip (in) |
| :Returns: 0 on success, -1 on error |
| |
| Sets the state of a kernel interrupt controller created with |
| KVM_CREATE_IRQCHIP from a buffer provided by the caller. |
| |
| :: |
| |
| struct kvm_irqchip { |
| __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ |
| __u32 pad; |
| union { |
| char dummy[512]; /* reserving space */ |
| struct kvm_pic_state pic; |
| struct kvm_ioapic_state ioapic; |
| } chip; |
| }; |
| |
| |
| 4.28 KVM_XEN_HVM_CONFIG |
| ----------------------- |
| |
| :Capability: KVM_CAP_XEN_HVM |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_xen_hvm_config (in) |
| :Returns: 0 on success, -1 on error |
| |
| Sets the MSR that the Xen HVM guest uses to initialize its hypercall |
| page, and provides the starting address and size of the hypercall |
| blobs in userspace. When the guest writes the MSR, kvm copies one |
| page of a blob (32- or 64-bit, depending on the vcpu mode) to guest |
| memory. |
| |
| :: |
| |
| struct kvm_xen_hvm_config { |
| __u32 flags; |
| __u32 msr; |
| __u64 blob_addr_32; |
| __u64 blob_addr_64; |
| __u8 blob_size_32; |
| __u8 blob_size_64; |
| __u8 pad2[30]; |
| }; |
| |
| If the KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag is returned from the |
| KVM_CAP_XEN_HVM check, it may be set in the flags field of this ioctl. |
| This requests KVM to generate the contents of the hypercall page |
| automatically; hypercalls will be intercepted and passed to userspace |
| through KVM_EXIT_XEN. In this case, all of the blob size and address |
| fields must be zero. |
| |
| No other flags are currently valid in the struct kvm_xen_hvm_config. |
| |
| 4.29 KVM_GET_CLOCK |
| ------------------ |
| |
| :Capability: KVM_CAP_ADJUST_CLOCK |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_clock_data (out) |
| :Returns: 0 on success, -1 on error |
| |
| Gets the current timestamp of kvmclock as seen by the current guest. In |
| conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios |
| such as migration. |
| |
| When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the |
| set of bits that KVM can return in struct kvm_clock_data's flag member. |
| |
| The following flags are defined: |
| |
| KVM_CLOCK_TSC_STABLE |
| If set, the returned value is the exact kvmclock |
| value seen by all VCPUs at the instant when KVM_GET_CLOCK was called. |
| If clear, the returned value is simply CLOCK_MONOTONIC plus a constant |
| offset; the offset can be modified with KVM_SET_CLOCK. KVM will try |
| to make all VCPUs follow this clock, but the exact value read by each |
| VCPU could differ, because the host TSC is not stable. |
| |
| KVM_CLOCK_REALTIME |
| If set, the `realtime` field in the kvm_clock_data |
| structure is populated with the value of the host's real time |
| clocksource at the instant when KVM_GET_CLOCK was called. If clear, |
| the `realtime` field does not contain a value. |
| |
| KVM_CLOCK_HOST_TSC |
| If set, the `host_tsc` field in the kvm_clock_data |
| structure is populated with the value of the host's timestamp counter (TSC) |
| at the instant when KVM_GET_CLOCK was called. If clear, the `host_tsc` field |
| does not contain a value. |
| |
| :: |
| |
| struct kvm_clock_data { |
| __u64 clock; /* kvmclock current value */ |
| __u32 flags; |
| __u32 pad0; |
| __u64 realtime; |
| __u64 host_tsc; |
| __u32 pad[4]; |
| }; |
| |
| |
| 4.30 KVM_SET_CLOCK |
| ------------------ |
| |
| :Capability: KVM_CAP_ADJUST_CLOCK |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_clock_data (in) |
| :Returns: 0 on success, -1 on error |
| |
| Sets the current timestamp of kvmclock to the value specified in its parameter. |
| In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios |
| such as migration. |
| |
| The following flags can be passed: |
| |
| KVM_CLOCK_REALTIME |
| If set, KVM will compare the value of the `realtime` field |
| with the value of the host's real time clocksource at the instant when |
| KVM_SET_CLOCK was called. The difference in elapsed time is added to the final |
| kvmclock value that will be provided to guests. |
| |
| Other flags returned by ``KVM_GET_CLOCK`` are accepted but ignored. |
| |
| :: |
| |
| struct kvm_clock_data { |
| __u64 clock; /* kvmclock current value */ |
| __u32 flags; |
| __u32 pad0; |
| __u64 realtime; |
| __u64 host_tsc; |
| __u32 pad[4]; |
| }; |
| |
| |
| 4.31 KVM_GET_VCPU_EVENTS |
| ------------------------ |
| |
| :Capability: KVM_CAP_VCPU_EVENTS |
| :Extended by: KVM_CAP_INTR_SHADOW |
| :Architectures: x86, arm, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_vcpu_event (out) |
| :Returns: 0 on success, -1 on error |
| |
| X86: |
| ^^^^ |
| |
| Gets currently pending exceptions, interrupts, and NMIs as well as related |
| states of the vcpu. |
| |
| :: |
| |
| struct kvm_vcpu_events { |
| struct { |
| __u8 injected; |
| __u8 nr; |
| __u8 has_error_code; |
| __u8 pending; |
| __u32 error_code; |
| } exception; |
| struct { |
| __u8 injected; |
| __u8 nr; |
| __u8 soft; |
| __u8 shadow; |
| } interrupt; |
| struct { |
| __u8 injected; |
| __u8 pending; |
| __u8 masked; |
| __u8 pad; |
| } nmi; |
| __u32 sipi_vector; |
| __u32 flags; |
| struct { |
| __u8 smm; |
| __u8 pending; |
| __u8 smm_inside_nmi; |
| __u8 latched_init; |
| } smi; |
| __u8 reserved[27]; |
| __u8 exception_has_payload; |
| __u64 exception_payload; |
| }; |
| |
| The following bits are defined in the flags field: |
| |
| - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that |
| interrupt.shadow contains a valid state. |
| |
| - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a |
| valid state. |
| |
| - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the |
| exception_has_payload, exception_payload, and exception.pending |
| fields contain a valid state. This bit will be set whenever |
| KVM_CAP_EXCEPTION_PAYLOAD is enabled. |
| |
| ARM/ARM64: |
| ^^^^^^^^^^ |
| |
| If the guest accesses a device that is being emulated by the host kernel in |
| such a way that a real device would generate a physical SError, KVM may make |
| a virtual SError pending for that VCPU. This system error interrupt remains |
| pending until the guest takes the exception by unmasking PSTATE.A. |
| |
| Running the VCPU may cause it to take a pending SError, or make an access that |
| causes an SError to become pending. The event's description is only valid while |
| the VPCU is not running. |
| |
| This API provides a way to read and write the pending 'event' state that is not |
| visible to the guest. To save, restore or migrate a VCPU the struct representing |
| the state can be read then written using this GET/SET API, along with the other |
| guest-visible registers. It is not possible to 'cancel' an SError that has been |
| made pending. |
| |
| A device being emulated in user-space may also wish to generate an SError. To do |
| this the events structure can be populated by user-space. The current state |
| should be read first, to ensure no existing SError is pending. If an existing |
| SError is pending, the architecture's 'Multiple SError interrupts' rules should |
| be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and |
| Serviceability (RAS) Specification"). |
| |
| SError exceptions always have an ESR value. Some CPUs have the ability to |
| specify what the virtual SError's ESR value should be. These systems will |
| advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will |
| always have a non-zero value when read, and the agent making an SError pending |
| should specify the ISS field in the lower 24 bits of exception.serror_esr. If |
| the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events |
| with exception.has_esr as zero, KVM will choose an ESR. |
| |
| Specifying exception.has_esr on a system that does not support it will return |
| -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr |
| will return -EINVAL. |
| |
| It is not possible to read back a pending external abort (injected via |
| KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered |
| directly to the virtual CPU). |
| |
| :: |
| |
| struct kvm_vcpu_events { |
| struct { |
| __u8 serror_pending; |
| __u8 serror_has_esr; |
| __u8 ext_dabt_pending; |
| /* Align it to 8 bytes */ |
| __u8 pad[5]; |
| __u64 serror_esr; |
| } exception; |
| __u32 reserved[12]; |
| }; |
| |
| 4.32 KVM_SET_VCPU_EVENTS |
| ------------------------ |
| |
| :Capability: KVM_CAP_VCPU_EVENTS |
| :Extended by: KVM_CAP_INTR_SHADOW |
| :Architectures: x86, arm, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_vcpu_event (in) |
| :Returns: 0 on success, -1 on error |
| |
| X86: |
| ^^^^ |
| |
| Set pending exceptions, interrupts, and NMIs as well as related states of the |
| vcpu. |
| |
| See KVM_GET_VCPU_EVENTS for the data structure. |
| |
| Fields that may be modified asynchronously by running VCPUs can be excluded |
| from the update. These fields are nmi.pending, sipi_vector, smi.smm, |
| smi.pending. Keep the corresponding bits in the flags field cleared to |
| suppress overwriting the current in-kernel state. The bits are: |
| |
| =============================== ================================== |
| KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel |
| KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector |
| KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. |
| =============================== ================================== |
| |
| If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in |
| the flags field to signal that interrupt.shadow contains a valid state and |
| shall be written into the VCPU. |
| |
| KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. |
| |
| If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD |
| can be set in the flags field to signal that the |
| exception_has_payload, exception_payload, and exception.pending fields |
| contain a valid state and shall be written into the VCPU. |
| |
| ARM/ARM64: |
| ^^^^^^^^^^ |
| |
| User space may need to inject several types of events to the guest. |
| |
| Set the pending SError exception state for this VCPU. It is not possible to |
| 'cancel' an Serror that has been made pending. |
| |
| If the guest performed an access to I/O memory which could not be handled by |
| userspace, for example because of missing instruction syndrome decode |
| information or because there is no device mapped at the accessed IPA, then |
| userspace can ask the kernel to inject an external abort using the address |
| from the exiting fault on the VCPU. It is a programming error to set |
| ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or |
| KVM_EXIT_ARM_NISV. This feature is only available if the system supports |
| KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in |
| how userspace reports accesses for the above cases to guests, across different |
| userspace implementations. Nevertheless, userspace can still emulate all Arm |
| exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. |
| |
| See KVM_GET_VCPU_EVENTS for the data structure. |
| |
| |
| 4.33 KVM_GET_DEBUGREGS |
| ---------------------- |
| |
| :Capability: KVM_CAP_DEBUGREGS |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_debugregs (out) |
| :Returns: 0 on success, -1 on error |
| |
| Reads debug registers from the vcpu. |
| |
| :: |
| |
| struct kvm_debugregs { |
| __u64 db[4]; |
| __u64 dr6; |
| __u64 dr7; |
| __u64 flags; |
| __u64 reserved[9]; |
| }; |
| |
| |
| 4.34 KVM_SET_DEBUGREGS |
| ---------------------- |
| |
| :Capability: KVM_CAP_DEBUGREGS |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_debugregs (in) |
| :Returns: 0 on success, -1 on error |
| |
| Writes debug registers into the vcpu. |
| |
| See KVM_GET_DEBUGREGS for the data structure. The flags field is unused |
| yet and must be cleared on entry. |
| |
| |
| 4.35 KVM_SET_USER_MEMORY_REGION |
| ------------------------------- |
| |
| :Capability: KVM_CAP_USER_MEMORY |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: struct kvm_userspace_memory_region (in) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_userspace_memory_region { |
| __u32 slot; |
| __u32 flags; |
| __u64 guest_phys_addr; |
| __u64 memory_size; /* bytes */ |
| __u64 userspace_addr; /* start of the userspace allocated memory */ |
| }; |
| |
| /* for kvm_memory_region::flags */ |
| #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) |
| #define KVM_MEM_READONLY (1UL << 1) |
| |
| This ioctl allows the user to create, modify or delete a guest physical |
| memory slot. Bits 0-15 of "slot" specify the slot id and this value |
| should be less than the maximum number of user memory slots supported per |
| VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. |
| Slots may not overlap in guest physical address space. |
| |
| If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" |
| specifies the address space which is being modified. They must be |
| less than the value that KVM_CHECK_EXTENSION returns for the |
| KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces |
| are unrelated; the restriction on overlapping slots only applies within |
| each address space. |
| |
| Deleting a slot is done by passing zero for memory_size. When changing |
| an existing slot, it may be moved in the guest physical memory space, |
| or its flags may be modified, but it may not be resized. |
| |
| Memory for the region is taken starting at the address denoted by the |
| field userspace_addr, which must point at user addressable memory for |
| the entire memory slot size. Any object may back this memory, including |
| anonymous memory, ordinary files, and hugetlbfs. |
| |
| On architectures that support a form of address tagging, userspace_addr must |
| be an untagged address. |
| |
| It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr |
| be identical. This allows large pages in the guest to be backed by large |
| pages in the host. |
| |
| The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and |
| KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of |
| writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to |
| use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, |
| to make a new slot read-only. In this case, writes to this memory will be |
| posted to userspace as KVM_EXIT_MMIO exits. |
| |
| When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of |
| the memory region are automatically reflected into the guest. For example, an |
| mmap() that affects the region will be made visible immediately. Another |
| example is madvise(MADV_DROP). |
| |
| It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. |
| The KVM_SET_MEMORY_REGION does not allow fine grained control over memory |
| allocation and is deprecated. |
| |
| |
| 4.36 KVM_SET_TSS_ADDR |
| --------------------- |
| |
| :Capability: KVM_CAP_SET_TSS_ADDR |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: unsigned long tss_address (in) |
| :Returns: 0 on success, -1 on error |
| |
| This ioctl defines the physical address of a three-page region in the guest |
| physical address space. The region must be within the first 4GB of the |
| guest physical address space and must not conflict with any memory slot |
| or any mmio address. The guest may malfunction if it accesses this memory |
| region. |
| |
| This ioctl is required on Intel-based hosts. This is needed on Intel hardware |
| because of a quirk in the virtualization implementation (see the internals |
| documentation when it pops into existence). |
| |
| |
| 4.37 KVM_ENABLE_CAP |
| ------------------- |
| |
| :Capability: KVM_CAP_ENABLE_CAP |
| :Architectures: mips, ppc, s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_enable_cap (in) |
| :Returns: 0 on success; -1 on error |
| |
| :Capability: KVM_CAP_ENABLE_CAP_VM |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: struct kvm_enable_cap (in) |
| :Returns: 0 on success; -1 on error |
| |
| .. note:: |
| |
| Not all extensions are enabled by default. Using this ioctl the application |
| can enable an extension, making it available to the guest. |
| |
| On systems that do not support this ioctl, it always fails. On systems that |
| do support it, it only works for extensions that are supported for enablement. |
| |
| To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should |
| be used. |
| |
| :: |
| |
| struct kvm_enable_cap { |
| /* in */ |
| __u32 cap; |
| |
| The capability that is supposed to get enabled. |
| |
| :: |
| |
| __u32 flags; |
| |
| A bitfield indicating future enhancements. Has to be 0 for now. |
| |
| :: |
| |
| __u64 args[4]; |
| |
| Arguments for enabling a feature. If a feature needs initial values to |
| function properly, this is the place to put them. |
| |
| :: |
| |
| __u8 pad[64]; |
| }; |
| |
| The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl |
| for vm-wide capabilities. |
| |
| 4.38 KVM_GET_MP_STATE |
| --------------------- |
| |
| :Capability: KVM_CAP_MP_STATE |
| :Architectures: x86, s390, arm, arm64, riscv |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_mp_state (out) |
| :Returns: 0 on success; -1 on error |
| |
| :: |
| |
| struct kvm_mp_state { |
| __u32 mp_state; |
| }; |
| |
| Returns the vcpu's current "multiprocessing state" (though also valid on |
| uniprocessor guests). |
| |
| Possible values are: |
| |
| ========================== =============================================== |
| KVM_MP_STATE_RUNNABLE the vcpu is currently running |
| [x86,arm/arm64,riscv] |
| KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) |
| which has not yet received an INIT signal [x86] |
| KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is |
| now ready for a SIPI [x86] |
| KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and |
| is waiting for an interrupt [x86] |
| KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector |
| accessible via KVM_GET_VCPU_EVENTS) [x86] |
| KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm/arm64,riscv] |
| KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] |
| KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) |
| [s390] |
| KVM_MP_STATE_LOAD the vcpu is in a special load/startup state |
| [s390] |
| ========================== =============================================== |
| |
| On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an |
| in-kernel irqchip, the multiprocessing state must be maintained by userspace on |
| these architectures. |
| |
| For arm/arm64/riscv: |
| ^^^^^^^^^^^^^^^^^^^^ |
| |
| The only states that are valid are KVM_MP_STATE_STOPPED and |
| KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. |
| |
| 4.39 KVM_SET_MP_STATE |
| --------------------- |
| |
| :Capability: KVM_CAP_MP_STATE |
| :Architectures: x86, s390, arm, arm64, riscv |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_mp_state (in) |
| :Returns: 0 on success; -1 on error |
| |
| Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for |
| arguments. |
| |
| On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an |
| in-kernel irqchip, the multiprocessing state must be maintained by userspace on |
| these architectures. |
| |
| For arm/arm64/riscv: |
| ^^^^^^^^^^^^^^^^^^^^ |
| |
| The only states that are valid are KVM_MP_STATE_STOPPED and |
| KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. |
| |
| 4.40 KVM_SET_IDENTITY_MAP_ADDR |
| ------------------------------ |
| |
| :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: unsigned long identity (in) |
| :Returns: 0 on success, -1 on error |
| |
| This ioctl defines the physical address of a one-page region in the guest |
| physical address space. The region must be within the first 4GB of the |
| guest physical address space and must not conflict with any memory slot |
| or any mmio address. The guest may malfunction if it accesses this memory |
| region. |
| |
| Setting the address to 0 will result in resetting the address to its default |
| (0xfffbc000). |
| |
| This ioctl is required on Intel-based hosts. This is needed on Intel hardware |
| because of a quirk in the virtualization implementation (see the internals |
| documentation when it pops into existence). |
| |
| Fails if any VCPU has already been created. |
| |
| 4.41 KVM_SET_BOOT_CPU_ID |
| ------------------------ |
| |
| :Capability: KVM_CAP_SET_BOOT_CPU_ID |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: unsigned long vcpu_id |
| :Returns: 0 on success, -1 on error |
| |
| Define which vcpu is the Bootstrap Processor (BSP). Values are the same |
| as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default |
| is vcpu 0. This ioctl has to be called before vcpu creation, |
| otherwise it will return EBUSY error. |
| |
| |
| 4.42 KVM_GET_XSAVE |
| ------------------ |
| |
| :Capability: KVM_CAP_XSAVE |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_xsave (out) |
| :Returns: 0 on success, -1 on error |
| |
| |
| :: |
| |
| struct kvm_xsave { |
| __u32 region[1024]; |
| }; |
| |
| This ioctl would copy current vcpu's xsave struct to the userspace. |
| |
| |
| 4.43 KVM_SET_XSAVE |
| ------------------ |
| |
| :Capability: KVM_CAP_XSAVE |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_xsave (in) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| |
| struct kvm_xsave { |
| __u32 region[1024]; |
| }; |
| |
| This ioctl would copy userspace's xsave struct to the kernel. |
| |
| |
| 4.44 KVM_GET_XCRS |
| ----------------- |
| |
| :Capability: KVM_CAP_XCRS |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_xcrs (out) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_xcr { |
| __u32 xcr; |
| __u32 reserved; |
| __u64 value; |
| }; |
| |
| struct kvm_xcrs { |
| __u32 nr_xcrs; |
| __u32 flags; |
| struct kvm_xcr xcrs[KVM_MAX_XCRS]; |
| __u64 padding[16]; |
| }; |
| |
| This ioctl would copy current vcpu's xcrs to the userspace. |
| |
| |
| 4.45 KVM_SET_XCRS |
| ----------------- |
| |
| :Capability: KVM_CAP_XCRS |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_xcrs (in) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_xcr { |
| __u32 xcr; |
| __u32 reserved; |
| __u64 value; |
| }; |
| |
| struct kvm_xcrs { |
| __u32 nr_xcrs; |
| __u32 flags; |
| struct kvm_xcr xcrs[KVM_MAX_XCRS]; |
| __u64 padding[16]; |
| }; |
| |
| This ioctl would set vcpu's xcr to the value userspace specified. |
| |
| |
| 4.46 KVM_GET_SUPPORTED_CPUID |
| ---------------------------- |
| |
| :Capability: KVM_CAP_EXT_CPUID |
| :Architectures: x86 |
| :Type: system ioctl |
| :Parameters: struct kvm_cpuid2 (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_cpuid2 { |
| __u32 nent; |
| __u32 padding; |
| struct kvm_cpuid_entry2 entries[0]; |
| }; |
| |
| #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) |
| #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ |
| #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ |
| |
| struct kvm_cpuid_entry2 { |
| __u32 function; |
| __u32 index; |
| __u32 flags; |
| __u32 eax; |
| __u32 ebx; |
| __u32 ecx; |
| __u32 edx; |
| __u32 padding[3]; |
| }; |
| |
| This ioctl returns x86 cpuid features which are supported by both the |
| hardware and kvm in its default configuration. Userspace can use the |
| information returned by this ioctl to construct cpuid information (for |
| KVM_SET_CPUID2) that is consistent with hardware, kernel, and |
| userspace capabilities, and with user requirements (for example, the |
| user may wish to constrain cpuid to emulate older hardware, or for |
| feature consistency across a cluster). |
| |
| Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may |
| expose cpuid features (e.g. MONITOR) which are not supported by kvm in |
| its default configuration. If userspace enables such capabilities, it |
| is responsible for modifying the results of this ioctl appropriately. |
| |
| Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure |
| with the 'nent' field indicating the number of entries in the variable-size |
| array 'entries'. If the number of entries is too low to describe the cpu |
| capabilities, an error (E2BIG) is returned. If the number is too high, |
| the 'nent' field is adjusted and an error (ENOMEM) is returned. If the |
| number is just right, the 'nent' field is adjusted to the number of valid |
| entries in the 'entries' array, which is then filled. |
| |
| The entries returned are the host cpuid as returned by the cpuid instruction, |
| with unknown or unsupported features masked out. Some features (for example, |
| x2apic), may not be present in the host cpu, but are exposed by kvm if it can |
| emulate them efficiently. The fields in each entry are defined as follows: |
| |
| function: |
| the eax value used to obtain the entry |
| |
| index: |
| the ecx value used to obtain the entry (for entries that are |
| affected by ecx) |
| |
| flags: |
| an OR of zero or more of the following: |
| |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX: |
| if the index field is valid |
| |
| eax, ebx, ecx, edx: |
| the values returned by the cpuid instruction for |
| this function/index combination |
| |
| The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned |
| as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC |
| support. Instead it is reported via:: |
| |
| ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) |
| |
| if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the |
| feature in userspace, then you can enable the feature for KVM_SET_CPUID2. |
| |
| |
| 4.47 KVM_PPC_GET_PVINFO |
| ----------------------- |
| |
| :Capability: KVM_CAP_PPC_GET_PVINFO |
| :Architectures: ppc |
| :Type: vm ioctl |
| :Parameters: struct kvm_ppc_pvinfo (out) |
| :Returns: 0 on success, !0 on error |
| |
| :: |
| |
| struct kvm_ppc_pvinfo { |
| __u32 flags; |
| __u32 hcall[4]; |
| __u8 pad[108]; |
| }; |
| |
| This ioctl fetches PV specific information that need to be passed to the guest |
| using the device tree or other means from vm context. |
| |
| The hcall array defines 4 instructions that make up a hypercall. |
| |
| If any additional field gets added to this structure later on, a bit for that |
| additional piece of information will be set in the flags bitmap. |
| |
| The flags bitmap is defined as:: |
| |
| /* the host supports the ePAPR idle hcall |
| #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) |
| |
| 4.52 KVM_SET_GSI_ROUTING |
| ------------------------ |
| |
| :Capability: KVM_CAP_IRQ_ROUTING |
| :Architectures: x86 s390 arm arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_irq_routing (in) |
| :Returns: 0 on success, -1 on error |
| |
| Sets the GSI routing table entries, overwriting any previously set entries. |
| |
| On arm/arm64, GSI routing has the following limitation: |
| |
| - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. |
| |
| :: |
| |
| struct kvm_irq_routing { |
| __u32 nr; |
| __u32 flags; |
| struct kvm_irq_routing_entry entries[0]; |
| }; |
| |
| No flags are specified so far, the corresponding field must be set to zero. |
| |
| :: |
| |
| struct kvm_irq_routing_entry { |
| __u32 gsi; |
| __u32 type; |
| __u32 flags; |
| __u32 pad; |
| union { |
| struct kvm_irq_routing_irqchip irqchip; |
| struct kvm_irq_routing_msi msi; |
| struct kvm_irq_routing_s390_adapter adapter; |
| struct kvm_irq_routing_hv_sint hv_sint; |
| __u32 pad[8]; |
| } u; |
| }; |
| |
| /* gsi routing entry types */ |
| #define KVM_IRQ_ROUTING_IRQCHIP 1 |
| #define KVM_IRQ_ROUTING_MSI 2 |
| #define KVM_IRQ_ROUTING_S390_ADAPTER 3 |
| #define KVM_IRQ_ROUTING_HV_SINT 4 |
| |
| flags: |
| |
| - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry |
| type, specifies that the devid field contains a valid value. The per-VM |
| KVM_CAP_MSI_DEVID capability advertises the requirement to provide |
| the device ID. If this capability is not available, userspace should |
| never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. |
| - zero otherwise |
| |
| :: |
| |
| struct kvm_irq_routing_irqchip { |
| __u32 irqchip; |
| __u32 pin; |
| }; |
| |
| struct kvm_irq_routing_msi { |
| __u32 address_lo; |
| __u32 address_hi; |
| __u32 data; |
| union { |
| __u32 pad; |
| __u32 devid; |
| }; |
| }; |
| |
| If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier |
| for the device that wrote the MSI message. For PCI, this is usually a |
| BFD identifier in the lower 16 bits. |
| |
| On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS |
| feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, |
| address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of |
| address_hi must be zero. |
| |
| :: |
| |
| struct kvm_irq_routing_s390_adapter { |
| __u64 ind_addr; |
| __u64 summary_addr; |
| __u64 ind_offset; |
| __u32 summary_offset; |
| __u32 adapter_id; |
| }; |
| |
| struct kvm_irq_routing_hv_sint { |
| __u32 vcpu; |
| __u32 sint; |
| }; |
| |
| |
| 4.55 KVM_SET_TSC_KHZ |
| -------------------- |
| |
| :Capability: KVM_CAP_TSC_CONTROL |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: virtual tsc_khz |
| :Returns: 0 on success, -1 on error |
| |
| Specifies the tsc frequency for the virtual machine. The unit of the |
| frequency is KHz. |
| |
| |
| 4.56 KVM_GET_TSC_KHZ |
| -------------------- |
| |
| :Capability: KVM_CAP_GET_TSC_KHZ |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: none |
| :Returns: virtual tsc-khz on success, negative value on error |
| |
| Returns the tsc frequency of the guest. The unit of the return value is |
| KHz. If the host has unstable tsc this ioctl returns -EIO instead as an |
| error. |
| |
| |
| 4.57 KVM_GET_LAPIC |
| ------------------ |
| |
| :Capability: KVM_CAP_IRQCHIP |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_lapic_state (out) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| #define KVM_APIC_REG_SIZE 0x400 |
| struct kvm_lapic_state { |
| char regs[KVM_APIC_REG_SIZE]; |
| }; |
| |
| Reads the Local APIC registers and copies them into the input argument. The |
| data format and layout are the same as documented in the architecture manual. |
| |
| If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is |
| enabled, then the format of APIC_ID register depends on the APIC mode |
| (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in |
| the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID |
| which is stored in bits 31-24 of the APIC register, or equivalently in |
| byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then |
| be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. |
| |
| If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state |
| always uses xAPIC format. |
| |
| |
| 4.58 KVM_SET_LAPIC |
| ------------------ |
| |
| :Capability: KVM_CAP_IRQCHIP |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_lapic_state (in) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| #define KVM_APIC_REG_SIZE 0x400 |
| struct kvm_lapic_state { |
| char regs[KVM_APIC_REG_SIZE]; |
| }; |
| |
| Copies the input argument into the Local APIC registers. The data format |
| and layout are the same as documented in the architecture manual. |
| |
| The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's |
| regs field) depends on the state of the KVM_CAP_X2APIC_API capability. |
| See the note in KVM_GET_LAPIC. |
| |
| |
| 4.59 KVM_IOEVENTFD |
| ------------------ |
| |
| :Capability: KVM_CAP_IOEVENTFD |
| :Architectures: all |
| :Type: vm ioctl |
| :Parameters: struct kvm_ioeventfd (in) |
| :Returns: 0 on success, !0 on error |
| |
| This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address |
| within the guest. A guest write in the registered address will signal the |
| provided event instead of triggering an exit. |
| |
| :: |
| |
| struct kvm_ioeventfd { |
| __u64 datamatch; |
| __u64 addr; /* legal pio/mmio address */ |
| __u32 len; /* 0, 1, 2, 4, or 8 bytes */ |
| __s32 fd; |
| __u32 flags; |
| __u8 pad[36]; |
| }; |
| |
| For the special case of virtio-ccw devices on s390, the ioevent is matched |
| to a subchannel/virtqueue tuple instead. |
| |
| The following flags are defined:: |
| |
| #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) |
| #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) |
| #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) |
| #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ |
| (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) |
| |
| If datamatch flag is set, the event will be signaled only if the written value |
| to the registered address is equal to datamatch in struct kvm_ioeventfd. |
| |
| For virtio-ccw devices, addr contains the subchannel id and datamatch the |
| virtqueue index. |
| |
| With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and |
| the kernel will ignore the length of guest write and may get a faster vmexit. |
| The speedup may only apply to specific architectures, but the ioeventfd will |
| work anyway. |
| |
| 4.60 KVM_DIRTY_TLB |
| ------------------ |
| |
| :Capability: KVM_CAP_SW_TLB |
| :Architectures: ppc |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_dirty_tlb (in) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_dirty_tlb { |
| __u64 bitmap; |
| __u32 num_dirty; |
| }; |
| |
| This must be called whenever userspace has changed an entry in the shared |
| TLB, prior to calling KVM_RUN on the associated vcpu. |
| |
| The "bitmap" field is the userspace address of an array. This array |
| consists of a number of bits, equal to the total number of TLB entries as |
| determined by the last successful call to KVM_CONFIG_TLB, rounded up to the |
| nearest multiple of 64. |
| |
| Each bit corresponds to one TLB entry, ordered the same as in the shared TLB |
| array. |
| |
| The array is little-endian: the bit 0 is the least significant bit of the |
| first byte, bit 8 is the least significant bit of the second byte, etc. |
| This avoids any complications with differing word sizes. |
| |
| The "num_dirty" field is a performance hint for KVM to determine whether it |
| should skip processing the bitmap and just invalidate everything. It must |
| be set to the number of set bits in the bitmap. |
| |
| |
| 4.62 KVM_CREATE_SPAPR_TCE |
| ------------------------- |
| |
| :Capability: KVM_CAP_SPAPR_TCE |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: struct kvm_create_spapr_tce (in) |
| :Returns: file descriptor for manipulating the created TCE table |
| |
| This creates a virtual TCE (translation control entry) table, which |
| is an IOMMU for PAPR-style virtual I/O. It is used to translate |
| logical addresses used in virtual I/O into guest physical addresses, |
| and provides a scatter/gather capability for PAPR virtual I/O. |
| |
| :: |
| |
| /* for KVM_CAP_SPAPR_TCE */ |
| struct kvm_create_spapr_tce { |
| __u64 liobn; |
| __u32 window_size; |
| }; |
| |
| The liobn field gives the logical IO bus number for which to create a |
| TCE table. The window_size field specifies the size of the DMA window |
| which this TCE table will translate - the table will contain one 64 |
| bit TCE entry for every 4kiB of the DMA window. |
| |
| When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE |
| table has been created using this ioctl(), the kernel will handle it |
| in real mode, updating the TCE table. H_PUT_TCE calls for other |
| liobns will cause a vm exit and must be handled by userspace. |
| |
| The return value is a file descriptor which can be passed to mmap(2) |
| to map the created TCE table into userspace. This lets userspace read |
| the entries written by kernel-handled H_PUT_TCE calls, and also lets |
| userspace update the TCE table directly which is useful in some |
| circumstances. |
| |
| |
| 4.63 KVM_ALLOCATE_RMA |
| --------------------- |
| |
| :Capability: KVM_CAP_PPC_RMA |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: struct kvm_allocate_rma (out) |
| :Returns: file descriptor for mapping the allocated RMA |
| |
| This allocates a Real Mode Area (RMA) from the pool allocated at boot |
| time by the kernel. An RMA is a physically-contiguous, aligned region |
| of memory used on older POWER processors to provide the memory which |
| will be accessed by real-mode (MMU off) accesses in a KVM guest. |
| POWER processors support a set of sizes for the RMA that usually |
| includes 64MB, 128MB, 256MB and some larger powers of two. |
| |
| :: |
| |
| /* for KVM_ALLOCATE_RMA */ |
| struct kvm_allocate_rma { |
| __u64 rma_size; |
| }; |
| |
| The return value is a file descriptor which can be passed to mmap(2) |
| to map the allocated RMA into userspace. The mapped area can then be |
| passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the |
| RMA for a virtual machine. The size of the RMA in bytes (which is |
| fixed at host kernel boot time) is returned in the rma_size field of |
| the argument structure. |
| |
| The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl |
| is supported; 2 if the processor requires all virtual machines to have |
| an RMA, or 1 if the processor can use an RMA but doesn't require it, |
| because it supports the Virtual RMA (VRMA) facility. |
| |
| |
| 4.64 KVM_NMI |
| ------------ |
| |
| :Capability: KVM_CAP_USER_NMI |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: none |
| :Returns: 0 on success, -1 on error |
| |
| Queues an NMI on the thread's vcpu. Note this is well defined only |
| when KVM_CREATE_IRQCHIP has not been called, since this is an interface |
| between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP |
| has been called, this interface is completely emulated within the kernel. |
| |
| To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the |
| following algorithm: |
| |
| - pause the vcpu |
| - read the local APIC's state (KVM_GET_LAPIC) |
| - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) |
| - if so, issue KVM_NMI |
| - resume the vcpu |
| |
| Some guests configure the LINT1 NMI input to cause a panic, aiding in |
| debugging. |
| |
| |
| 4.65 KVM_S390_UCAS_MAP |
| ---------------------- |
| |
| :Capability: KVM_CAP_S390_UCONTROL |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_ucas_mapping (in) |
| :Returns: 0 in case of success |
| |
| The parameter is defined like this:: |
| |
| struct kvm_s390_ucas_mapping { |
| __u64 user_addr; |
| __u64 vcpu_addr; |
| __u64 length; |
| }; |
| |
| This ioctl maps the memory at "user_addr" with the length "length" to |
| the vcpu's address space starting at "vcpu_addr". All parameters need to |
| be aligned by 1 megabyte. |
| |
| |
| 4.66 KVM_S390_UCAS_UNMAP |
| ------------------------ |
| |
| :Capability: KVM_CAP_S390_UCONTROL |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_ucas_mapping (in) |
| :Returns: 0 in case of success |
| |
| The parameter is defined like this:: |
| |
| struct kvm_s390_ucas_mapping { |
| __u64 user_addr; |
| __u64 vcpu_addr; |
| __u64 length; |
| }; |
| |
| This ioctl unmaps the memory in the vcpu's address space starting at |
| "vcpu_addr" with the length "length". The field "user_addr" is ignored. |
| All parameters need to be aligned by 1 megabyte. |
| |
| |
| 4.67 KVM_S390_VCPU_FAULT |
| ------------------------ |
| |
| :Capability: KVM_CAP_S390_UCONTROL |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: vcpu absolute address (in) |
| :Returns: 0 in case of success |
| |
| This call creates a page table entry on the virtual cpu's address space |
| (for user controlled virtual machines) or the virtual machine's address |
| space (for regular virtual machines). This only works for minor faults, |
| thus it's recommended to access subject memory page via the user page |
| table upfront. This is useful to handle validity intercepts for user |
| controlled virtual machines to fault in the virtual cpu's lowcore pages |
| prior to calling the KVM_RUN ioctl. |
| |
| |
| 4.68 KVM_SET_ONE_REG |
| -------------------- |
| |
| :Capability: KVM_CAP_ONE_REG |
| :Architectures: all |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_one_reg (in) |
| :Returns: 0 on success, negative value on failure |
| |
| Errors: |
| |
| ====== ============================================================ |
| ENOENT no such register |
| EINVAL invalid register ID, or no such register or used with VMs in |
| protected virtualization mode on s390 |
| EPERM (arm64) register access not allowed before vcpu finalization |
| ====== ============================================================ |
| |
| (These error codes are indicative only: do not rely on a specific error |
| code being returned in a specific situation.) |
| |
| :: |
| |
| struct kvm_one_reg { |
| __u64 id; |
| __u64 addr; |
| }; |
| |
| Using this ioctl, a single vcpu register can be set to a specific value |
| defined by user space with the passed in struct kvm_one_reg, where id |
| refers to the register identifier as described below and addr is a pointer |
| to a variable with the respective size. There can be architecture agnostic |
| and architecture specific registers. Each have their own range of operation |
| and their own constants and width. To keep track of the implemented |
| registers, find a list below: |
| |
| ======= =============================== ============ |
| Arch Register Width (bits) |
| ======= =============================== ============ |
| PPC KVM_REG_PPC_HIOR 64 |
| PPC KVM_REG_PPC_IAC1 64 |
| PPC KVM_REG_PPC_IAC2 64 |
| PPC KVM_REG_PPC_IAC3 64 |
| PPC KVM_REG_PPC_IAC4 64 |
| PPC KVM_REG_PPC_DAC1 64 |
| PPC KVM_REG_PPC_DAC2 64 |
| PPC KVM_REG_PPC_DABR 64 |
| PPC KVM_REG_PPC_DSCR 64 |
| PPC KVM_REG_PPC_PURR 64 |
| PPC KVM_REG_PPC_SPURR 64 |
| PPC KVM_REG_PPC_DAR 64 |
| PPC KVM_REG_PPC_DSISR 32 |
| PPC KVM_REG_PPC_AMR 64 |
| PPC KVM_REG_PPC_UAMOR 64 |
| PPC KVM_REG_PPC_MMCR0 64 |
| PPC KVM_REG_PPC_MMCR1 64 |
| PPC KVM_REG_PPC_MMCRA 64 |
| PPC KVM_REG_PPC_MMCR2 64 |
| PPC KVM_REG_PPC_MMCRS 64 |
| PPC KVM_REG_PPC_MMCR3 64 |
| PPC KVM_REG_PPC_SIAR 64 |
| PPC KVM_REG_PPC_SDAR 64 |
| PPC KVM_REG_PPC_SIER 64 |
| PPC KVM_REG_PPC_SIER2 64 |
| PPC KVM_REG_PPC_SIER3 64 |
| PPC KVM_REG_PPC_PMC1 32 |
| PPC KVM_REG_PPC_PMC2 32 |
| PPC KVM_REG_PPC_PMC3 32 |
| PPC KVM_REG_PPC_PMC4 32 |
| PPC KVM_REG_PPC_PMC5 32 |
| PPC KVM_REG_PPC_PMC6 32 |
| PPC KVM_REG_PPC_PMC7 32 |
| PPC KVM_REG_PPC_PMC8 32 |
| PPC KVM_REG_PPC_FPR0 64 |
| ... |
| PPC KVM_REG_PPC_FPR31 64 |
| PPC KVM_REG_PPC_VR0 128 |
| ... |
| PPC KVM_REG_PPC_VR31 128 |
| PPC KVM_REG_PPC_VSR0 128 |
| ... |
| PPC KVM_REG_PPC_VSR31 128 |
| PPC KVM_REG_PPC_FPSCR 64 |
| PPC KVM_REG_PPC_VSCR 32 |
| PPC KVM_REG_PPC_VPA_ADDR 64 |
| PPC KVM_REG_PPC_VPA_SLB 128 |
| PPC KVM_REG_PPC_VPA_DTL 128 |
| PPC KVM_REG_PPC_EPCR 32 |
| PPC KVM_REG_PPC_EPR 32 |
| PPC KVM_REG_PPC_TCR 32 |
| PPC KVM_REG_PPC_TSR 32 |
| PPC KVM_REG_PPC_OR_TSR 32 |
| PPC KVM_REG_PPC_CLEAR_TSR 32 |
| PPC KVM_REG_PPC_MAS0 32 |
| PPC KVM_REG_PPC_MAS1 32 |
| PPC KVM_REG_PPC_MAS2 64 |
| PPC KVM_REG_PPC_MAS7_3 64 |
| PPC KVM_REG_PPC_MAS4 32 |
| PPC KVM_REG_PPC_MAS6 32 |
| PPC KVM_REG_PPC_MMUCFG 32 |
| PPC KVM_REG_PPC_TLB0CFG 32 |
| PPC KVM_REG_PPC_TLB1CFG 32 |
| PPC KVM_REG_PPC_TLB2CFG 32 |
| PPC KVM_REG_PPC_TLB3CFG 32 |
| PPC KVM_REG_PPC_TLB0PS 32 |
| PPC KVM_REG_PPC_TLB1PS 32 |
| PPC KVM_REG_PPC_TLB2PS 32 |
| PPC KVM_REG_PPC_TLB3PS 32 |
| PPC KVM_REG_PPC_EPTCFG 32 |
| PPC KVM_REG_PPC_ICP_STATE 64 |
| PPC KVM_REG_PPC_VP_STATE 128 |
| PPC KVM_REG_PPC_TB_OFFSET 64 |
| PPC KVM_REG_PPC_SPMC1 32 |
| PPC KVM_REG_PPC_SPMC2 32 |
| PPC KVM_REG_PPC_IAMR 64 |
| PPC KVM_REG_PPC_TFHAR 64 |
| PPC KVM_REG_PPC_TFIAR 64 |
| PPC KVM_REG_PPC_TEXASR 64 |
| PPC KVM_REG_PPC_FSCR 64 |
| PPC KVM_REG_PPC_PSPB 32 |
| PPC KVM_REG_PPC_EBBHR 64 |
| PPC KVM_REG_PPC_EBBRR 64 |
| PPC KVM_REG_PPC_BESCR 64 |
| PPC KVM_REG_PPC_TAR 64 |
| PPC KVM_REG_PPC_DPDES 64 |
| PPC KVM_REG_PPC_DAWR 64 |
| PPC KVM_REG_PPC_DAWRX 64 |
| PPC KVM_REG_PPC_CIABR 64 |
| PPC KVM_REG_PPC_IC 64 |
| PPC KVM_REG_PPC_VTB 64 |
| PPC KVM_REG_PPC_CSIGR 64 |
| PPC KVM_REG_PPC_TACR 64 |
| PPC KVM_REG_PPC_TCSCR 64 |
| PPC KVM_REG_PPC_PID 64 |
| PPC KVM_REG_PPC_ACOP 64 |
| PPC KVM_REG_PPC_VRSAVE 32 |
| PPC KVM_REG_PPC_LPCR 32 |
| PPC KVM_REG_PPC_LPCR_64 64 |
| PPC KVM_REG_PPC_PPR 64 |
| PPC KVM_REG_PPC_ARCH_COMPAT 32 |
| PPC KVM_REG_PPC_DABRX 32 |
| PPC KVM_REG_PPC_WORT 64 |
| PPC KVM_REG_PPC_SPRG9 64 |
| PPC KVM_REG_PPC_DBSR 32 |
| PPC KVM_REG_PPC_TIDR 64 |
| PPC KVM_REG_PPC_PSSCR 64 |
| PPC KVM_REG_PPC_DEC_EXPIRY 64 |
| PPC KVM_REG_PPC_PTCR 64 |
| PPC KVM_REG_PPC_DAWR1 64 |
| PPC KVM_REG_PPC_DAWRX1 64 |
| PPC KVM_REG_PPC_TM_GPR0 64 |
| ... |
| PPC KVM_REG_PPC_TM_GPR31 64 |
| PPC KVM_REG_PPC_TM_VSR0 128 |
| ... |
| PPC KVM_REG_PPC_TM_VSR63 128 |
| PPC KVM_REG_PPC_TM_CR 64 |
| PPC KVM_REG_PPC_TM_LR 64 |
| PPC KVM_REG_PPC_TM_CTR 64 |
| PPC KVM_REG_PPC_TM_FPSCR 64 |
| PPC KVM_REG_PPC_TM_AMR 64 |
| PPC KVM_REG_PPC_TM_PPR 64 |
| PPC KVM_REG_PPC_TM_VRSAVE 64 |
| PPC KVM_REG_PPC_TM_VSCR 32 |
| PPC KVM_REG_PPC_TM_DSCR 64 |
| PPC KVM_REG_PPC_TM_TAR 64 |
| PPC KVM_REG_PPC_TM_XER 64 |
| |
| MIPS KVM_REG_MIPS_R0 64 |
| ... |
| MIPS KVM_REG_MIPS_R31 64 |
| MIPS KVM_REG_MIPS_HI 64 |
| MIPS KVM_REG_MIPS_LO 64 |
| MIPS KVM_REG_MIPS_PC 64 |
| MIPS KVM_REG_MIPS_CP0_INDEX 32 |
| MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 |
| MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 |
| MIPS KVM_REG_MIPS_CP0_CONTEXT 64 |
| MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 |
| MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 |
| MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 |
| MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 |
| MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 |
| MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 |
| MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 |
| MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 |
| MIPS KVM_REG_MIPS_CP0_PWBASE 64 |
| MIPS KVM_REG_MIPS_CP0_PWFIELD 64 |
| MIPS KVM_REG_MIPS_CP0_PWSIZE 64 |
| MIPS KVM_REG_MIPS_CP0_WIRED 32 |
| MIPS KVM_REG_MIPS_CP0_PWCTL 32 |
| MIPS KVM_REG_MIPS_CP0_HWRENA 32 |
| MIPS KVM_REG_MIPS_CP0_BADVADDR 64 |
| MIPS KVM_REG_MIPS_CP0_BADINSTR 32 |
| MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 |
| MIPS KVM_REG_MIPS_CP0_COUNT 32 |
| MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 |
| MIPS KVM_REG_MIPS_CP0_COMPARE 32 |
| MIPS KVM_REG_MIPS_CP0_STATUS 32 |
| MIPS KVM_REG_MIPS_CP0_INTCTL 32 |
| MIPS KVM_REG_MIPS_CP0_CAUSE 32 |
| MIPS KVM_REG_MIPS_CP0_EPC 64 |
| MIPS KVM_REG_MIPS_CP0_PRID 32 |
| MIPS KVM_REG_MIPS_CP0_EBASE 64 |
| MIPS KVM_REG_MIPS_CP0_CONFIG 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG1 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG2 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG3 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG4 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG5 32 |
| MIPS KVM_REG_MIPS_CP0_CONFIG7 32 |
| MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 |
| MIPS KVM_REG_MIPS_CP0_ERROREPC 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 |
| MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 |
| MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 |
| MIPS KVM_REG_MIPS_COUNT_CTL 64 |
| MIPS KVM_REG_MIPS_COUNT_RESUME 64 |
| MIPS KVM_REG_MIPS_COUNT_HZ 64 |
| MIPS KVM_REG_MIPS_FPR_32(0..31) 32 |
| MIPS KVM_REG_MIPS_FPR_64(0..31) 64 |
| MIPS KVM_REG_MIPS_VEC_128(0..31) 128 |
| MIPS KVM_REG_MIPS_FCR_IR 32 |
| MIPS KVM_REG_MIPS_FCR_CSR 32 |
| MIPS KVM_REG_MIPS_MSA_IR 32 |
| MIPS KVM_REG_MIPS_MSA_CSR 32 |
| ======= =============================== ============ |
| |
| ARM registers are mapped using the lower 32 bits. The upper 16 of that |
| is the register group type, or coprocessor number: |
| |
| ARM core registers have the following id bit patterns:: |
| |
| 0x4020 0000 0010 <index into the kvm_regs struct:16> |
| |
| ARM 32-bit CP15 registers have the following id bit patterns:: |
| |
| 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> |
| |
| ARM 64-bit CP15 registers have the following id bit patterns:: |
| |
| 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> |
| |
| ARM CCSIDR registers are demultiplexed by CSSELR value:: |
| |
| 0x4020 0000 0011 00 <csselr:8> |
| |
| ARM 32-bit VFP control registers have the following id bit patterns:: |
| |
| 0x4020 0000 0012 1 <regno:12> |
| |
| ARM 64-bit FP registers have the following id bit patterns:: |
| |
| 0x4030 0000 0012 0 <regno:12> |
| |
| ARM firmware pseudo-registers have the following bit pattern:: |
| |
| 0x4030 0000 0014 <regno:16> |
| |
| |
| arm64 registers are mapped using the lower 32 bits. The upper 16 of |
| that is the register group type, or coprocessor number: |
| |
| arm64 core/FP-SIMD registers have the following id bit patterns. Note |
| that the size of the access is variable, as the kvm_regs structure |
| contains elements ranging from 32 to 128 bits. The index is a 32bit |
| value in the kvm_regs structure seen as a 32bit array:: |
| |
| 0x60x0 0000 0010 <index into the kvm_regs struct:16> |
| |
| Specifically: |
| |
| ======================= ========= ===== ======================================= |
| Encoding Register Bits kvm_regs member |
| ======================= ========= ===== ======================================= |
| 0x6030 0000 0010 0000 X0 64 regs.regs[0] |
| 0x6030 0000 0010 0002 X1 64 regs.regs[1] |
| ... |
| 0x6030 0000 0010 003c X30 64 regs.regs[30] |
| 0x6030 0000 0010 003e SP 64 regs.sp |
| 0x6030 0000 0010 0040 PC 64 regs.pc |
| 0x6030 0000 0010 0042 PSTATE 64 regs.pstate |
| 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 |
| 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 |
| 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) |
| 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] |
| 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] |
| 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] |
| 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] |
| 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ |
| 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ |
| ... |
| 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ |
| 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr |
| 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr |
| ======================= ========= ===== ======================================= |
| |
| .. [1] These encodings are not accepted for SVE-enabled vcpus. See |
| KVM_ARM_VCPU_INIT. |
| |
| The equivalent register content can be accessed via bits [127:0] of |
| the corresponding SVE Zn registers instead for vcpus that have SVE |
| enabled (see below). |
| |
| arm64 CCSIDR registers are demultiplexed by CSSELR value:: |
| |
| 0x6020 0000 0011 00 <csselr:8> |
| |
| arm64 system registers have the following id bit patterns:: |
| |
| 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> |
| |
| .. warning:: |
| |
| Two system register IDs do not follow the specified pattern. These |
| are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to |
| system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These |
| two had their values accidentally swapped, which means TIMER_CVAL is |
| derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is |
| derived from the register encoding for CNTV_CVAL_EL0. As this is |
| API, it must remain this way. |
| |
| arm64 firmware pseudo-registers have the following bit pattern:: |
| |
| 0x6030 0000 0014 <regno:16> |
| |
| arm64 SVE registers have the following bit patterns:: |
| |
| 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] |
| 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] |
| 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] |
| 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register |
| |
| Access to register IDs where 2048 * slice >= 128 * max_vq will fail with |
| ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit |
| quadwords: see [2]_ below. |
| |
| These registers are only accessible on vcpus for which SVE is enabled. |
| See KVM_ARM_VCPU_INIT for details. |
| |
| In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not |
| accessible until the vcpu's SVE configuration has been finalized |
| using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT |
| and KVM_ARM_VCPU_FINALIZE for more information about this procedure. |
| |
| KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector |
| lengths supported by the vcpu to be discovered and configured by |
| userspace. When transferred to or from user memory via KVM_GET_ONE_REG |
| or KVM_SET_ONE_REG, the value of this register is of type |
| __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as |
| follows:: |
| |
| __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; |
| |
| if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && |
| ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> |
| ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) |
| /* Vector length vq * 16 bytes supported */ |
| else |
| /* Vector length vq * 16 bytes not supported */ |
| |
| .. [2] The maximum value vq for which the above condition is true is |
| max_vq. This is the maximum vector length available to the guest on |
| this vcpu, and determines which register slices are visible through |
| this ioctl interface. |
| |
| (See Documentation/arm64/sve.rst for an explanation of the "vq" |
| nomenclature.) |
| |
| KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. |
| KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that |
| the host supports. |
| |
| Userspace may subsequently modify it if desired until the vcpu's SVE |
| configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). |
| |
| Apart from simply removing all vector lengths from the host set that |
| exceed some value, support for arbitrarily chosen sets of vector lengths |
| is hardware-dependent and may not be available. Attempting to configure |
| an invalid set of vector lengths via KVM_SET_ONE_REG will fail with |
| EINVAL. |
| |
| After the vcpu's SVE configuration is finalized, further attempts to |
| write this register will fail with EPERM. |
| |
| |
| MIPS registers are mapped using the lower 32 bits. The upper 16 of that is |
| the register group type: |
| |
| MIPS core registers (see above) have the following id bit patterns:: |
| |
| 0x7030 0000 0000 <reg:16> |
| |
| MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit |
| patterns depending on whether they're 32-bit or 64-bit registers:: |
| |
| 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) |
| 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) |
| |
| Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 |
| versions of the EntryLo registers regardless of the word size of the host |
| hardware, host kernel, guest, and whether XPA is present in the guest, i.e. |
| with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and |
| the PFNX field starting at bit 30. |
| |
| MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit |
| patterns:: |
| |
| 0x7030 0000 0001 01 <reg:8> |
| |
| MIPS KVM control registers (see above) have the following id bit patterns:: |
| |
| 0x7030 0000 0002 <reg:16> |
| |
| MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following |
| id bit patterns depending on the size of the register being accessed. They are |
| always accessed according to the current guest FPU mode (Status.FR and |
| Config5.FRE), i.e. as the guest would see them, and they become unpredictable |
| if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector |
| registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they |
| overlap the FPU registers:: |
| |
| 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) |
| 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) |
| 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) |
| |
| MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the |
| following id bit patterns:: |
| |
| 0x7020 0000 0003 01 <0:3> <reg:5> |
| |
| MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the |
| following id bit patterns:: |
| |
| 0x7020 0000 0003 02 <0:3> <reg:5> |
| |
| RISC-V registers are mapped using the lower 32 bits. The upper 8 bits of |
| that is the register group type. |
| |
| RISC-V config registers are meant for configuring a Guest VCPU and it has |
| the following id bit patterns:: |
| |
| 0x8020 0000 01 <index into the kvm_riscv_config struct:24> (32bit Host) |
| 0x8030 0000 01 <index into the kvm_riscv_config struct:24> (64bit Host) |
| |
| Following are the RISC-V config registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x80x0 0000 0100 0000 isa ISA feature bitmap of Guest VCPU |
| ======================= ========= ============================================= |
| |
| The isa config register can be read anytime but can only be written before |
| a Guest VCPU runs. It will have ISA feature bits matching underlying host |
| set by default. |
| |
| RISC-V core registers represent the general excution state of a Guest VCPU |
| and it has the following id bit patterns:: |
| |
| 0x8020 0000 02 <index into the kvm_riscv_core struct:24> (32bit Host) |
| 0x8030 0000 02 <index into the kvm_riscv_core struct:24> (64bit Host) |
| |
| Following are the RISC-V core registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x80x0 0000 0200 0000 regs.pc Program counter |
| 0x80x0 0000 0200 0001 regs.ra Return address |
| 0x80x0 0000 0200 0002 regs.sp Stack pointer |
| 0x80x0 0000 0200 0003 regs.gp Global pointer |
| 0x80x0 0000 0200 0004 regs.tp Task pointer |
| 0x80x0 0000 0200 0005 regs.t0 Caller saved register 0 |
| 0x80x0 0000 0200 0006 regs.t1 Caller saved register 1 |
| 0x80x0 0000 0200 0007 regs.t2 Caller saved register 2 |
| 0x80x0 0000 0200 0008 regs.s0 Callee saved register 0 |
| 0x80x0 0000 0200 0009 regs.s1 Callee saved register 1 |
| 0x80x0 0000 0200 000a regs.a0 Function argument (or return value) 0 |
| 0x80x0 0000 0200 000b regs.a1 Function argument (or return value) 1 |
| 0x80x0 0000 0200 000c regs.a2 Function argument 2 |
| 0x80x0 0000 0200 000d regs.a3 Function argument 3 |
| 0x80x0 0000 0200 000e regs.a4 Function argument 4 |
| 0x80x0 0000 0200 000f regs.a5 Function argument 5 |
| 0x80x0 0000 0200 0010 regs.a6 Function argument 6 |
| 0x80x0 0000 0200 0011 regs.a7 Function argument 7 |
| 0x80x0 0000 0200 0012 regs.s2 Callee saved register 2 |
| 0x80x0 0000 0200 0013 regs.s3 Callee saved register 3 |
| 0x80x0 0000 0200 0014 regs.s4 Callee saved register 4 |
| 0x80x0 0000 0200 0015 regs.s5 Callee saved register 5 |
| 0x80x0 0000 0200 0016 regs.s6 Callee saved register 6 |
| 0x80x0 0000 0200 0017 regs.s7 Callee saved register 7 |
| 0x80x0 0000 0200 0018 regs.s8 Callee saved register 8 |
| 0x80x0 0000 0200 0019 regs.s9 Callee saved register 9 |
| 0x80x0 0000 0200 001a regs.s10 Callee saved register 10 |
| 0x80x0 0000 0200 001b regs.s11 Callee saved register 11 |
| 0x80x0 0000 0200 001c regs.t3 Caller saved register 3 |
| 0x80x0 0000 0200 001d regs.t4 Caller saved register 4 |
| 0x80x0 0000 0200 001e regs.t5 Caller saved register 5 |
| 0x80x0 0000 0200 001f regs.t6 Caller saved register 6 |
| 0x80x0 0000 0200 0020 mode Privilege mode (1 = S-mode or 0 = U-mode) |
| ======================= ========= ============================================= |
| |
| RISC-V csr registers represent the supervisor mode control/status registers |
| of a Guest VCPU and it has the following id bit patterns:: |
| |
| 0x8020 0000 03 <index into the kvm_riscv_csr struct:24> (32bit Host) |
| 0x8030 0000 03 <index into the kvm_riscv_csr struct:24> (64bit Host) |
| |
| Following are the RISC-V csr registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x80x0 0000 0300 0000 sstatus Supervisor status |
| 0x80x0 0000 0300 0001 sie Supervisor interrupt enable |
| 0x80x0 0000 0300 0002 stvec Supervisor trap vector base |
| 0x80x0 0000 0300 0003 sscratch Supervisor scratch register |
| 0x80x0 0000 0300 0004 sepc Supervisor exception program counter |
| 0x80x0 0000 0300 0005 scause Supervisor trap cause |
| 0x80x0 0000 0300 0006 stval Supervisor bad address or instruction |
| 0x80x0 0000 0300 0007 sip Supervisor interrupt pending |
| 0x80x0 0000 0300 0008 satp Supervisor address translation and protection |
| ======================= ========= ============================================= |
| |
| RISC-V timer registers represent the timer state of a Guest VCPU and it has |
| the following id bit patterns:: |
| |
| 0x8030 0000 04 <index into the kvm_riscv_timer struct:24> |
| |
| Following are the RISC-V timer registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x8030 0000 0400 0000 frequency Time base frequency (read-only) |
| 0x8030 0000 0400 0001 time Time value visible to Guest |
| 0x8030 0000 0400 0002 compare Time compare programmed by Guest |
| 0x8030 0000 0400 0003 state Time compare state (1 = ON or 0 = OFF) |
| ======================= ========= ============================================= |
| |
| RISC-V F-extension registers represent the single precision floating point |
| state of a Guest VCPU and it has the following id bit patterns:: |
| |
| 0x8020 0000 05 <index into the __riscv_f_ext_state struct:24> |
| |
| Following are the RISC-V F-extension registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x8020 0000 0500 0000 f[0] Floating point register 0 |
| ... |
| 0x8020 0000 0500 001f f[31] Floating point register 31 |
| 0x8020 0000 0500 0020 fcsr Floating point control and status register |
| ======================= ========= ============================================= |
| |
| RISC-V D-extension registers represent the double precision floating point |
| state of a Guest VCPU and it has the following id bit patterns:: |
| |
| 0x8020 0000 06 <index into the __riscv_d_ext_state struct:24> (fcsr) |
| 0x8030 0000 06 <index into the __riscv_d_ext_state struct:24> (non-fcsr) |
| |
| Following are the RISC-V D-extension registers: |
| |
| ======================= ========= ============================================= |
| Encoding Register Description |
| ======================= ========= ============================================= |
| 0x8030 0000 0600 0000 f[0] Floating point register 0 |
| ... |
| 0x8030 0000 0600 001f f[31] Floating point register 31 |
| 0x8020 0000 0600 0020 fcsr Floating point control and status register |
| ======================= ========= ============================================= |
| |
| |
| 4.69 KVM_GET_ONE_REG |
| -------------------- |
| |
| :Capability: KVM_CAP_ONE_REG |
| :Architectures: all |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_one_reg (in and out) |
| :Returns: 0 on success, negative value on failure |
| |
| Errors include: |
| |
| ======== ============================================================ |
| ENOENT no such register |
| EINVAL invalid register ID, or no such register or used with VMs in |
| protected virtualization mode on s390 |
| EPERM (arm64) register access not allowed before vcpu finalization |
| ======== ============================================================ |
| |
| (These error codes are indicative only: do not rely on a specific error |
| code being returned in a specific situation.) |
| |
| This ioctl allows to receive the value of a single register implemented |
| in a vcpu. The register to read is indicated by the "id" field of the |
| kvm_one_reg struct passed in. On success, the register value can be found |
| at the memory location pointed to by "addr". |
| |
| The list of registers accessible using this interface is identical to the |
| list in 4.68. |
| |
| |
| 4.70 KVM_KVMCLOCK_CTRL |
| ---------------------- |
| |
| :Capability: KVM_CAP_KVMCLOCK_CTRL |
| :Architectures: Any that implement pvclocks (currently x86 only) |
| :Type: vcpu ioctl |
| :Parameters: None |
| :Returns: 0 on success, -1 on error |
| |
| This ioctl sets a flag accessible to the guest indicating that the specified |
| vCPU has been paused by the host userspace. |
| |
| The host will set a flag in the pvclock structure that is checked from the |
| soft lockup watchdog. The flag is part of the pvclock structure that is |
| shared between guest and host, specifically the second bit of the flags |
| field of the pvclock_vcpu_time_info structure. It will be set exclusively by |
| the host and read/cleared exclusively by the guest. The guest operation of |
| checking and clearing the flag must be an atomic operation so |
| load-link/store-conditional, or equivalent must be used. There are two cases |
| where the guest will clear the flag: when the soft lockup watchdog timer resets |
| itself or when a soft lockup is detected. This ioctl can be called any time |
| after pausing the vcpu, but before it is resumed. |
| |
| |
| 4.71 KVM_SIGNAL_MSI |
| ------------------- |
| |
| :Capability: KVM_CAP_SIGNAL_MSI |
| :Architectures: x86 arm arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_msi (in) |
| :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error |
| |
| Directly inject a MSI message. Only valid with in-kernel irqchip that handles |
| MSI messages. |
| |
| :: |
| |
| struct kvm_msi { |
| __u32 address_lo; |
| __u32 address_hi; |
| __u32 data; |
| __u32 flags; |
| __u32 devid; |
| __u8 pad[12]; |
| }; |
| |
| flags: |
| KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM |
| KVM_CAP_MSI_DEVID capability advertises the requirement to provide |
| the device ID. If this capability is not available, userspace |
| should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. |
| |
| If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier |
| for the device that wrote the MSI message. For PCI, this is usually a |
| BFD identifier in the lower 16 bits. |
| |
| On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS |
| feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, |
| address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of |
| address_hi must be zero. |
| |
| |
| 4.71 KVM_CREATE_PIT2 |
| -------------------- |
| |
| :Capability: KVM_CAP_PIT2 |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_pit_config (in) |
| :Returns: 0 on success, -1 on error |
| |
| Creates an in-kernel device model for the i8254 PIT. This call is only valid |
| after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following |
| parameters have to be passed:: |
| |
| struct kvm_pit_config { |
| __u32 flags; |
| __u32 pad[15]; |
| }; |
| |
| Valid flags are:: |
| |
| #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ |
| |
| PIT timer interrupts may use a per-VM kernel thread for injection. If it |
| exists, this thread will have a name of the following pattern:: |
| |
| kvm-pit/<owner-process-pid> |
| |
| When running a guest with elevated priorities, the scheduling parameters of |
| this thread may have to be adjusted accordingly. |
| |
| This IOCTL replaces the obsolete KVM_CREATE_PIT. |
| |
| |
| 4.72 KVM_GET_PIT2 |
| ----------------- |
| |
| :Capability: KVM_CAP_PIT_STATE2 |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_pit_state2 (out) |
| :Returns: 0 on success, -1 on error |
| |
| Retrieves the state of the in-kernel PIT model. Only valid after |
| KVM_CREATE_PIT2. The state is returned in the following structure:: |
| |
| struct kvm_pit_state2 { |
| struct kvm_pit_channel_state channels[3]; |
| __u32 flags; |
| __u32 reserved[9]; |
| }; |
| |
| Valid flags are:: |
| |
| /* disable PIT in HPET legacy mode */ |
| #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 |
| |
| This IOCTL replaces the obsolete KVM_GET_PIT. |
| |
| |
| 4.73 KVM_SET_PIT2 |
| ----------------- |
| |
| :Capability: KVM_CAP_PIT_STATE2 |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_pit_state2 (in) |
| :Returns: 0 on success, -1 on error |
| |
| Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. |
| See KVM_GET_PIT2 for details on struct kvm_pit_state2. |
| |
| This IOCTL replaces the obsolete KVM_SET_PIT. |
| |
| |
| 4.74 KVM_PPC_GET_SMMU_INFO |
| -------------------------- |
| |
| :Capability: KVM_CAP_PPC_GET_SMMU_INFO |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: None |
| :Returns: 0 on success, -1 on error |
| |
| This populates and returns a structure describing the features of |
| the "Server" class MMU emulation supported by KVM. |
| This can in turn be used by userspace to generate the appropriate |
| device-tree properties for the guest operating system. |
| |
| The structure contains some global information, followed by an |
| array of supported segment page sizes:: |
| |
| struct kvm_ppc_smmu_info { |
| __u64 flags; |
| __u32 slb_size; |
| __u32 pad; |
| struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; |
| }; |
| |
| The supported flags are: |
| |
| - KVM_PPC_PAGE_SIZES_REAL: |
| When that flag is set, guest page sizes must "fit" the backing |
| store page sizes. When not set, any page size in the list can |
| be used regardless of how they are backed by userspace. |
| |
| - KVM_PPC_1T_SEGMENTS |
| The emulated MMU supports 1T segments in addition to the |
| standard 256M ones. |
| |
| - KVM_PPC_NO_HASH |
| This flag indicates that HPT guests are not supported by KVM, |
| thus all guests must use radix MMU mode. |
| |
| The "slb_size" field indicates how many SLB entries are supported |
| |
| The "sps" array contains 8 entries indicating the supported base |
| page sizes for a segment in increasing order. Each entry is defined |
| as follow:: |
| |
| struct kvm_ppc_one_seg_page_size { |
| __u32 page_shift; /* Base page shift of segment (or 0) */ |
| __u32 slb_enc; /* SLB encoding for BookS */ |
| struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; |
| }; |
| |
| An entry with a "page_shift" of 0 is unused. Because the array is |
| organized in increasing order, a lookup can stop when encoutering |
| such an entry. |
| |
| The "slb_enc" field provides the encoding to use in the SLB for the |
| page size. The bits are in positions such as the value can directly |
| be OR'ed into the "vsid" argument of the slbmte instruction. |
| |
| The "enc" array is a list which for each of those segment base page |
| size provides the list of supported actual page sizes (which can be |
| only larger or equal to the base page size), along with the |
| corresponding encoding in the hash PTE. Similarly, the array is |
| 8 entries sorted by increasing sizes and an entry with a "0" shift |
| is an empty entry and a terminator:: |
| |
| struct kvm_ppc_one_page_size { |
| __u32 page_shift; /* Page shift (or 0) */ |
| __u32 pte_enc; /* Encoding in the HPTE (>>12) */ |
| }; |
| |
| The "pte_enc" field provides a value that can OR'ed into the hash |
| PTE's RPN field (ie, it needs to be shifted left by 12 to OR it |
| into the hash PTE second double word). |
| |
| 4.75 KVM_IRQFD |
| -------------- |
| |
| :Capability: KVM_CAP_IRQFD |
| :Architectures: x86 s390 arm arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_irqfd (in) |
| :Returns: 0 on success, -1 on error |
| |
| Allows setting an eventfd to directly trigger a guest interrupt. |
| kvm_irqfd.fd specifies the file descriptor to use as the eventfd and |
| kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When |
| an event is triggered on the eventfd, an interrupt is injected into |
| the guest using the specified gsi pin. The irqfd is removed using |
| the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd |
| and kvm_irqfd.gsi. |
| |
| With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify |
| mechanism allowing emulation of level-triggered, irqfd-based |
| interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an |
| additional eventfd in the kvm_irqfd.resamplefd field. When operating |
| in resample mode, posting of an interrupt through kvm_irq.fd asserts |
| the specified gsi in the irqchip. When the irqchip is resampled, such |
| as from an EOI, the gsi is de-asserted and the user is notified via |
| kvm_irqfd.resamplefd. It is the user's responsibility to re-queue |
| the interrupt if the device making use of it still requires service. |
| Note that closing the resamplefd is not sufficient to disable the |
| irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment |
| and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. |
| |
| On arm/arm64, gsi routing being supported, the following can happen: |
| |
| - in case no routing entry is associated to this gsi, injection fails |
| - in case the gsi is associated to an irqchip routing entry, |
| irqchip.pin + 32 corresponds to the injected SPI ID. |
| - in case the gsi is associated to an MSI routing entry, the MSI |
| message and device ID are translated into an LPI (support restricted |
| to GICv3 ITS in-kernel emulation). |
| |
| 4.76 KVM_PPC_ALLOCATE_HTAB |
| -------------------------- |
| |
| :Capability: KVM_CAP_PPC_ALLOC_HTAB |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: Pointer to u32 containing hash table order (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| This requests the host kernel to allocate an MMU hash table for a |
| guest using the PAPR paravirtualization interface. This only does |
| anything if the kernel is configured to use the Book 3S HV style of |
| virtualization. Otherwise the capability doesn't exist and the ioctl |
| returns an ENOTTY error. The rest of this description assumes Book 3S |
| HV. |
| |
| There must be no vcpus running when this ioctl is called; if there |
| are, it will do nothing and return an EBUSY error. |
| |
| The parameter is a pointer to a 32-bit unsigned integer variable |
| containing the order (log base 2) of the desired size of the hash |
| table, which must be between 18 and 46. On successful return from the |
| ioctl, the value will not be changed by the kernel. |
| |
| If no hash table has been allocated when any vcpu is asked to run |
| (with the KVM_RUN ioctl), the host kernel will allocate a |
| default-sized hash table (16 MB). |
| |
| If this ioctl is called when a hash table has already been allocated, |
| with a different order from the existing hash table, the existing hash |
| table will be freed and a new one allocated. If this is ioctl is |
| called when a hash table has already been allocated of the same order |
| as specified, the kernel will clear out the existing hash table (zero |
| all HPTEs). In either case, if the guest is using the virtualized |
| real-mode area (VRMA) facility, the kernel will re-create the VMRA |
| HPTEs on the next KVM_RUN of any vcpu. |
| |
| 4.77 KVM_S390_INTERRUPT |
| ----------------------- |
| |
| :Capability: basic |
| :Architectures: s390 |
| :Type: vm ioctl, vcpu ioctl |
| :Parameters: struct kvm_s390_interrupt (in) |
| :Returns: 0 on success, -1 on error |
| |
| Allows to inject an interrupt to the guest. Interrupts can be floating |
| (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. |
| |
| Interrupt parameters are passed via kvm_s390_interrupt:: |
| |
| struct kvm_s390_interrupt { |
| __u32 type; |
| __u32 parm; |
| __u64 parm64; |
| }; |
| |
| type can be one of the following: |
| |
| KVM_S390_SIGP_STOP (vcpu) |
| - sigp stop; optional flags in parm |
| KVM_S390_PROGRAM_INT (vcpu) |
| - program check; code in parm |
| KVM_S390_SIGP_SET_PREFIX (vcpu) |
| - sigp set prefix; prefix address in parm |
| KVM_S390_RESTART (vcpu) |
| - restart |
| KVM_S390_INT_CLOCK_COMP (vcpu) |
| - clock comparator interrupt |
| KVM_S390_INT_CPU_TIMER (vcpu) |
| - CPU timer interrupt |
| KVM_S390_INT_VIRTIO (vm) |
| - virtio external interrupt; external interrupt |
| parameters in parm and parm64 |
| KVM_S390_INT_SERVICE (vm) |
| - sclp external interrupt; sclp parameter in parm |
| KVM_S390_INT_EMERGENCY (vcpu) |
| - sigp emergency; source cpu in parm |
| KVM_S390_INT_EXTERNAL_CALL (vcpu) |
| - sigp external call; source cpu in parm |
| KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) |
| - compound value to indicate an |
| I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); |
| I/O interruption parameters in parm (subchannel) and parm64 (intparm, |
| interruption subclass) |
| KVM_S390_MCHK (vm, vcpu) |
| - machine check interrupt; cr 14 bits in parm, machine check interrupt |
| code in parm64 (note that machine checks needing further payload are not |
| supported by this ioctl) |
| |
| This is an asynchronous vcpu ioctl and can be invoked from any thread. |
| |
| 4.78 KVM_PPC_GET_HTAB_FD |
| ------------------------ |
| |
| :Capability: KVM_CAP_PPC_HTAB_FD |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: Pointer to struct kvm_get_htab_fd (in) |
| :Returns: file descriptor number (>= 0) on success, -1 on error |
| |
| This returns a file descriptor that can be used either to read out the |
| entries in the guest's hashed page table (HPT), or to write entries to |
| initialize the HPT. The returned fd can only be written to if the |
| KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and |
| can only be read if that bit is clear. The argument struct looks like |
| this:: |
| |
| /* For KVM_PPC_GET_HTAB_FD */ |
| struct kvm_get_htab_fd { |
| __u64 flags; |
| __u64 start_index; |
| __u64 reserved[2]; |
| }; |
| |
| /* Values for kvm_get_htab_fd.flags */ |
| #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) |
| #define KVM_GET_HTAB_WRITE ((__u64)0x2) |
| |
| The 'start_index' field gives the index in the HPT of the entry at |
| which to start reading. It is ignored when writing. |
| |
| Reads on the fd will initially supply information about all |
| "interesting" HPT entries. Interesting entries are those with the |
| bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise |
| all entries. When the end of the HPT is reached, the read() will |
| return. If read() is called again on the fd, it will start again from |
| the beginning of the HPT, but will only return HPT entries that have |
| changed since they were last read. |
| |
| Data read or written is structured as a header (8 bytes) followed by a |
| series of valid HPT entries (16 bytes) each. The header indicates how |
| many valid HPT entries there are and how many invalid entries follow |
| the valid entries. The invalid entries are not represented explicitly |
| in the stream. The header format is:: |
| |
| struct kvm_get_htab_header { |
| __u32 index; |
| __u16 n_valid; |
| __u16 n_invalid; |
| }; |
| |
| Writes to the fd create HPT entries starting at the index given in the |
| header; first 'n_valid' valid entries with contents from the data |
| written, then 'n_invalid' invalid entries, invalidating any previously |
| valid entries found. |
| |
| 4.79 KVM_CREATE_DEVICE |
| ---------------------- |
| |
| :Capability: KVM_CAP_DEVICE_CTRL |
| :Type: vm ioctl |
| :Parameters: struct kvm_create_device (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| ====== ======================================================= |
| ENODEV The device type is unknown or unsupported |
| EEXIST Device already created, and this type of device may not |
| be instantiated multiple times |
| ====== ======================================================= |
| |
| Other error conditions may be defined by individual device types or |
| have their standard meanings. |
| |
| Creates an emulated device in the kernel. The file descriptor returned |
| in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. |
| |
| If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the |
| device type is supported (not necessarily whether it can be created |
| in the current vm). |
| |
| Individual devices should not define flags. Attributes should be used |
| for specifying any behavior that is not implied by the device type |
| number. |
| |
| :: |
| |
| struct kvm_create_device { |
| __u32 type; /* in: KVM_DEV_TYPE_xxx */ |
| __u32 fd; /* out: device handle */ |
| __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ |
| }; |
| |
| 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR |
| -------------------------------------------- |
| |
| :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, |
| KVM_CAP_VCPU_ATTRIBUTES for vcpu device |
| :Type: device ioctl, vm ioctl, vcpu ioctl |
| :Parameters: struct kvm_device_attr |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| ===== ============================================================= |
| ENXIO The group or attribute is unknown/unsupported for this device |
| or hardware support is missing. |
| EPERM The attribute cannot (currently) be accessed this way |
| (e.g. read-only attribute, or attribute that only makes |
| sense when the device is in a different state) |
| ===== ============================================================= |
| |
| Other error conditions may be defined by individual device types. |
| |
| Gets/sets a specified piece of device configuration and/or state. The |
| semantics are device-specific. See individual device documentation in |
| the "devices" directory. As with ONE_REG, the size of the data |
| transferred is defined by the particular attribute. |
| |
| :: |
| |
| struct kvm_device_attr { |
| __u32 flags; /* no flags currently defined */ |
| __u32 group; /* device-defined */ |
| __u64 attr; /* group-defined */ |
| __u64 addr; /* userspace address of attr data */ |
| }; |
| |
| 4.81 KVM_HAS_DEVICE_ATTR |
| ------------------------ |
| |
| :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, |
| KVM_CAP_VCPU_ATTRIBUTES for vcpu device |
| :Type: device ioctl, vm ioctl, vcpu ioctl |
| :Parameters: struct kvm_device_attr |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| ===== ============================================================= |
| ENXIO The group or attribute is unknown/unsupported for this device |
| or hardware support is missing. |
| ===== ============================================================= |
| |
| Tests whether a device supports a particular attribute. A successful |
| return indicates the attribute is implemented. It does not necessarily |
| indicate that the attribute can be read or written in the device's |
| current state. "addr" is ignored. |
| |
| 4.82 KVM_ARM_VCPU_INIT |
| ---------------------- |
| |
| :Capability: basic |
| :Architectures: arm, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_vcpu_init (in) |
| :Returns: 0 on success; -1 on error |
| |
| Errors: |
| |
| ====== ================================================================= |
| EINVAL the target is unknown, or the combination of features is invalid. |
| ENOENT a features bit specified is unknown. |
| ====== ================================================================= |
| |
| This tells KVM what type of CPU to present to the guest, and what |
| optional features it should have. This will cause a reset of the cpu |
| registers to their initial values. If this is not called, KVM_RUN will |
| return ENOEXEC for that vcpu. |
| |
| The initial values are defined as: |
| - Processor state: |
| * AArch64: EL1h, D, A, I and F bits set. All other bits |
| are cleared. |
| * AArch32: SVC, A, I and F bits set. All other bits are |
| cleared. |
| - General Purpose registers, including PC and SP: set to 0 |
| - FPSIMD/NEON registers: set to 0 |
| - SVE registers: set to 0 |
| - System registers: Reset to their architecturally defined |
| values as for a warm reset to EL1 (resp. SVC) |
| |
| Note that because some registers reflect machine topology, all vcpus |
| should be created before this ioctl is invoked. |
| |
| Userspace can call this function multiple times for a given vcpu, including |
| after the vcpu has been run. This will reset the vcpu to its initial |
| state. All calls to this function after the initial call must use the same |
| target and same set of feature flags, otherwise EINVAL will be returned. |
| |
| Possible features: |
| |
| - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. |
| Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on |
| and execute guest code when KVM_RUN is called. |
| - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. |
| Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). |
| - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision |
| backward compatible with v0.2) for the CPU. |
| Depends on KVM_CAP_ARM_PSCI_0_2. |
| - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. |
| Depends on KVM_CAP_ARM_PMU_V3. |
| |
| - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication |
| for arm64 only. |
| Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. |
| If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are |
| both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and |
| KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be |
| requested. |
| |
| - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication |
| for arm64 only. |
| Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. |
| If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are |
| both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and |
| KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be |
| requested. |
| |
| - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). |
| Depends on KVM_CAP_ARM_SVE. |
| Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): |
| |
| * After KVM_ARM_VCPU_INIT: |
| |
| - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the |
| initial value of this pseudo-register indicates the best set of |
| vector lengths possible for a vcpu on this host. |
| |
| * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): |
| |
| - KVM_RUN and KVM_GET_REG_LIST are not available; |
| |
| - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access |
| the scalable archietctural SVE registers |
| KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or |
| KVM_REG_ARM64_SVE_FFR; |
| |
| - KVM_REG_ARM64_SVE_VLS may optionally be written using |
| KVM_SET_ONE_REG, to modify the set of vector lengths available |
| for the vcpu. |
| |
| * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): |
| |
| - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can |
| no longer be written using KVM_SET_ONE_REG. |
| |
| 4.83 KVM_ARM_PREFERRED_TARGET |
| ----------------------------- |
| |
| :Capability: basic |
| :Architectures: arm, arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_vcpu_init (out) |
| :Returns: 0 on success; -1 on error |
| |
| Errors: |
| |
| ====== ========================================== |
| ENODEV no preferred target available for the host |
| ====== ========================================== |
| |
| This queries KVM for preferred CPU target type which can be emulated |
| by KVM on underlying host. |
| |
| The ioctl returns struct kvm_vcpu_init instance containing information |
| about preferred CPU target type and recommended features for it. The |
| kvm_vcpu_init->features bitmap returned will have feature bits set if |
| the preferred target recommends setting these features, but this is |
| not mandatory. |
| |
| The information returned by this ioctl can be used to prepare an instance |
| of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in |
| VCPU matching underlying host. |
| |
| |
| 4.84 KVM_GET_REG_LIST |
| --------------------- |
| |
| :Capability: basic |
| :Architectures: arm, arm64, mips |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_reg_list (in/out) |
| :Returns: 0 on success; -1 on error |
| |
| Errors: |
| |
| ===== ============================================================== |
| E2BIG the reg index list is too big to fit in the array specified by |
| the user (the number required will be written into n). |
| ===== ============================================================== |
| |
| :: |
| |
| struct kvm_reg_list { |
| __u64 n; /* number of registers in reg[] */ |
| __u64 reg[0]; |
| }; |
| |
| This ioctl returns the guest registers that are supported for the |
| KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. |
| |
| |
| 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) |
| ----------------------------------------- |
| |
| :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR |
| :Architectures: arm, arm64 |
| :Type: vm ioctl |
| :Parameters: struct kvm_arm_device_address (in) |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| ====== ============================================ |
| ENODEV The device id is unknown |
| ENXIO Device not supported on current system |
| EEXIST Address already set |
| E2BIG Address outside guest physical address space |
| EBUSY Address overlaps with other device range |
| ====== ============================================ |
| |
| :: |
| |
| struct kvm_arm_device_addr { |
| __u64 id; |
| __u64 addr; |
| }; |
| |
| Specify a device address in the guest's physical address space where guests |
| can access emulated or directly exposed devices, which the host kernel needs |
| to know about. The id field is an architecture specific identifier for a |
| specific device. |
| |
| ARM/arm64 divides the id field into two parts, a device id and an |
| address type id specific to the individual device:: |
| |
| bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | |
| field: | 0x00000000 | device id | addr type id | |
| |
| ARM/arm64 currently only require this when using the in-kernel GIC |
| support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 |
| as the device id. When setting the base address for the guest's |
| mapping of the VGIC virtual CPU and distributor interface, the ioctl |
| must be called after calling KVM_CREATE_IRQCHIP, but before calling |
| KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the |
| base addresses will return -EEXIST. |
| |
| Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API |
| should be used instead. |
| |
| |
| 4.86 KVM_PPC_RTAS_DEFINE_TOKEN |
| ------------------------------ |
| |
| :Capability: KVM_CAP_PPC_RTAS |
| :Architectures: ppc |
| :Type: vm ioctl |
| :Parameters: struct kvm_rtas_token_args |
| :Returns: 0 on success, -1 on error |
| |
| Defines a token value for a RTAS (Run Time Abstraction Services) |
| service in order to allow it to be handled in the kernel. The |
| argument struct gives the name of the service, which must be the name |
| of a service that has a kernel-side implementation. If the token |
| value is non-zero, it will be associated with that service, and |
| subsequent RTAS calls by the guest specifying that token will be |
| handled by the kernel. If the token value is 0, then any token |
| associated with the service will be forgotten, and subsequent RTAS |
| calls by the guest for that service will be passed to userspace to be |
| handled. |
| |
| 4.87 KVM_SET_GUEST_DEBUG |
| ------------------------ |
| |
| :Capability: KVM_CAP_SET_GUEST_DEBUG |
| :Architectures: x86, s390, ppc, arm64 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_guest_debug (in) |
| :Returns: 0 on success; -1 on error |
| |
| :: |
| |
| struct kvm_guest_debug { |
| __u32 control; |
| __u32 pad; |
| struct kvm_guest_debug_arch arch; |
| }; |
| |
| Set up the processor specific debug registers and configure vcpu for |
| handling guest debug events. There are two parts to the structure, the |
| first a control bitfield indicates the type of debug events to handle |
| when running. Common control bits are: |
| |
| - KVM_GUESTDBG_ENABLE: guest debugging is enabled |
| - KVM_GUESTDBG_SINGLESTEP: the next run should single-step |
| |
| The top 16 bits of the control field are architecture specific control |
| flags which can include the following: |
| |
| - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] |
| - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390] |
| - KVM_GUESTDBG_USE_HW: using hardware debug events [arm64] |
| - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] |
| - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] |
| - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] |
| - KVM_GUESTDBG_BLOCKIRQ: avoid injecting interrupts/NMI/SMI [x86] |
| |
| For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints |
| are enabled in memory so we need to ensure breakpoint exceptions are |
| correctly trapped and the KVM run loop exits at the breakpoint and not |
| running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP |
| we need to ensure the guest vCPUs architecture specific registers are |
| updated to the correct (supplied) values. |
| |
| The second part of the structure is architecture specific and |
| typically contains a set of debug registers. |
| |
| For arm64 the number of debug registers is implementation defined and |
| can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and |
| KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number |
| indicating the number of supported registers. |
| |
| For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether |
| the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. |
| |
| Also when supported, KVM_CAP_SET_GUEST_DEBUG2 capability indicates the |
| supported KVM_GUESTDBG_* bits in the control field. |
| |
| When debug events exit the main run loop with the reason |
| KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run |
| structure containing architecture specific debug information. |
| |
| 4.88 KVM_GET_EMULATED_CPUID |
| --------------------------- |
| |
| :Capability: KVM_CAP_EXT_EMUL_CPUID |
| :Architectures: x86 |
| :Type: system ioctl |
| :Parameters: struct kvm_cpuid2 (in/out) |
| :Returns: 0 on success, -1 on error |
| |
| :: |
| |
| struct kvm_cpuid2 { |
| __u32 nent; |
| __u32 flags; |
| struct kvm_cpuid_entry2 entries[0]; |
| }; |
| |
| The member 'flags' is used for passing flags from userspace. |
| |
| :: |
| |
| #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) |
| #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ |
| #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ |
| |
| struct kvm_cpuid_entry2 { |
| __u32 function; |
| __u32 index; |
| __u32 flags; |
| __u32 eax; |
| __u32 ebx; |
| __u32 ecx; |
| __u32 edx; |
| __u32 padding[3]; |
| }; |
| |
| This ioctl returns x86 cpuid features which are emulated by |
| kvm.Userspace can use the information returned by this ioctl to query |
| which features are emulated by kvm instead of being present natively. |
| |
| Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 |
| structure with the 'nent' field indicating the number of entries in |
| the variable-size array 'entries'. If the number of entries is too low |
| to describe the cpu capabilities, an error (E2BIG) is returned. If the |
| number is too high, the 'nent' field is adjusted and an error (ENOMEM) |
| is returned. If the number is just right, the 'nent' field is adjusted |
| to the number of valid entries in the 'entries' array, which is then |
| filled. |
| |
| The entries returned are the set CPUID bits of the respective features |
| which kvm emulates, as returned by the CPUID instruction, with unknown |
| or unsupported feature bits cleared. |
| |
| Features like x2apic, for example, may not be present in the host cpu |
| but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be |
| emulated efficiently and thus not included here. |
| |
| The fields in each entry are defined as follows: |
| |
| function: |
| the eax value used to obtain the entry |
| index: |
| the ecx value used to obtain the entry (for entries that are |
| affected by ecx) |
| flags: |
| an OR of zero or more of the following: |
| |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX: |
| if the index field is valid |
| |
| eax, ebx, ecx, edx: |
| |
| the values returned by the cpuid instruction for |
| this function/index combination |
| |
| 4.89 KVM_S390_MEM_OP |
| -------------------- |
| |
| :Capability: KVM_CAP_S390_MEM_OP |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_mem_op (in) |
| :Returns: = 0 on success, |
| < 0 on generic error (e.g. -EFAULT or -ENOMEM), |
| > 0 if an exception occurred while walking the page tables |
| |
| Read or write data from/to the logical (virtual) memory of a VCPU. |
| |
| Parameters are specified via the following structure:: |
| |
| struct kvm_s390_mem_op { |
| __u64 gaddr; /* the guest address */ |
| __u64 flags; /* flags */ |
| __u32 size; /* amount of bytes */ |
| __u32 op; /* type of operation */ |
| __u64 buf; /* buffer in userspace */ |
| __u8 ar; /* the access register number */ |
| __u8 reserved[31]; /* should be set to 0 */ |
| }; |
| |
| The type of operation is specified in the "op" field. It is either |
| KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or |
| KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The |
| KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check |
| whether the corresponding memory access would create an access exception |
| (without touching the data in the memory at the destination). In case an |
| access exception occurred while walking the MMU tables of the guest, the |
| ioctl returns a positive error number to indicate the type of exception. |
| This exception is also raised directly at the corresponding VCPU if the |
| flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field. |
| |
| The start address of the memory region has to be specified in the "gaddr" |
| field, and the length of the region in the "size" field (which must not |
| be 0). The maximum value for "size" can be obtained by checking the |
| KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the |
| userspace application where the read data should be written to for |
| KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is |
| stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY |
| is specified, "buf" is unused and can be NULL. "ar" designates the access |
| register number to be used; the valid range is 0..15. |
| |
| The "reserved" field is meant for future extensions. It is not used by |
| KVM with the currently defined set of flags. |
| |
| 4.90 KVM_S390_GET_SKEYS |
| ----------------------- |
| |
| :Capability: KVM_CAP_S390_SKEYS |
| :Architectures: s390 |
| :Type: vm ioctl |
| :Parameters: struct kvm_s390_skeys |
| :Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage |
| keys, negative value on error |
| |
| This ioctl is used to get guest storage key values on the s390 |
| architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: |
| |
| struct kvm_s390_skeys { |
| __u64 start_gfn; |
| __u64 count; |
| __u64 skeydata_addr; |
| __u32 flags; |
| __u32 reserved[9]; |
| }; |
| |
| The start_gfn field is the number of the first guest frame whose storage keys |
| you want to get. |
| |
| The count field is the number of consecutive frames (starting from start_gfn) |
| whose storage keys to get. The count field must be at least 1 and the maximum |
| allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range |
| will cause the ioctl to return -EINVAL. |
| |
| The skeydata_addr field is the address to a buffer large enough to hold count |
| bytes. This buffer will be filled with storage key data by the ioctl. |
| |
| 4.91 KVM_S390_SET_SKEYS |
| ----------------------- |
| |
| :Capability: KVM_CAP_S390_SKEYS |
| :Architectures: s390 |
| :Type: vm ioctl |
| :Parameters: struct kvm_s390_skeys |
| :Returns: 0 on success, negative value on error |
| |
| This ioctl is used to set guest storage key values on the s390 |
| architecture. The ioctl takes parameters via the kvm_s390_skeys struct. |
| See section on KVM_S390_GET_SKEYS for struct definition. |
| |
| The start_gfn field is the number of the first guest frame whose storage keys |
| you want to set. |
| |
| The count field is the number of consecutive frames (starting from start_gfn) |
| whose storage keys to get. The count field must be at least 1 and the maximum |
| allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range |
| will cause the ioctl to return -EINVAL. |
| |
| The skeydata_addr field is the address to a buffer containing count bytes of |
| storage keys. Each byte in the buffer will be set as the storage key for a |
| single frame starting at start_gfn for count frames. |
| |
| Note: If any architecturally invalid key value is found in the given data then |
| the ioctl will return -EINVAL. |
| |
| 4.92 KVM_S390_IRQ |
| ----------------- |
| |
| :Capability: KVM_CAP_S390_INJECT_IRQ |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_irq (in) |
| :Returns: 0 on success, -1 on error |
| |
| Errors: |
| |
| |
| ====== ================================================================= |
| EINVAL interrupt type is invalid |
| type is KVM_S390_SIGP_STOP and flag parameter is invalid value, |
| type is KVM_S390_INT_EXTERNAL_CALL and code is bigger |
| than the maximum of VCPUs |
| EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, |
| type is KVM_S390_SIGP_STOP and a stop irq is already pending, |
| type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt |
| is already pending |
| ====== ================================================================= |
| |
| Allows to inject an interrupt to the guest. |
| |
| Using struct kvm_s390_irq as a parameter allows |
| to inject additional payload which is not |
| possible via KVM_S390_INTERRUPT. |
| |
| Interrupt parameters are passed via kvm_s390_irq:: |
| |
| struct kvm_s390_irq { |
| __u64 type; |
| union { |
| struct kvm_s390_io_info io; |
| struct kvm_s390_ext_info ext; |
| struct kvm_s390_pgm_info pgm; |
| struct kvm_s390_emerg_info emerg; |
| struct kvm_s390_extcall_info extcall; |
| struct kvm_s390_prefix_info prefix; |
| struct kvm_s390_stop_info stop; |
| struct kvm_s390_mchk_info mchk; |
| char reserved[64]; |
| } u; |
| }; |
| |
| type can be one of the following: |
| |
| - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop |
| - KVM_S390_PROGRAM_INT - program check; parameters in .pgm |
| - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix |
| - KVM_S390_RESTART - restart; no parameters |
| - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters |
| - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters |
| - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg |
| - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall |
| - KVM_S390_MCHK - machine check interrupt; parameters in .mchk |
| |
| This is an asynchronous vcpu ioctl and can be invoked from any thread. |
| |
| 4.94 KVM_S390_GET_IRQ_STATE |
| --------------------------- |
| |
| :Capability: KVM_CAP_S390_IRQ_STATE |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_irq_state (out) |
| :Returns: >= number of bytes copied into buffer, |
| -EINVAL if buffer size is 0, |
| -ENOBUFS if buffer size is too small to fit all pending interrupts, |
| -EFAULT if the buffer address was invalid |
| |
| This ioctl allows userspace to retrieve the complete state of all currently |
| pending interrupts in a single buffer. Use cases include migration |
| and introspection. The parameter structure contains the address of a |
| userspace buffer and its length:: |
| |
| struct kvm_s390_irq_state { |
| __u64 buf; |
| __u32 flags; /* will stay unused for compatibility reasons */ |
| __u32 len; |
| __u32 reserved[4]; /* will stay unused for compatibility reasons */ |
| }; |
| |
| Userspace passes in the above struct and for each pending interrupt a |
| struct kvm_s390_irq is copied to the provided buffer. |
| |
| The structure contains a flags and a reserved field for future extensions. As |
| the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and |
| reserved, these fields can not be used in the future without breaking |
| compatibility. |
| |
| If -ENOBUFS is returned the buffer provided was too small and userspace |
| may retry with a bigger buffer. |
| |
| 4.95 KVM_S390_SET_IRQ_STATE |
| --------------------------- |
| |
| :Capability: KVM_CAP_S390_IRQ_STATE |
| :Architectures: s390 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_s390_irq_state (in) |
| :Returns: 0 on success, |
| -EFAULT if the buffer address was invalid, |
| -EINVAL for an invalid buffer length (see below), |
| -EBUSY if there were already interrupts pending, |
| errors occurring when actually injecting the |
| interrupt. See KVM_S390_IRQ. |
| |
| This ioctl allows userspace to set the complete state of all cpu-local |
| interrupts currently pending for the vcpu. It is intended for restoring |
| interrupt state after a migration. The input parameter is a userspace buffer |
| containing a struct kvm_s390_irq_state:: |
| |
| struct kvm_s390_irq_state { |
| __u64 buf; |
| __u32 flags; /* will stay unused for compatibility reasons */ |
| __u32 len; |
| __u32 reserved[4]; /* will stay unused for compatibility reasons */ |
| }; |
| |
| The restrictions for flags and reserved apply as well. |
| (see KVM_S390_GET_IRQ_STATE) |
| |
| The userspace memory referenced by buf contains a struct kvm_s390_irq |
| for each interrupt to be injected into the guest. |
| If one of the interrupts could not be injected for some reason the |
| ioctl aborts. |
| |
| len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 |
| and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), |
| which is the maximum number of possibly pending cpu-local interrupts. |
| |
| 4.96 KVM_SMI |
| ------------ |
| |
| :Capability: KVM_CAP_X86_SMM |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: none |
| :Returns: 0 on success, -1 on error |
| |
| Queues an SMI on the thread's vcpu. |
| |
| 4.97 KVM_X86_SET_MSR_FILTER |
| ---------------------------- |
| |
| :Capability: KVM_X86_SET_MSR_FILTER |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_msr_filter |
| :Returns: 0 on success, < 0 on error |
| |
| :: |
| |
| struct kvm_msr_filter_range { |
| #define KVM_MSR_FILTER_READ (1 << 0) |
| #define KVM_MSR_FILTER_WRITE (1 << 1) |
| __u32 flags; |
| __u32 nmsrs; /* number of msrs in bitmap */ |
| __u32 base; /* MSR index the bitmap starts at */ |
| __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ |
| }; |
| |
| #define KVM_MSR_FILTER_MAX_RANGES 16 |
| struct kvm_msr_filter { |
| #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) |
| #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) |
| __u32 flags; |
| struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; |
| }; |
| |
| flags values for ``struct kvm_msr_filter_range``: |
| |
| ``KVM_MSR_FILTER_READ`` |
| |
| Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap |
| indicates that a read should immediately fail, while a 1 indicates that |
| a read for a particular MSR should be handled regardless of the default |
| filter action. |
| |
| ``KVM_MSR_FILTER_WRITE`` |
| |
| Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap |
| indicates that a write should immediately fail, while a 1 indicates that |
| a write for a particular MSR should be handled regardless of the default |
| filter action. |
| |
| ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` |
| |
| Filter both read and write accesses to MSRs using the given bitmap. A 0 |
| in the bitmap indicates that both reads and writes should immediately fail, |
| while a 1 indicates that reads and writes for a particular MSR are not |
| filtered by this range. |
| |
| flags values for ``struct kvm_msr_filter``: |
| |
| ``KVM_MSR_FILTER_DEFAULT_ALLOW`` |
| |
| If no filter range matches an MSR index that is getting accessed, KVM will |
| fall back to allowing access to the MSR. |
| |
| ``KVM_MSR_FILTER_DEFAULT_DENY`` |
| |
| If no filter range matches an MSR index that is getting accessed, KVM will |
| fall back to rejecting access to the MSR. In this mode, all MSRs that should |
| be processed by KVM need to explicitly be marked as allowed in the bitmaps. |
| |
| This ioctl allows user space to define up to 16 bitmaps of MSR ranges to |
| specify whether a certain MSR access should be explicitly filtered for or not. |
| |
| If this ioctl has never been invoked, MSR accesses are not guarded and the |
| default KVM in-kernel emulation behavior is fully preserved. |
| |
| Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR |
| filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes |
| an error. |
| |
| As soon as the filtering is in place, every MSR access is processed through |
| the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); |
| x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, |
| and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base |
| register. |
| |
| If a bit is within one of the defined ranges, read and write accesses are |
| guarded by the bitmap's value for the MSR index if the kind of access |
| is included in the ``struct kvm_msr_filter_range`` flags. If no range |
| cover this particular access, the behavior is determined by the flags |
| field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` |
| and ``KVM_MSR_FILTER_DEFAULT_DENY``. |
| |
| Each bitmap range specifies a range of MSRs to potentially allow access on. |
| The range goes from MSR index [base .. base+nmsrs]. The flags field |
| indicates whether reads, writes or both reads and writes are filtered |
| by setting a 1 bit in the bitmap for the corresponding MSR index. |
| |
| If an MSR access is not permitted through the filtering, it generates a |
| #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that |
| allows user space to deflect and potentially handle various MSR accesses |
| into user space. |
| |
| If a vCPU is in running state while this ioctl is invoked, the vCPU may |
| experience inconsistent filtering behavior on MSR accesses. |
| |
| 4.98 KVM_CREATE_SPAPR_TCE_64 |
| ---------------------------- |
| |
| :Capability: KVM_CAP_SPAPR_TCE_64 |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: struct kvm_create_spapr_tce_64 (in) |
| :Returns: file descriptor for manipulating the created TCE table |
| |
| This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit |
| windows, described in 4.62 KVM_CREATE_SPAPR_TCE |
| |
| This capability uses extended struct in ioctl interface:: |
| |
| /* for KVM_CAP_SPAPR_TCE_64 */ |
| struct kvm_create_spapr_tce_64 { |
| __u64 liobn; |
| __u32 page_shift; |
| __u32 flags; |
| __u64 offset; /* in pages */ |
| __u64 size; /* in pages */ |
| }; |
| |
| The aim of extension is to support an additional bigger DMA window with |
| a variable page size. |
| KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and |
| a bus offset of the corresponding DMA window, @size and @offset are numbers |
| of IOMMU pages. |
| |
| @flags are not used at the moment. |
| |
| The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. |
| |
| 4.99 KVM_REINJECT_CONTROL |
| ------------------------- |
| |
| :Capability: KVM_CAP_REINJECT_CONTROL |
| :Architectures: x86 |
| :Type: vm ioctl |
| :Parameters: struct kvm_reinject_control (in) |
| :Returns: 0 on success, |
| -EFAULT if struct kvm_reinject_control cannot be read, |
| -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. |
| |
| i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, |
| where KVM queues elapsed i8254 ticks and monitors completion of interrupt from |
| vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its |
| interrupt whenever there isn't a pending interrupt from i8254. |
| !reinject mode injects an interrupt as soon as a tick arrives. |
| |
| :: |
| |
| struct kvm_reinject_control { |
| __u8 pit_reinject; |
| __u8 reserved[31]; |
| }; |
| |
| pit_reinject = 0 (!reinject mode) is recommended, unless running an old |
| operating system that uses the PIT for timing (e.g. Linux 2.4.x). |
| |
| 4.100 KVM_PPC_CONFIGURE_V3_MMU |
| ------------------------------ |
| |
| :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 |
| :Architectures: ppc |
| :Type: vm ioctl |
| :Parameters: struct kvm_ppc_mmuv3_cfg (in) |
| :Returns: 0 on success, |
| -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, |
| -EINVAL if the configuration is invalid |
| |
| This ioctl controls whether the guest will use radix or HPT (hashed |
| page table) translation, and sets the pointer to the process table for |
| the guest. |
| |
| :: |
| |
| struct kvm_ppc_mmuv3_cfg { |
| __u64 flags; |
| __u64 process_table; |
| }; |
| |
| There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and |
| KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest |
| to use radix tree translation, and if clear, to use HPT translation. |
| KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest |
| to be able to use the global TLB and SLB invalidation instructions; |
| if clear, the guest may not use these instructions. |
| |
| The process_table field specifies the address and size of the guest |
| process table, which is in the guest's space. This field is formatted |
| as the second doubleword of the partition table entry, as defined in |
| the Power ISA V3.00, Book III section 5.7.6.1. |
| |
| 4.101 KVM_PPC_GET_RMMU_INFO |
| --------------------------- |
| |
| :Capability: KVM_CAP_PPC_RADIX_MMU |
| :Architectures: ppc |
| :Type: vm ioctl |
| :Parameters: struct kvm_ppc_rmmu_info (out) |
| :Returns: 0 on success, |
| -EFAULT if struct kvm_ppc_rmmu_info cannot be written, |
| -EINVAL if no useful information can be returned |
| |
| This ioctl returns a structure containing two things: (a) a list |
| containing supported radix tree geometries, and (b) a list that maps |
| page sizes to put in the "AP" (actual page size) field for the tlbie |
| (TLB invalidate entry) instruction. |
| |
| :: |
| |
| struct kvm_ppc_rmmu_info { |
| struct kvm_ppc_radix_geom { |
| __u8 page_shift; |
| __u8 level_bits[4]; |
| __u8 pad[3]; |
| } geometries[8]; |
| __u32 ap_encodings[8]; |
| }; |
| |
| The geometries[] field gives up to 8 supported geometries for the |
| radix page table, in terms of the log base 2 of the smallest page |
| size, and the number of bits indexed at each level of the tree, from |
| the PTE level up to the PGD level in that order. Any unused entries |
| will have 0 in the page_shift field. |
| |
| The ap_encodings gives the supported page sizes and their AP field |
| encodings, encoded with the AP value in the top 3 bits and the log |
| base 2 of the page size in the bottom 6 bits. |
| |
| 4.102 KVM_PPC_RESIZE_HPT_PREPARE |
| -------------------------------- |
| |
| :Capability: KVM_CAP_SPAPR_RESIZE_HPT |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: struct kvm_ppc_resize_hpt (in) |
| :Returns: 0 on successful completion, |
| >0 if a new HPT is being prepared, the value is an estimated |
| number of milliseconds until preparation is complete, |
| -EFAULT if struct kvm_reinject_control cannot be read, |
| -EINVAL if the supplied shift or flags are invalid, |
| -ENOMEM if unable to allocate the new HPT, |
| |
| Used to implement the PAPR extension for runtime resizing of a guest's |
| Hashed Page Table (HPT). Specifically this starts, stops or monitors |
| the preparation of a new potential HPT for the guest, essentially |
| implementing the H_RESIZE_HPT_PREPARE hypercall. |
| |
| :: |
| |
| struct kvm_ppc_resize_hpt { |
| __u64 flags; |
| __u32 shift; |
| __u32 pad; |
| }; |
| |
| If called with shift > 0 when there is no pending HPT for the guest, |
| this begins preparation of a new pending HPT of size 2^(shift) bytes. |
| It then returns a positive integer with the estimated number of |
| milliseconds until preparation is complete. |
| |
| If called when there is a pending HPT whose size does not match that |
| requested in the parameters, discards the existing pending HPT and |
| creates a new one as above. |
| |
| If called when there is a pending HPT of the size requested, will: |
| |
| * If preparation of the pending HPT is already complete, return 0 |
| * If preparation of the pending HPT has failed, return an error |
| code, then discard the pending HPT. |
| * If preparation of the pending HPT is still in progress, return an |
| estimated number of milliseconds until preparation is complete. |
| |
| If called with shift == 0, discards any currently pending HPT and |
| returns 0 (i.e. cancels any in-progress preparation). |
| |
| flags is reserved for future expansion, currently setting any bits in |
| flags will result in an -EINVAL. |
| |
| Normally this will be called repeatedly with the same parameters until |
| it returns <= 0. The first call will initiate preparation, subsequent |
| ones will monitor preparation until it completes or fails. |
| |
| 4.103 KVM_PPC_RESIZE_HPT_COMMIT |
| ------------------------------- |
| |
| :Capability: KVM_CAP_SPAPR_RESIZE_HPT |
| :Architectures: powerpc |
| :Type: vm ioctl |
| :Parameters: struct kvm_ppc_resize_hpt (in) |
| :Returns: 0 on successful completion, |
| -EFAULT if struct kvm_reinject_control cannot be read, |
| -EINVAL if the supplied shift or flags are invalid, |
| -ENXIO is there is no pending HPT, or the pending HPT doesn't |
| have the requested size, |
| -EBUSY if the pending HPT is not fully prepared, |
| -ENOSPC if there was a hash collision when moving existing |
| HPT entries to the new HPT, |
| -EIO on other error conditions |
| |
| Used to implement the PAPR extension for runtime resizing of a guest's |
| Hashed Page Table (HPT). Specifically this requests that the guest be |
| transferred to working with the new HPT, essentially implementing the |
| H_RESIZE_HPT_COMMIT hypercall. |
| |
| :: |
| |
| struct kvm_ppc_resize_hpt { |
| __u64 flags; |
| __u32 shift; |
| __u32 pad; |
| }; |
| |
| This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has |
| returned 0 with the same parameters. In other cases |
| KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or |
| -EBUSY, though others may be possible if the preparation was started, |
| but failed). |
| |
| This will have undefined effects on the guest if it has not already |
| placed itself in a quiescent state where no vcpu will make MMU enabled |
| memory accesses. |
| |
| On succsful completion, the pending HPT will become the guest's active |
| HPT and the previous HPT will be discarded. |
| |
| On failure, the guest will still be operating on its previous HPT. |
| |
| 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED |
| ----------------------------------- |
| |
| :Capability: KVM_CAP_MCE |
| :Architectures: x86 |
| :Type: system ioctl |
| :Parameters: u64 mce_cap (out) |
| :Returns: 0 on success, -1 on error |
| |
| Returns supported MCE capabilities. The u64 mce_cap parameter |
| has the same format as the MSR_IA32_MCG_CAP register. Supported |
| capabilities will have the corresponding bits set. |
| |
| 4.105 KVM_X86_SETUP_MCE |
| ----------------------- |
| |
| :Capability: KVM_CAP_MCE |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: u64 mcg_cap (in) |
| :Returns: 0 on success, |
| -EFAULT if u64 mcg_cap cannot be read, |
| -EINVAL if the requested number of banks is invalid, |
| -EINVAL if requested MCE capability is not supported. |
| |
| Initializes MCE support for use. The u64 mcg_cap parameter |
| has the same format as the MSR_IA32_MCG_CAP register and |
| specifies which capabilities should be enabled. The maximum |
| supported number of error-reporting banks can be retrieved when |
| checking for KVM_CAP_MCE. The supported capabilities can be |
| retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. |
| |
| 4.106 KVM_X86_SET_MCE |
| --------------------- |
| |
| :Capability: KVM_CAP_MCE |
| :Architectures: x86 |
| :Type: vcpu ioctl |
| :Parameters: struct kvm_x86_mce (in) |
| :Returns: 0 on success, |
| -EFAULT if struct kvm_x86_mce cannot be read, |
| -EINVAL if the bank number is invalid, |
| -EINVAL if VAL bit is not set in status field. |
| |
| Inject a machine check error (MCE) into the guest. The input |
| parameter is:: |
| |
| struct kvm_x86_mce { |
| __u64 status; |
| __u64 addr; |
| __u64 misc; |
| __u64 mcg_status; |
| __u8 bank; |
| __u8 pad1[7]; |
| __u64 pad2[3]; |
| }; |
| |
| If the MCE being reported is an uncorrected error, KVM will |
| inject it as an MCE exception into the guest. If the guest |
| MCG_STATUS register reports that an MCE is in progress, KVM |
| causes an KVM_EXIT_SHUTDOWN vmexit. |
| |
| Otherwise, if the MCE is a corrected error, KVM will just |
| store it in the corresponding bank (provided this bank is |
| not holding a previously reported uncorrected error). |
| |
| 4.107 KVM_S390_GET_CMMA_BITS |
| ---------------------------- |
| |
| :Capability: KVM_CAP_S390_CMMA_MIGRATION |
| :Architectures: s390 |
| :Type: vm ioctl |
| :Parameters: struct kvm_s390_cmma_log (in, out) |
| :Returns: 0 on success, a negative value on error |
| |
| This ioctl is used to get the values of the CMMA bits on the s390 |
| architecture. It is meant to be used in two scenarios: |
| |
| - During live migration to save the CMMA values. Live migration needs |
| to be enabled via the KVM_REQ_START_MIGRATION VM property. |
| - To non-destructively peek at the CMMA values, with the flag |
| KVM_S390_CMMA_PEEK set. |
| |
| The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired |
| values are written to a buffer whose location is indicated via the "values" |
| member in the kvm_s390_cmma_log struct. The values in the input struct are |
| also updated as needed. |
| |
| Each CMMA value takes up one byte. |
| |
| :: |
| |
| struct kvm_s390_cmma_log { |
| __u64 start_gfn; |
| __u32 count; |
| __u32 flags; |
| union { |
| __u64 remaining; |
| __u64 mask; |
| }; |
| __u64 values; |
| }; |
| |
| start_gfn is the number of the first guest frame whose CMMA values are |
| to be retrieved, |
| |
| count is the length of the buffer in bytes, |
| |
| values points to the buffer where the result will be written to. |
| |
| If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be |
| KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with |
| other ioctls. |
| |
|