blob: ecc79b2fcfafe5845a49f33e8e1f1a51e39d3b0e [file] [log] [blame]
/*
* NVMe over Fabrics RDMA host code.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>
#include "nvme.h"
#include "fabrics.h"
#define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
#define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
#define NVME_RDMA_MAX_SEGMENTS 256
#define NVME_RDMA_MAX_INLINE_SEGMENTS 1
static const char *const nvme_rdma_cm_status_strs[] = {
[NVME_RDMA_CM_INVALID_LEN] = "invalid length",
[NVME_RDMA_CM_INVALID_RECFMT] = "invalid record format",
[NVME_RDMA_CM_INVALID_QID] = "invalid queue ID",
[NVME_RDMA_CM_INVALID_HSQSIZE] = "invalid host SQ size",
[NVME_RDMA_CM_INVALID_HRQSIZE] = "invalid host RQ size",
[NVME_RDMA_CM_NO_RSC] = "resource not found",
[NVME_RDMA_CM_INVALID_IRD] = "invalid IRD",
[NVME_RDMA_CM_INVALID_ORD] = "Invalid ORD",
};
static const char *nvme_rdma_cm_msg(enum nvme_rdma_cm_status status)
{
size_t index = status;
if (index < ARRAY_SIZE(nvme_rdma_cm_status_strs) &&
nvme_rdma_cm_status_strs[index])
return nvme_rdma_cm_status_strs[index];
else
return "unrecognized reason";
};
/*
* We handle AEN commands ourselves and don't even let the
* block layer know about them.
*/
#define NVME_RDMA_NR_AEN_COMMANDS 1
#define NVME_RDMA_AQ_BLKMQ_DEPTH \
(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
struct nvme_rdma_device {
struct ib_device *dev;
struct ib_pd *pd;
struct kref ref;
struct list_head entry;
};
struct nvme_rdma_qe {
struct ib_cqe cqe;
void *data;
u64 dma;
};
struct nvme_rdma_queue;
struct nvme_rdma_request {
struct nvme_request req;
struct ib_mr *mr;
struct nvme_rdma_qe sqe;
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
u32 num_sge;
int nents;
bool inline_data;
struct ib_reg_wr reg_wr;
struct ib_cqe reg_cqe;
struct nvme_rdma_queue *queue;
struct sg_table sg_table;
struct scatterlist first_sgl[];
};
enum nvme_rdma_queue_flags {
NVME_RDMA_Q_CONNECTED = (1 << 0),
NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
NVME_RDMA_Q_DELETING = (1 << 2),
NVME_RDMA_Q_LIVE = (1 << 3),
};
struct nvme_rdma_queue {
struct nvme_rdma_qe *rsp_ring;
u8 sig_count;
int queue_size;
size_t cmnd_capsule_len;
struct nvme_rdma_ctrl *ctrl;
struct nvme_rdma_device *device;
struct ib_cq *ib_cq;
struct ib_qp *qp;
unsigned long flags;
struct rdma_cm_id *cm_id;
int cm_error;
struct completion cm_done;
};
struct nvme_rdma_ctrl {
/* read and written in the hot path */
spinlock_t lock;
/* read only in the hot path */
struct nvme_rdma_queue *queues;
u32 queue_count;
/* other member variables */
struct blk_mq_tag_set tag_set;
struct work_struct delete_work;
struct work_struct reset_work;
struct work_struct err_work;
struct nvme_rdma_qe async_event_sqe;
int reconnect_delay;
struct delayed_work reconnect_work;
struct list_head list;
struct blk_mq_tag_set admin_tag_set;
struct nvme_rdma_device *device;
u64 cap;
u32 max_fr_pages;
union {
struct sockaddr addr;
struct sockaddr_in addr_in;
};
struct nvme_ctrl ctrl;
};
static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);
static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
static struct workqueue_struct *nvme_rdma_wq;
/*
* Disabling this option makes small I/O goes faster, but is fundamentally
* unsafe. With it turned off we will have to register a global rkey that
* allows read and write access to all physical memory.
*/
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
"Use memory registration even for contiguous memory regions");
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
*p++ = val;
*p++ = val >> 8;
*p++ = val >> 16;
}
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
return queue - queue->ctrl->queues;
}
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}
static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
kfree(qe->data);
}
static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
qe->data = kzalloc(capsule_size, GFP_KERNEL);
if (!qe->data)
return -ENOMEM;
qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
if (ib_dma_mapping_error(ibdev, qe->dma)) {
kfree(qe->data);
return -ENOMEM;
}
return 0;
}
static void nvme_rdma_free_ring(struct ib_device *ibdev,
struct nvme_rdma_qe *ring, size_t ib_queue_size,
size_t capsule_size, enum dma_data_direction dir)
{
int i;
for (i = 0; i < ib_queue_size; i++)
nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
kfree(ring);
}
static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
size_t ib_queue_size, size_t capsule_size,
enum dma_data_direction dir)
{
struct nvme_rdma_qe *ring;
int i;
ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
if (!ring)
return NULL;
for (i = 0; i < ib_queue_size; i++) {
if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
goto out_free_ring;
}
return ring;
out_free_ring:
nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
return NULL;
}
static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
pr_debug("QP event %s (%d)\n",
ib_event_msg(event->event), event->event);
}
static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
wait_for_completion_interruptible_timeout(&queue->cm_done,
msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
return queue->cm_error;
}
static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
struct nvme_rdma_device *dev = queue->device;
struct ib_qp_init_attr init_attr;
int ret;
memset(&init_attr, 0, sizeof(init_attr));
init_attr.event_handler = nvme_rdma_qp_event;
/* +1 for drain */
init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
/* +1 for drain */
init_attr.cap.max_recv_wr = queue->queue_size + 1;
init_attr.cap.max_recv_sge = 1;
init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
init_attr.send_cq = queue->ib_cq;
init_attr.recv_cq = queue->ib_cq;
ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
queue->qp = queue->cm_id->qp;
return ret;
}
static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_device *dev = ctrl->device;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
int ret = 0;
if (!req->mr->need_inval)
goto out;
ib_dereg_mr(req->mr);
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
ctrl->max_fr_pages);
if (IS_ERR(req->mr)) {
ret = PTR_ERR(req->mr);
req->mr = NULL;
goto out;
}
req->mr->need_inval = false;
out:
return ret;
}
static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
struct request *rq, unsigned int queue_idx)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
struct nvme_rdma_device *dev = queue->device;
if (req->mr)
ib_dereg_mr(req->mr);
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE);
}
static void nvme_rdma_exit_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx)
{
return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
}
static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx)
{
return __nvme_rdma_exit_request(data, rq, 0);
}
static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
struct request *rq, unsigned int queue_idx)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
int ret;
BUG_ON(queue_idx >= ctrl->queue_count);
ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE);
if (ret)
return ret;
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
ctrl->max_fr_pages);
if (IS_ERR(req->mr)) {
ret = PTR_ERR(req->mr);
goto out_free_qe;
}
req->queue = queue;
return 0;
out_free_qe:
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE);
return -ENOMEM;
}
static int nvme_rdma_init_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
}
static int nvme_rdma_init_admin_request(void *data, struct request *rq,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
return __nvme_rdma_init_request(data, rq, 0);
}
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
BUG_ON(hctx_idx >= ctrl->queue_count);
hctx->driver_data = queue;
return 0;
}
static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_queue *queue = &ctrl->queues[0];
BUG_ON(hctx_idx != 0);
hctx->driver_data = queue;
return 0;
}
static void nvme_rdma_free_dev(struct kref *ref)
{
struct nvme_rdma_device *ndev =
container_of(ref, struct nvme_rdma_device, ref);
mutex_lock(&device_list_mutex);
list_del(&ndev->entry);
mutex_unlock(&device_list_mutex);
ib_dealloc_pd(ndev->pd);
kfree(ndev);
}
static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
kref_put(&dev->ref, nvme_rdma_free_dev);
}
static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
return kref_get_unless_zero(&dev->ref);
}
static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
struct nvme_rdma_device *ndev;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->dev->node_guid == cm_id->device->node_guid &&
nvme_rdma_dev_get(ndev))
goto out_unlock;
}
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
goto out_err;
ndev->dev = cm_id->device;
kref_init(&ndev->ref);
ndev->pd = ib_alloc_pd(ndev->dev,
register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
if (IS_ERR(ndev->pd))
goto out_free_dev;
if (!(ndev->dev->attrs.device_cap_flags &
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
dev_err(&ndev->dev->dev,
"Memory registrations not supported.\n");
goto out_free_pd;
}
list_add(&ndev->entry, &device_list);
out_unlock:
mutex_unlock(&device_list_mutex);
return ndev;
out_free_pd:
ib_dealloc_pd(ndev->pd);
out_free_dev:
kfree(ndev);
out_err:
mutex_unlock(&device_list_mutex);
return NULL;
}
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_device *dev;
struct ib_device *ibdev;
if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
return;
dev = queue->device;
ibdev = dev->dev;
rdma_destroy_qp(queue->cm_id);
ib_free_cq(queue->ib_cq);
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
nvme_rdma_dev_put(dev);
}
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
struct nvme_rdma_device *dev)
{
struct ib_device *ibdev = dev->dev;
const int send_wr_factor = 3; /* MR, SEND, INV */
const int cq_factor = send_wr_factor + 1; /* + RECV */
int comp_vector, idx = nvme_rdma_queue_idx(queue);
int ret;
queue->device = dev;
/*
* The admin queue is barely used once the controller is live, so don't
* bother to spread it out.
*/
if (idx == 0)
comp_vector = 0;
else
comp_vector = idx % ibdev->num_comp_vectors;
/* +1 for ib_stop_cq */
queue->ib_cq = ib_alloc_cq(dev->dev, queue,
cq_factor * queue->queue_size + 1, comp_vector,
IB_POLL_SOFTIRQ);
if (IS_ERR(queue->ib_cq)) {
ret = PTR_ERR(queue->ib_cq);
goto out;
}
ret = nvme_rdma_create_qp(queue, send_wr_factor);
if (ret)
goto out_destroy_ib_cq;
queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
if (!queue->rsp_ring) {
ret = -ENOMEM;
goto out_destroy_qp;
}
set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
return 0;
out_destroy_qp:
ib_destroy_qp(queue->qp);
out_destroy_ib_cq:
ib_free_cq(queue->ib_cq);
out:
return ret;
}
static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
int idx, size_t queue_size)
{
struct nvme_rdma_queue *queue;
int ret;
queue = &ctrl->queues[idx];
queue->ctrl = ctrl;
init_completion(&queue->cm_done);
if (idx > 0)
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
else
queue->cmnd_capsule_len = sizeof(struct nvme_command);
queue->queue_size = queue_size;
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(queue->cm_id)) {
dev_info(ctrl->ctrl.device,
"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
return PTR_ERR(queue->cm_id);
}
queue->cm_error = -ETIMEDOUT;
ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
NVME_RDMA_CONNECT_TIMEOUT_MS);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma_resolve_addr failed (%d).\n", ret);
goto out_destroy_cm_id;
}
ret = nvme_rdma_wait_for_cm(queue);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma_resolve_addr wait failed (%d).\n", ret);
goto out_destroy_cm_id;
}
clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
return 0;
out_destroy_cm_id:
nvme_rdma_destroy_queue_ib(queue);
rdma_destroy_id(queue->cm_id);
return ret;
}
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
rdma_disconnect(queue->cm_id);
ib_drain_qp(queue->qp);
}
static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
nvme_rdma_destroy_queue_ib(queue);
rdma_destroy_id(queue->cm_id);
}
static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
{
if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
return;
nvme_rdma_stop_queue(queue);
nvme_rdma_free_queue(queue);
}
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->queue_count; i++)
nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
}
static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i, ret = 0;
for (i = 1; i < ctrl->queue_count; i++) {
ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
if (ret) {
dev_info(ctrl->ctrl.device,
"failed to connect i/o queue: %d\n", ret);
goto out_free_queues;
}
set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
}
return 0;
out_free_queues:
nvme_rdma_free_io_queues(ctrl);
return ret;
}
static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i, ret;
for (i = 1; i < ctrl->queue_count; i++) {
ret = nvme_rdma_init_queue(ctrl, i,
ctrl->ctrl.opts->queue_size);
if (ret) {
dev_info(ctrl->ctrl.device,
"failed to initialize i/o queue: %d\n", ret);
goto out_free_queues;
}
}
return 0;
out_free_queues:
for (i--; i >= 1; i--)
nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
return ret;
}
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
blk_cleanup_queue(ctrl->ctrl.admin_q);
blk_mq_free_tag_set(&ctrl->admin_tag_set);
nvme_rdma_dev_put(ctrl->device);
}
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
if (list_empty(&ctrl->list))
goto free_ctrl;
mutex_lock(&nvme_rdma_ctrl_mutex);
list_del(&ctrl->list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
kfree(ctrl->queues);
nvmf_free_options(nctrl->opts);
free_ctrl:
kfree(ctrl);
}
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvme_rdma_ctrl, reconnect_work);
bool changed;
int ret;
if (ctrl->queue_count > 1) {
nvme_rdma_free_io_queues(ctrl);
ret = blk_mq_reinit_tagset(&ctrl->tag_set);
if (ret)
goto requeue;
}
nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
if (ret)
goto requeue;
ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
if (ret)
goto requeue;
blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
if (ret)
goto stop_admin_q;
set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
if (ret)
goto stop_admin_q;
nvme_start_keep_alive(&ctrl->ctrl);
if (ctrl->queue_count > 1) {
ret = nvme_rdma_init_io_queues(ctrl);
if (ret)
goto stop_admin_q;
ret = nvme_rdma_connect_io_queues(ctrl);
if (ret)
goto stop_admin_q;
}
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
WARN_ON_ONCE(!changed);
if (ctrl->queue_count > 1) {
nvme_start_queues(&ctrl->ctrl);
nvme_queue_scan(&ctrl->ctrl);
nvme_queue_async_events(&ctrl->ctrl);
}
dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
return;
stop_admin_q:
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
requeue:
/* Make sure we are not resetting/deleting */
if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
dev_info(ctrl->ctrl.device,
"Failed reconnect attempt, requeueing...\n");
queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
ctrl->reconnect_delay * HZ);
}
}
static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, err_work);
int i;
nvme_stop_keep_alive(&ctrl->ctrl);
for (i = 0; i < ctrl->queue_count; i++) {
clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
}
if (ctrl->queue_count > 1)
nvme_stop_queues(&ctrl->ctrl);
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
/* We must take care of fastfail/requeue all our inflight requests */
if (ctrl->queue_count > 1)
blk_mq_tagset_busy_iter(&ctrl->tag_set,
nvme_cancel_request, &ctrl->ctrl);
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
nvme_cancel_request, &ctrl->ctrl);
dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
ctrl->reconnect_delay);
queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
ctrl->reconnect_delay * HZ);
}
static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
return;
queue_work(nvme_rdma_wq, &ctrl->err_work);
}
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
const char *op)
{
struct nvme_rdma_queue *queue = cq->cq_context;
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
if (ctrl->ctrl.state == NVME_CTRL_LIVE)
dev_info(ctrl->ctrl.device,
"%s for CQE 0x%p failed with status %s (%d)\n",
op, wc->wr_cqe,
ib_wc_status_msg(wc->status), wc->status);
nvme_rdma_error_recovery(ctrl);
}
static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "MEMREG");
}
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
}
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req)
{
struct ib_send_wr *bad_wr;
struct ib_send_wr wr = {
.opcode = IB_WR_LOCAL_INV,
.next = NULL,
.num_sge = 0,
.send_flags = 0,
.ex.invalidate_rkey = req->mr->rkey,
};
req->reg_cqe.done = nvme_rdma_inv_rkey_done;
wr.wr_cqe = &req->reg_cqe;
return ib_post_send(queue->qp, &wr, &bad_wr);
}
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
int res;
if (!blk_rq_bytes(rq))
return;
if (req->mr->need_inval) {
res = nvme_rdma_inv_rkey(queue, req);
if (res < 0) {
dev_err(ctrl->ctrl.device,
"Queueing INV WR for rkey %#x failed (%d)\n",
req->mr->rkey, res);
nvme_rdma_error_recovery(queue->ctrl);
}
}
ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
req->nents, rq_data_dir(rq) ==
WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
nvme_cleanup_cmd(rq);
sg_free_table_chained(&req->sg_table, true);
}
static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = 0;
put_unaligned_le24(0, sg->length);
put_unaligned_le32(0, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
req->sge[1].length = sg_dma_len(req->sg_table.sgl);
req->sge[1].lkey = queue->device->pd->local_dma_lkey;
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
req->inline_data = true;
req->num_sge++;
return 0;
}
static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
int nr;
nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
if (nr < count) {
if (nr < 0)
return nr;
return -EINVAL;
}
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
req->reg_cqe.done = nvme_rdma_memreg_done;
memset(&req->reg_wr, 0, sizeof(req->reg_wr));
req->reg_wr.wr.opcode = IB_WR_REG_MR;
req->reg_wr.wr.wr_cqe = &req->reg_cqe;
req->reg_wr.wr.num_sge = 0;
req->reg_wr.mr = req->mr;
req->reg_wr.key = req->mr->rkey;
req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
req->mr->need_inval = true;
sg->addr = cpu_to_le64(req->mr->iova);
put_unaligned_le24(req->mr->length, sg->length);
put_unaligned_le32(req->mr->rkey, sg->key);
sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
NVME_SGL_FMT_INVALIDATE;
return 0;
}
static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
struct request *rq, struct nvme_command *c)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
int count, ret;
req->num_sge = 1;
req->inline_data = false;
req->mr->need_inval = false;
c->common.flags |= NVME_CMD_SGL_METABUF;
if (!blk_rq_bytes(rq))
return nvme_rdma_set_sg_null(c);
req->sg_table.sgl = req->first_sgl;
ret = sg_alloc_table_chained(&req->sg_table,
blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
if (ret)
return -ENOMEM;
req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (unlikely(count <= 0)) {
sg_free_table_chained(&req->sg_table, true);
return -EIO;
}
if (count == 1) {
if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
blk_rq_payload_bytes(rq) <=
nvme_rdma_inline_data_size(queue))
return nvme_rdma_map_sg_inline(queue, req, c);
if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
return nvme_rdma_map_sg_single(queue, req, c);
}
return nvme_rdma_map_sg_fr(queue, req, c, count);
}
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "SEND");
}
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
struct ib_send_wr *first, bool flush)
{
struct ib_send_wr wr, *bad_wr;
int ret;
sge->addr = qe->dma;
sge->length = sizeof(struct nvme_command),
sge->lkey = queue->device->pd->local_dma_lkey;
qe->cqe.done = nvme_rdma_send_done;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = sge;
wr.num_sge = num_sge;
wr.opcode = IB_WR_SEND;
wr.send_flags = 0;
/*
* Unsignalled send completions are another giant desaster in the
* IB Verbs spec: If we don't regularly post signalled sends
* the send queue will fill up and only a QP reset will rescue us.
* Would have been way to obvious to handle this in hardware or
* at least the RDMA stack..
*
* This messy and racy code sniplet is copy and pasted from the iSER
* initiator, and the magic '32' comes from there as well.
*
* Always signal the flushes. The magic request used for the flush
* sequencer is not allocated in our driver's tagset and it's
* triggered to be freed by blk_cleanup_queue(). So we need to
* always mark it as signaled to ensure that the "wr_cqe", which is
* embeded in request's payload, is not freed when __ib_process_cq()
* calls wr_cqe->done().
*/
if ((++queue->sig_count % 32) == 0 || flush)
wr.send_flags |= IB_SEND_SIGNALED;
if (first)
first->next = &wr;
else
first = &wr;
ret = ib_post_send(queue->qp, first, &bad_wr);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe)
{
struct ib_recv_wr wr, *bad_wr;
struct ib_sge list;
int ret;
list.addr = qe->dma;
list.length = sizeof(struct nvme_completion);
list.lkey = queue->device->pd->local_dma_lkey;
qe->cqe.done = nvme_rdma_recv_done;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = &list;
wr.num_sge = 1;
ret = ib_post_recv(queue->qp, &wr, &bad_wr);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
u32 queue_idx = nvme_rdma_queue_idx(queue);
if (queue_idx == 0)
return queue->ctrl->admin_tag_set.tags[queue_idx];
return queue->ctrl->tag_set.tags[queue_idx - 1];
}
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
struct nvme_rdma_queue *queue = &ctrl->queues[0];
struct ib_device *dev = queue->device->dev;
struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
struct nvme_command *cmd = sqe->data;
struct ib_sge sge;
int ret;
if (WARN_ON_ONCE(aer_idx != 0))
return;
ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
memset(cmd, 0, sizeof(*cmd));
cmd->common.opcode = nvme_admin_async_event;
cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
cmd->common.flags |= NVME_CMD_SGL_METABUF;
nvme_rdma_set_sg_null(cmd);
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
DMA_TO_DEVICE);
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
WARN_ON_ONCE(ret);
}
static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
struct request *rq;
struct nvme_rdma_request *req;
int ret = 0;
rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"tag 0x%x on QP %#x not found\n",
cqe->command_id, queue->qp->qp_num);
nvme_rdma_error_recovery(queue->ctrl);
return ret;
}
req = blk_mq_rq_to_pdu(rq);
if (rq->tag == tag)
ret = 1;
if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
wc->ex.invalidate_rkey == req->mr->rkey)
req->mr->need_inval = false;
req->req.result = cqe->result;
blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1);
return ret;
}
static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_queue *queue = cq->cq_context;
struct ib_device *ibdev = queue->device->dev;
struct nvme_completion *cqe = qe->data;
const size_t len = sizeof(struct nvme_completion);
int ret = 0;
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "RECV");
return 0;
}
ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
&cqe->result);
else
ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
nvme_rdma_post_recv(queue, qe);
return ret;
}
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
__nvme_rdma_recv_done(cq, wc, -1);
}
static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
int ret, i;
for (i = 0; i < queue->queue_size; i++) {
ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
if (ret)
goto out_destroy_queue_ib;
}
return 0;
out_destroy_queue_ib:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
struct rdma_cm_event *ev)
{
struct rdma_cm_id *cm_id = queue->cm_id;
int status = ev->status;
const char *rej_msg;
const struct nvme_rdma_cm_rej *rej_data;
u8 rej_data_len;
rej_msg = rdma_reject_msg(cm_id, status);
rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
if (rej_data && rej_data_len >= sizeof(u16)) {
u16 sts = le16_to_cpu(rej_data->sts);
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s) nvme status %d (%s).\n",
status, rej_msg, sts, nvme_rdma_cm_msg(sts));
} else {
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s).\n", status, rej_msg);
}
return -ECONNRESET;
}
static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_device *dev;
int ret;
dev = nvme_rdma_find_get_device(queue->cm_id);
if (!dev) {
dev_err(queue->cm_id->device->dma_device,
"no client data found!\n");
return -ECONNREFUSED;
}
ret = nvme_rdma_create_queue_ib(queue, dev);
if (ret) {
nvme_rdma_dev_put(dev);
goto out;
}
ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"rdma_resolve_route failed (%d).\n",
queue->cm_error);
goto out_destroy_queue;
}
return 0;
out_destroy_queue:
nvme_rdma_destroy_queue_ib(queue);
out:
return ret;
}
static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct rdma_conn_param param = { };
struct nvme_rdma_cm_req priv = { };
int ret;
param.qp_num = queue->qp->qp_num;
param.flow_control = 1;
param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
/* maximum retry count */
param.retry_count = 7;
param.rnr_retry_count = 7;
param.private_data = &priv;
param.private_data_len = sizeof(priv);
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
/*
* set the admin queue depth to the minimum size
* specified by the Fabrics standard.
*/
if (priv.qid == 0) {
priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
} else {
/*
* current interpretation of the fabrics spec
* is at minimum you make hrqsize sqsize+1, or a
* 1's based representation of sqsize.
*/
priv.hrqsize = cpu_to_le16(queue->queue_size);
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
}
ret = rdma_connect(queue->cm_id, &param);
if (ret) {
dev_err(ctrl->ctrl.device,
"rdma_connect failed (%d).\n", ret);
goto out_destroy_queue_ib;
}
return 0;
out_destroy_queue_ib:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *ev)
{
struct nvme_rdma_queue *queue = cm_id->context;
int cm_error = 0;
dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
rdma_event_msg(ev->event), ev->event,
ev->status, cm_id);
switch (ev->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
cm_error = nvme_rdma_addr_resolved(queue);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
cm_error = nvme_rdma_route_resolved(queue);
break;
case RDMA_CM_EVENT_ESTABLISHED:
queue->cm_error = nvme_rdma_conn_established(queue);
/* complete cm_done regardless of success/failure */
complete(&queue->cm_done);
return 0;
case RDMA_CM_EVENT_REJECTED:
cm_error = nvme_rdma_conn_rejected(queue, ev);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
dev_dbg(queue->ctrl->ctrl.device,
"CM error event %d\n", ev->event);
cm_error = -ECONNRESET;
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
dev_dbg(queue->ctrl->ctrl.device,
"disconnect received - connection closed\n");
nvme_rdma_error_recovery(queue->ctrl);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/* device removal is handled via the ib_client API */
break;
default:
dev_err(queue->ctrl->ctrl.device,
"Unexpected RDMA CM event (%d)\n", ev->event);
nvme_rdma_error_recovery(queue->ctrl);
break;
}
if (cm_error) {
queue->cm_error = cm_error;
complete(&queue->cm_done);
}
return 0;
}
static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
/* queue error recovery */
nvme_rdma_error_recovery(req->queue->ctrl);
/* fail with DNR on cmd timeout */
rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
return BLK_EH_HANDLED;
}
/*
* We cannot accept any other command until the Connect command has completed.
*/
static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
struct request *rq)
{
if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
struct nvme_command *cmd = nvme_req(rq)->cmd;
if (!blk_rq_is_passthrough(rq) ||
cmd->common.opcode != nvme_fabrics_command ||
cmd->fabrics.fctype != nvme_fabrics_type_connect)
return false;
}
return true;
}
static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_rdma_queue *queue = hctx->driver_data;
struct request *rq = bd->rq;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_qe *sqe = &req->sqe;
struct nvme_command *c = sqe->data;
bool flush = false;
struct ib_device *dev;
int ret;
WARN_ON_ONCE(rq->tag < 0);
if (!nvme_rdma_queue_is_ready(queue, rq))
return BLK_MQ_RQ_QUEUE_BUSY;
dev = queue->device->dev;
ib_dma_sync_single_for_cpu(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ret = nvme_setup_cmd(ns, rq, c);
if (ret != BLK_MQ_RQ_QUEUE_OK)
return ret;
blk_mq_start_request(rq);
ret = nvme_rdma_map_data(queue, rq, c);
if (ret < 0) {
dev_err(queue->ctrl->ctrl.device,
"Failed to map data (%d)\n", ret);
nvme_cleanup_cmd(rq);
goto err;
}
ib_dma_sync_single_for_device(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
flush = true;
ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
if (ret) {
nvme_rdma_unmap_data(queue, rq);
goto err;
}
return BLK_MQ_RQ_QUEUE_OK;
err:
return (ret == -ENOMEM || ret == -EAGAIN) ?
BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
}
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
struct nvme_rdma_queue *queue = hctx->driver_data;
struct ib_cq *cq = queue->ib_cq;
struct ib_wc wc;
int found = 0;
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
while (ib_poll_cq(cq, 1, &wc) > 0) {
struct ib_cqe *cqe = wc.wr_cqe;
if (cqe) {
if (cqe->done == nvme_rdma_recv_done)
found |= __nvme_rdma_recv_done(cq, &wc, tag);
else
cqe->done(cq, &wc);
}
}
return found;
}
static void nvme_rdma_complete_rq(struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
int error = 0;
nvme_rdma_unmap_data(queue, rq);
if (unlikely(rq->errors)) {
if (nvme_req_needs_retry(rq, rq->errors)) {
nvme_requeue_req(rq);
return;
}
if (blk_rq_is_passthrough(rq))
error = rq->errors;
else
error = nvme_error_status(rq->errors);
}
blk_mq_end_request(rq, error);
}
static struct blk_mq_ops nvme_rdma_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_request,
.exit_request = nvme_rdma_exit_request,
.reinit_request = nvme_rdma_reinit_request,
.init_hctx = nvme_rdma_init_hctx,
.poll = nvme_rdma_poll,
.timeout = nvme_rdma_timeout,
};
static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_admin_request,
.exit_request = nvme_rdma_exit_admin_request,
.reinit_request = nvme_rdma_reinit_request,
.init_hctx = nvme_rdma_init_admin_hctx,
.timeout = nvme_rdma_timeout,
};
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
int error;
error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
if (error)
return error;
ctrl->device = ctrl->queues[0].device;
/*
* We need a reference on the device as long as the tag_set is alive,
* as the MRs in the request structures need a valid ib_device.
*/
error = -EINVAL;
if (!nvme_rdma_dev_get(ctrl->device))
goto out_free_queue;
ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
ctrl->device->dev->attrs.max_fast_reg_page_list_len);
memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
SG_CHUNK_SIZE * sizeof(struct scatterlist);
ctrl->admin_tag_set.driver_data = ctrl;
ctrl->admin_tag_set.nr_hw_queues = 1;
ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
if (error)
goto out_put_dev;
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
if (IS_ERR(ctrl->ctrl.admin_q)) {
error = PTR_ERR(ctrl->ctrl.admin_q);
goto out_free_tagset;
}
error = nvmf_connect_admin_queue(&ctrl->ctrl);
if (error)
goto out_cleanup_queue;
set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
if (error) {
dev_err(ctrl->ctrl.device,
"prop_get NVME_REG_CAP failed\n");
goto out_cleanup_queue;
}
ctrl->ctrl.sqsize =
min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
if (error)
goto out_cleanup_queue;
ctrl->ctrl.max_hw_sectors =
(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
error = nvme_init_identify(&ctrl->ctrl);
if (error)
goto out_cleanup_queue;
error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
&ctrl->async_event_sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE);
if (error)
goto out_cleanup_queue;
nvme_start_keep_alive(&ctrl->ctrl);
return 0;
out_cleanup_queue:
blk_cleanup_queue(ctrl->ctrl.admin_q);
out_free_tagset:
/* disconnect and drain the queue before freeing the tagset */
nvme_rdma_stop_queue(&ctrl->queues[0]);
blk_mq_free_tag_set(&ctrl->admin_tag_set);
out_put_dev:
nvme_rdma_dev_put(ctrl->device);
out_free_queue:
nvme_rdma_free_queue(&ctrl->queues[0]);
return error;
}
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
{
nvme_stop_keep_alive(&ctrl->ctrl);
cancel_work_sync(&ctrl->err_work);
cancel_delayed_work_sync(&ctrl->reconnect_work);
if (ctrl->queue_count > 1) {
nvme_stop_queues(&ctrl->ctrl);
blk_mq_tagset_busy_iter(&ctrl->tag_set,
nvme_cancel_request, &ctrl->ctrl);
nvme_rdma_free_io_queues(ctrl);
}
if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
nvme_shutdown_ctrl(&ctrl->ctrl);
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
nvme_cancel_request, &ctrl->ctrl);
nvme_rdma_destroy_admin_queue(ctrl);
}
static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
nvme_uninit_ctrl(&ctrl->ctrl);
if (shutdown)
nvme_rdma_shutdown_ctrl(ctrl);
if (ctrl->ctrl.tagset) {
blk_cleanup_queue(ctrl->ctrl.connect_q);
blk_mq_free_tag_set(&ctrl->tag_set);
nvme_rdma_dev_put(ctrl->device);
}
nvme_put_ctrl(&ctrl->ctrl);
}
static void nvme_rdma_del_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, delete_work);
__nvme_rdma_remove_ctrl(ctrl, true);
}
static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
return -EBUSY;
if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
return -EBUSY;
return 0;
}
static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
int ret = 0;
/*
* Keep a reference until all work is flushed since
* __nvme_rdma_del_ctrl can free the ctrl mem
*/
if (!kref_get_unless_zero(&ctrl->ctrl.kref))
return -EBUSY;
ret = __nvme_rdma_del_ctrl(ctrl);
if (!ret)
flush_work(&ctrl->delete_work);
nvme_put_ctrl(&ctrl->ctrl);
return ret;
}
static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, delete_work);
__nvme_rdma_remove_ctrl(ctrl, false);
}
static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, reset_work);
int ret;
bool changed;
nvme_rdma_shutdown_ctrl(ctrl);
ret = nvme_rdma_configure_admin_queue(ctrl);
if (ret) {
/* ctrl is already shutdown, just remove the ctrl */
INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
goto del_dead_ctrl;
}
if (ctrl->queue_count > 1) {
ret = blk_mq_reinit_tagset(&ctrl->tag_set);
if (ret)
goto del_dead_ctrl;
ret = nvme_rdma_init_io_queues(ctrl);
if (ret)
goto del_dead_ctrl;
ret = nvme_rdma_connect_io_queues(ctrl);
if (ret)
goto del_dead_ctrl;
}
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
WARN_ON_ONCE(!changed);
if (ctrl->queue_count > 1) {
nvme_start_queues(&ctrl->ctrl);
nvme_queue_scan(&ctrl->ctrl);
nvme_queue_async_events(&ctrl->ctrl);
}
return;
del_dead_ctrl:
/* Deleting this dead controller... */
dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
}
static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
return -EBUSY;
if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
return -EBUSY;
flush_work(&ctrl->reset_work);
return 0;
}
static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
.name = "rdma",
.module = THIS_MODULE,
.is_fabrics = true,
.reg_read32 = nvmf_reg_read32,
.reg_read64 = nvmf_reg_read64,
.reg_write32 = nvmf_reg_write32,
.reset_ctrl = nvme_rdma_reset_ctrl,
.free_ctrl = nvme_rdma_free_ctrl,
.submit_async_event = nvme_rdma_submit_async_event,
.delete_ctrl = nvme_rdma_del_ctrl,
.get_subsysnqn = nvmf_get_subsysnqn,
.get_address = nvmf_get_address,
};
static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
{
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
int ret;
ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
if (ret)
return ret;
ctrl->queue_count = opts->nr_io_queues + 1;
if (ctrl->queue_count < 2)
return 0;
dev_info(ctrl->ctrl.device,
"creating %d I/O queues.\n", opts->nr_io_queues);
ret = nvme_rdma_init_io_queues(ctrl);
if (ret)
return ret;
/*
* We need a reference on the device as long as the tag_set is alive,
* as the MRs in the request structures need a valid ib_device.
*/
ret = -EINVAL;
if (!nvme_rdma_dev_get(ctrl->device))
goto out_free_io_queues;
memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
ctrl->tag_set.ops = &nvme_rdma_mq_ops;
ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
ctrl->tag_set.reserved_tags = 1; /* fabric connect */
ctrl->tag_set.numa_node = NUMA_NO_NODE;
ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
SG_CHUNK_SIZE * sizeof(struct scatterlist);
ctrl->tag_set.driver_data = ctrl;
ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
if (ret)
goto out_put_dev;
ctrl->ctrl.tagset = &ctrl->tag_set;
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
if (IS_ERR(ctrl->ctrl.connect_q)) {
ret = PTR_ERR(ctrl->ctrl.connect_q);
goto out_free_tag_set;
}
ret = nvme_rdma_connect_io_queues(ctrl);
if (ret)
goto out_cleanup_connect_q;
return 0;
out_cleanup_connect_q:
blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
blk_mq_free_tag_set(&ctrl->tag_set);
out_put_dev:
nvme_rdma_dev_put(ctrl->device);
out_free_io_queues:
nvme_rdma_free_io_queues(ctrl);
return ret;
}
static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
{
u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
size_t buflen = strlen(p);
/* XXX: handle IPv6 addresses */
if (buflen > INET_ADDRSTRLEN)
return -EINVAL;
if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
return -EINVAL;
in_addr->sin_family = AF_INET;
return 0;
}
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
int ret;
bool changed;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return ERR_PTR(-ENOMEM);
ctrl->ctrl.opts = opts;
INIT_LIST_HEAD(&ctrl->list);
ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
if (ret) {
pr_err("malformed IP address passed: %s\n", opts->traddr);
goto out_free_ctrl;
}
if (opts->mask & NVMF_OPT_TRSVCID) {
u16 port;
ret = kstrtou16(opts->trsvcid, 0, &port);
if (ret)
goto out_free_ctrl;
ctrl->addr_in.sin_port = cpu_to_be16(port);
} else {
ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
}
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
0 /* no quirks, we're perfect! */);
if (ret)
goto out_free_ctrl;
ctrl->reconnect_delay = opts->reconnect_delay;
INIT_DELAYED_WORK(&ctrl->reconnect_work,
nvme_rdma_reconnect_ctrl_work);
INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
spin_lock_init(&ctrl->lock);
ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
ctrl->ctrl.sqsize = opts->queue_size - 1;
ctrl->ctrl.kato = opts->kato;
ret = -ENOMEM;
ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
GFP_KERNEL);
if (!ctrl->queues)
goto out_uninit_ctrl;
ret = nvme_rdma_configure_admin_queue(ctrl);
if (ret)
goto out_kfree_queues;
/* sanity check icdoff */
if (ctrl->ctrl.icdoff) {
dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
goto out_remove_admin_queue;
}
/* sanity check keyed sgls */
if (!(ctrl->ctrl.sgls & (1 << 20))) {
dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
goto out_remove_admin_queue;
}
if (opts->queue_size > ctrl->ctrl.maxcmd) {
/* warn if maxcmd is lower than queue_size */
dev_warn(ctrl->ctrl.device,
"queue_size %zu > ctrl maxcmd %u, clamping down\n",
opts->queue_size, ctrl->ctrl.maxcmd);
opts->queue_size = ctrl->ctrl.maxcmd;
}
if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
/* warn if sqsize is lower than queue_size */
dev_warn(ctrl->ctrl.device,
"queue_size %zu > ctrl sqsize %u, clamping down\n",
opts->queue_size, ctrl->ctrl.sqsize + 1);
opts->queue_size = ctrl->ctrl.sqsize + 1;
}
if (opts->nr_io_queues) {
ret = nvme_rdma_create_io_queues(ctrl);
if (ret)
goto out_remove_admin_queue;
}
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
WARN_ON_ONCE(!changed);
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
kref_get(&ctrl->ctrl.kref);
mutex_lock(&nvme_rdma_ctrl_mutex);
list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
if (opts->nr_io_queues) {
nvme_queue_scan(&ctrl->ctrl);
nvme_queue_async_events(&ctrl->ctrl);
}
return &ctrl->ctrl;
out_remove_admin_queue:
nvme_stop_keep_alive(&ctrl->ctrl);
nvme_rdma_destroy_admin_queue(ctrl);
out_kfree_queues:
kfree(ctrl->queues);
out_uninit_ctrl:
nvme_uninit_ctrl(&ctrl->ctrl);
nvme_put_ctrl(&ctrl->ctrl);
if (ret > 0)
ret = -EIO;
return ERR_PTR(ret);
out_free_ctrl:
kfree(ctrl);
return ERR_PTR(ret);
}
static struct nvmf_transport_ops nvme_rdma_transport = {
.name = "rdma",
.required_opts = NVMF_OPT_TRADDR,
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
.create_ctrl = nvme_rdma_create_ctrl,
};
static void nvme_rdma_add_one(struct ib_device *ib_device)
{
}
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
struct nvme_rdma_ctrl *ctrl;
/* Delete all controllers using this device */
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
if (ctrl->device->dev != ib_device)
continue;
dev_info(ctrl->ctrl.device,
"Removing ctrl: NQN \"%s\", addr %pISp\n",
ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
__nvme_rdma_del_ctrl(ctrl);
}
mutex_unlock(&nvme_rdma_ctrl_mutex);
flush_workqueue(nvme_rdma_wq);
}
static struct ib_client nvme_rdma_ib_client = {
.name = "nvme_rdma",
.add = nvme_rdma_add_one,
.remove = nvme_rdma_remove_one
};
static int __init nvme_rdma_init_module(void)
{
int ret;
nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
if (!nvme_rdma_wq)
return -ENOMEM;
ret = ib_register_client(&nvme_rdma_ib_client);
if (ret) {
destroy_workqueue(nvme_rdma_wq);
return ret;
}
nvmf_register_transport(&nvme_rdma_transport);
return 0;
}
static void __exit nvme_rdma_cleanup_module(void)
{
nvmf_unregister_transport(&nvme_rdma_transport);
ib_unregister_client(&nvme_rdma_ib_client);
destroy_workqueue(nvme_rdma_wq);
}
module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);
MODULE_LICENSE("GPL v2");