| /* |
| * Copyright (C) 2015 Broadcom |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /** |
| * DOC: VC4 CRTC module |
| * |
| * In VC4, the Pixel Valve is what most closely corresponds to the |
| * DRM's concept of a CRTC. The PV generates video timings from the |
| * output's clock plus its configuration. It pulls scaled pixels from |
| * the HVS at that timing, and feeds it to the encoder. |
| * |
| * However, the DRM CRTC also collects the configuration of all the |
| * DRM planes attached to it. As a result, this file also manages |
| * setup of the VC4 HVS's display elements on the CRTC. |
| * |
| * The 2835 has 3 different pixel valves. pv0 in the audio power |
| * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the |
| * image domain can feed either HDMI or the SDTV controller. The |
| * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for |
| * SDTV, etc.) according to which output type is chosen in the mux. |
| * |
| * For power management, the pixel valve's registers are all clocked |
| * by the AXI clock, while the timings and FIFOs make use of the |
| * output-specific clock. Since the encoders also directly consume |
| * the CPRMAN clocks, and know what timings they need, they are the |
| * ones that set the clock. |
| */ |
| |
| #include "drm_atomic.h" |
| #include "drm_atomic_helper.h" |
| #include "drm_crtc_helper.h" |
| #include "linux/clk.h" |
| #include "drm_fb_cma_helper.h" |
| #include "linux/component.h" |
| #include "linux/of_device.h" |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| struct vc4_crtc { |
| struct drm_crtc base; |
| const struct vc4_crtc_data *data; |
| void __iomem *regs; |
| |
| /* Timestamp at start of vblank irq - unaffected by lock delays. */ |
| ktime_t t_vblank; |
| |
| /* Which HVS channel we're using for our CRTC. */ |
| int channel; |
| |
| u8 lut_r[256]; |
| u8 lut_g[256]; |
| u8 lut_b[256]; |
| /* Size in pixels of the COB memory allocated to this CRTC. */ |
| u32 cob_size; |
| |
| struct drm_pending_vblank_event *event; |
| }; |
| |
| struct vc4_crtc_state { |
| struct drm_crtc_state base; |
| /* Dlist area for this CRTC configuration. */ |
| struct drm_mm_node mm; |
| }; |
| |
| static inline struct vc4_crtc * |
| to_vc4_crtc(struct drm_crtc *crtc) |
| { |
| return (struct vc4_crtc *)crtc; |
| } |
| |
| static inline struct vc4_crtc_state * |
| to_vc4_crtc_state(struct drm_crtc_state *crtc_state) |
| { |
| return (struct vc4_crtc_state *)crtc_state; |
| } |
| |
| struct vc4_crtc_data { |
| /* Which channel of the HVS this pixelvalve sources from. */ |
| int hvs_channel; |
| |
| enum vc4_encoder_type encoder_types[4]; |
| }; |
| |
| #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) |
| #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) |
| |
| #define CRTC_REG(reg) { reg, #reg } |
| static const struct { |
| u32 reg; |
| const char *name; |
| } crtc_regs[] = { |
| CRTC_REG(PV_CONTROL), |
| CRTC_REG(PV_V_CONTROL), |
| CRTC_REG(PV_VSYNCD_EVEN), |
| CRTC_REG(PV_HORZA), |
| CRTC_REG(PV_HORZB), |
| CRTC_REG(PV_VERTA), |
| CRTC_REG(PV_VERTB), |
| CRTC_REG(PV_VERTA_EVEN), |
| CRTC_REG(PV_VERTB_EVEN), |
| CRTC_REG(PV_INTEN), |
| CRTC_REG(PV_INTSTAT), |
| CRTC_REG(PV_STAT), |
| CRTC_REG(PV_HACT_ACT), |
| }; |
| |
| static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { |
| DRM_INFO("0x%04x (%s): 0x%08x\n", |
| crtc_regs[i].reg, crtc_regs[i].name, |
| CRTC_READ(crtc_regs[i].reg)); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) |
| { |
| struct drm_info_node *node = (struct drm_info_node *)m->private; |
| struct drm_device *dev = node->minor->dev; |
| int crtc_index = (uintptr_t)node->info_ent->data; |
| struct drm_crtc *crtc; |
| struct vc4_crtc *vc4_crtc; |
| int i; |
| |
| i = 0; |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| if (i == crtc_index) |
| break; |
| i++; |
| } |
| if (!crtc) |
| return 0; |
| vc4_crtc = to_vc4_crtc(crtc); |
| |
| for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { |
| seq_printf(m, "%s (0x%04x): 0x%08x\n", |
| crtc_regs[i].name, crtc_regs[i].reg, |
| CRTC_READ(crtc_regs[i].reg)); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, |
| unsigned int flags, int *vpos, int *hpos, |
| ktime_t *stime, ktime_t *etime, |
| const struct drm_display_mode *mode) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 val; |
| int fifo_lines; |
| int vblank_lines; |
| int ret = 0; |
| |
| /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ |
| |
| /* Get optional system timestamp before query. */ |
| if (stime) |
| *stime = ktime_get(); |
| |
| /* |
| * Read vertical scanline which is currently composed for our |
| * pixelvalve by the HVS, and also the scaler status. |
| */ |
| val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); |
| |
| /* Get optional system timestamp after query. */ |
| if (etime) |
| *etime = ktime_get(); |
| |
| /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ |
| |
| /* Vertical position of hvs composed scanline. */ |
| *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); |
| *hpos = 0; |
| |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| *vpos /= 2; |
| |
| /* Use hpos to correct for field offset in interlaced mode. */ |
| if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) |
| *hpos += mode->crtc_htotal / 2; |
| } |
| |
| /* This is the offset we need for translating hvs -> pv scanout pos. */ |
| fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; |
| |
| if (fifo_lines > 0) |
| ret |= DRM_SCANOUTPOS_VALID; |
| |
| /* HVS more than fifo_lines into frame for compositing? */ |
| if (*vpos > fifo_lines) { |
| /* |
| * We are in active scanout and can get some meaningful results |
| * from HVS. The actual PV scanout can not trail behind more |
| * than fifo_lines as that is the fifo's capacity. Assume that |
| * in active scanout the HVS and PV work in lockstep wrt. HVS |
| * refilling the fifo and PV consuming from the fifo, ie. |
| * whenever the PV consumes and frees up a scanline in the |
| * fifo, the HVS will immediately refill it, therefore |
| * incrementing vpos. Therefore we choose HVS read position - |
| * fifo size in scanlines as a estimate of the real scanout |
| * position of the PV. |
| */ |
| *vpos -= fifo_lines + 1; |
| |
| ret |= DRM_SCANOUTPOS_ACCURATE; |
| return ret; |
| } |
| |
| /* |
| * Less: This happens when we are in vblank and the HVS, after getting |
| * the VSTART restart signal from the PV, just started refilling its |
| * fifo with new lines from the top-most lines of the new framebuffers. |
| * The PV does not scan out in vblank, so does not remove lines from |
| * the fifo, so the fifo will be full quickly and the HVS has to pause. |
| * We can't get meaningful readings wrt. scanline position of the PV |
| * and need to make things up in a approximative but consistent way. |
| */ |
| ret |= DRM_SCANOUTPOS_IN_VBLANK; |
| vblank_lines = mode->vtotal - mode->vdisplay; |
| |
| if (flags & DRM_CALLED_FROM_VBLIRQ) { |
| /* |
| * Assume the irq handler got called close to first |
| * line of vblank, so PV has about a full vblank |
| * scanlines to go, and as a base timestamp use the |
| * one taken at entry into vblank irq handler, so it |
| * is not affected by random delays due to lock |
| * contention on event_lock or vblank_time lock in |
| * the core. |
| */ |
| *vpos = -vblank_lines; |
| |
| if (stime) |
| *stime = vc4_crtc->t_vblank; |
| if (etime) |
| *etime = vc4_crtc->t_vblank; |
| |
| /* |
| * If the HVS fifo is not yet full then we know for certain |
| * we are at the very beginning of vblank, as the hvs just |
| * started refilling, and the stime and etime timestamps |
| * truly correspond to start of vblank. |
| */ |
| if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) |
| ret |= DRM_SCANOUTPOS_ACCURATE; |
| } else { |
| /* |
| * No clue where we are inside vblank. Return a vpos of zero, |
| * which will cause calling code to just return the etime |
| * timestamp uncorrected. At least this is no worse than the |
| * standard fallback. |
| */ |
| *vpos = 0; |
| } |
| |
| return ret; |
| } |
| |
| int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, |
| int *max_error, struct timeval *vblank_time, |
| unsigned flags) |
| { |
| struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); |
| struct drm_crtc_state *state = crtc->state; |
| |
| /* Helper routine in DRM core does all the work: */ |
| return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, |
| vblank_time, flags, |
| &state->adjusted_mode); |
| } |
| |
| static void vc4_crtc_destroy(struct drm_crtc *crtc) |
| { |
| drm_crtc_cleanup(crtc); |
| } |
| |
| static void |
| vc4_crtc_lut_load(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 i; |
| |
| /* The LUT memory is laid out with each HVS channel in order, |
| * each of which takes 256 writes for R, 256 for G, then 256 |
| * for B. |
| */ |
| HVS_WRITE(SCALER_GAMADDR, |
| SCALER_GAMADDR_AUTOINC | |
| (vc4_crtc->channel * 3 * crtc->gamma_size)); |
| |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); |
| for (i = 0; i < crtc->gamma_size; i++) |
| HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); |
| } |
| |
| static int |
| vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, |
| uint32_t size) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 i; |
| |
| for (i = 0; i < size; i++) { |
| vc4_crtc->lut_r[i] = r[i] >> 8; |
| vc4_crtc->lut_g[i] = g[i] >> 8; |
| vc4_crtc->lut_b[i] = b[i] >> 8; |
| } |
| |
| vc4_crtc_lut_load(crtc); |
| |
| return 0; |
| } |
| |
| static u32 vc4_get_fifo_full_level(u32 format) |
| { |
| static const u32 fifo_len_bytes = 64; |
| static const u32 hvs_latency_pix = 6; |
| |
| switch (format) { |
| case PV_CONTROL_FORMAT_DSIV_16: |
| case PV_CONTROL_FORMAT_DSIC_16: |
| return fifo_len_bytes - 2 * hvs_latency_pix; |
| case PV_CONTROL_FORMAT_DSIV_18: |
| return fifo_len_bytes - 14; |
| case PV_CONTROL_FORMAT_24: |
| case PV_CONTROL_FORMAT_DSIV_24: |
| default: |
| return fifo_len_bytes - 3 * hvs_latency_pix; |
| } |
| } |
| |
| /* |
| * Returns the encoder attached to the CRTC. |
| * |
| * VC4 can only scan out to one encoder at a time, while the DRM core |
| * allows drivers to push pixels to more than one encoder from the |
| * same CRTC. |
| */ |
| static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) |
| { |
| struct drm_connector *connector; |
| |
| drm_for_each_connector(connector, crtc->dev) { |
| if (connector->state->crtc == crtc) { |
| return connector->encoder; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); |
| struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_crtc_state *state = crtc->state; |
| struct drm_display_mode *mode = &state->adjusted_mode; |
| bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; |
| bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || |
| vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); |
| u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; |
| bool debug_dump_regs = false; |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); |
| vc4_crtc_dump_regs(vc4_crtc); |
| } |
| |
| /* Reset the PV fifo. */ |
| CRTC_WRITE(PV_CONTROL, 0); |
| CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); |
| CRTC_WRITE(PV_CONTROL, 0); |
| |
| CRTC_WRITE(PV_HORZA, |
| VC4_SET_FIELD((mode->htotal - |
| mode->hsync_end) * pixel_rep, |
| PV_HORZA_HBP) | |
| VC4_SET_FIELD((mode->hsync_end - |
| mode->hsync_start) * pixel_rep, |
| PV_HORZA_HSYNC)); |
| CRTC_WRITE(PV_HORZB, |
| VC4_SET_FIELD((mode->hsync_start - |
| mode->hdisplay) * pixel_rep, |
| PV_HORZB_HFP) | |
| VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); |
| |
| CRTC_WRITE(PV_VERTA, |
| VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, |
| PV_VERTA_VBP) | |
| VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, |
| PV_VERTA_VSYNC)); |
| CRTC_WRITE(PV_VERTB, |
| VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, |
| PV_VERTB_VFP) | |
| VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); |
| |
| if (interlace) { |
| CRTC_WRITE(PV_VERTA_EVEN, |
| VC4_SET_FIELD(mode->crtc_vtotal - |
| mode->crtc_vsync_end - 1, |
| PV_VERTA_VBP) | |
| VC4_SET_FIELD(mode->crtc_vsync_end - |
| mode->crtc_vsync_start, |
| PV_VERTA_VSYNC)); |
| CRTC_WRITE(PV_VERTB_EVEN, |
| VC4_SET_FIELD(mode->crtc_vsync_start - |
| mode->crtc_vdisplay, |
| PV_VERTB_VFP) | |
| VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); |
| |
| /* We set up first field even mode for HDMI. VEC's |
| * NTSC mode would want first field odd instead, once |
| * we support it (to do so, set ODD_FIRST and put the |
| * delay in VSYNCD_EVEN instead). |
| */ |
| CRTC_WRITE(PV_V_CONTROL, |
| PV_VCONTROL_CONTINUOUS | |
| (is_dsi ? PV_VCONTROL_DSI : 0) | |
| PV_VCONTROL_INTERLACE | |
| VC4_SET_FIELD(mode->htotal * pixel_rep / 2, |
| PV_VCONTROL_ODD_DELAY)); |
| CRTC_WRITE(PV_VSYNCD_EVEN, 0); |
| } else { |
| CRTC_WRITE(PV_V_CONTROL, |
| PV_VCONTROL_CONTINUOUS | |
| (is_dsi ? PV_VCONTROL_DSI : 0)); |
| } |
| |
| CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); |
| |
| CRTC_WRITE(PV_CONTROL, |
| VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | |
| VC4_SET_FIELD(vc4_get_fifo_full_level(format), |
| PV_CONTROL_FIFO_LEVEL) | |
| VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | |
| PV_CONTROL_CLR_AT_START | |
| PV_CONTROL_TRIGGER_UNDERFLOW | |
| PV_CONTROL_WAIT_HSTART | |
| VC4_SET_FIELD(vc4_encoder->clock_select, |
| PV_CONTROL_CLK_SELECT) | |
| PV_CONTROL_FIFO_CLR | |
| PV_CONTROL_EN); |
| |
| HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), |
| SCALER_DISPBKGND_AUTOHS | |
| SCALER_DISPBKGND_GAMMA | |
| (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); |
| |
| /* Reload the LUT, since the SRAMs would have been disabled if |
| * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. |
| */ |
| vc4_crtc_lut_load(crtc); |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); |
| vc4_crtc_dump_regs(vc4_crtc); |
| } |
| } |
| |
| static void require_hvs_enabled(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != |
| SCALER_DISPCTRL_ENABLE); |
| } |
| |
| static void vc4_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 chan = vc4_crtc->channel; |
| int ret; |
| require_hvs_enabled(dev); |
| |
| /* Disable vblank irq handling before crtc is disabled. */ |
| drm_crtc_vblank_off(crtc); |
| |
| CRTC_WRITE(PV_V_CONTROL, |
| CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); |
| ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); |
| WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); |
| |
| if (HVS_READ(SCALER_DISPCTRLX(chan)) & |
| SCALER_DISPCTRLX_ENABLE) { |
| HVS_WRITE(SCALER_DISPCTRLX(chan), |
| SCALER_DISPCTRLX_RESET); |
| |
| /* While the docs say that reset is self-clearing, it |
| * seems it doesn't actually. |
| */ |
| HVS_WRITE(SCALER_DISPCTRLX(chan), 0); |
| } |
| |
| /* Once we leave, the scaler should be disabled and its fifo empty. */ |
| |
| WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); |
| |
| WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), |
| SCALER_DISPSTATX_MODE) != |
| SCALER_DISPSTATX_MODE_DISABLED); |
| |
| WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & |
| (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != |
| SCALER_DISPSTATX_EMPTY); |
| } |
| |
| static void vc4_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_crtc_state *state = crtc->state; |
| struct drm_display_mode *mode = &state->adjusted_mode; |
| |
| require_hvs_enabled(dev); |
| |
| /* Turn on the scaler, which will wait for vstart to start |
| * compositing. |
| */ |
| HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), |
| VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | |
| VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | |
| SCALER_DISPCTRLX_ENABLE); |
| |
| /* Turn on the pixel valve, which will emit the vstart signal. */ |
| CRTC_WRITE(PV_V_CONTROL, |
| CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); |
| |
| /* Enable vblank irq handling after crtc is started. */ |
| drm_crtc_vblank_on(crtc); |
| } |
| |
| static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, |
| const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| /* Do not allow doublescan modes from user space */ |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { |
| DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", |
| crtc->base.id); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int vc4_crtc_atomic_check(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_plane *plane; |
| unsigned long flags; |
| const struct drm_plane_state *plane_state; |
| u32 dlist_count = 0; |
| int ret; |
| |
| /* The pixelvalve can only feed one encoder (and encoders are |
| * 1:1 with connectors.) |
| */ |
| if (hweight32(state->connector_mask) > 1) |
| return -EINVAL; |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) |
| dlist_count += vc4_plane_dlist_size(plane_state); |
| |
| dlist_count++; /* Account for SCALER_CTL0_END. */ |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, flags); |
| ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, |
| dlist_count); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| struct drm_plane *plane; |
| bool debug_dump_regs = false; |
| u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; |
| u32 __iomem *dlist_next = dlist_start; |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| |
| /* Copy all the active planes' dlist contents to the hardware dlist. */ |
| drm_atomic_crtc_for_each_plane(plane, crtc) { |
| dlist_next += vc4_plane_write_dlist(plane, dlist_next); |
| } |
| |
| writel(SCALER_CTL0_END, dlist_next); |
| dlist_next++; |
| |
| WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); |
| |
| if (crtc->state->event) { |
| unsigned long flags; |
| |
| crtc->state->event->pipe = drm_crtc_index(crtc); |
| |
| WARN_ON(drm_crtc_vblank_get(crtc) != 0); |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| vc4_crtc->event = crtc->state->event; |
| crtc->state->event = NULL; |
| |
| HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), |
| vc4_state->mm.start); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } else { |
| HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), |
| vc4_state->mm.start); |
| } |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| } |
| |
| int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) |
| { |
| struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| |
| CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); |
| |
| return 0; |
| } |
| |
| void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) |
| { |
| struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| } |
| |
| /* Must be called with the event lock held */ |
| bool vc4_event_pending(struct drm_crtc *crtc) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| |
| return !!vc4_crtc->event; |
| } |
| |
| static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) |
| { |
| struct drm_crtc *crtc = &vc4_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); |
| u32 chan = vc4_crtc->channel; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (vc4_crtc->event && |
| (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { |
| drm_crtc_send_vblank_event(crtc, vc4_crtc->event); |
| vc4_crtc->event = NULL; |
| drm_crtc_vblank_put(crtc); |
| } |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) |
| { |
| struct vc4_crtc *vc4_crtc = data; |
| u32 stat = CRTC_READ(PV_INTSTAT); |
| irqreturn_t ret = IRQ_NONE; |
| |
| if (stat & PV_INT_VFP_START) { |
| vc4_crtc->t_vblank = ktime_get(); |
| CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); |
| drm_crtc_handle_vblank(&vc4_crtc->base); |
| vc4_crtc_handle_page_flip(vc4_crtc); |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| struct vc4_async_flip_state { |
| struct drm_crtc *crtc; |
| struct drm_framebuffer *fb; |
| struct drm_pending_vblank_event *event; |
| |
| struct vc4_seqno_cb cb; |
| }; |
| |
| /* Called when the V3D execution for the BO being flipped to is done, so that |
| * we can actually update the plane's address to point to it. |
| */ |
| static void |
| vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) |
| { |
| struct vc4_async_flip_state *flip_state = |
| container_of(cb, struct vc4_async_flip_state, cb); |
| struct drm_crtc *crtc = flip_state->crtc; |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_plane *plane = crtc->primary; |
| |
| vc4_plane_async_set_fb(plane, flip_state->fb); |
| if (flip_state->event) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| drm_crtc_send_vblank_event(crtc, flip_state->event); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| drm_crtc_vblank_put(crtc); |
| drm_framebuffer_unreference(flip_state->fb); |
| kfree(flip_state); |
| |
| up(&vc4->async_modeset); |
| } |
| |
| /* Implements async (non-vblank-synced) page flips. |
| * |
| * The page flip ioctl needs to return immediately, so we grab the |
| * modeset semaphore on the pipe, and queue the address update for |
| * when V3D is done with the BO being flipped to. |
| */ |
| static int vc4_async_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event, |
| uint32_t flags) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_plane *plane = crtc->primary; |
| int ret = 0; |
| struct vc4_async_flip_state *flip_state; |
| struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); |
| struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); |
| |
| flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); |
| if (!flip_state) |
| return -ENOMEM; |
| |
| drm_framebuffer_reference(fb); |
| flip_state->fb = fb; |
| flip_state->crtc = crtc; |
| flip_state->event = event; |
| |
| /* Make sure all other async modesetes have landed. */ |
| ret = down_interruptible(&vc4->async_modeset); |
| if (ret) { |
| drm_framebuffer_unreference(fb); |
| kfree(flip_state); |
| return ret; |
| } |
| |
| WARN_ON(drm_crtc_vblank_get(crtc) != 0); |
| |
| /* Immediately update the plane's legacy fb pointer, so that later |
| * modeset prep sees the state that will be present when the semaphore |
| * is released. |
| */ |
| drm_atomic_set_fb_for_plane(plane->state, fb); |
| plane->fb = fb; |
| |
| vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, |
| vc4_async_page_flip_complete); |
| |
| /* Driver takes ownership of state on successful async commit. */ |
| return 0; |
| } |
| |
| static int vc4_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event, |
| uint32_t flags) |
| { |
| if (flags & DRM_MODE_PAGE_FLIP_ASYNC) |
| return vc4_async_page_flip(crtc, fb, event, flags); |
| else |
| return drm_atomic_helper_page_flip(crtc, fb, event, flags); |
| } |
| |
| static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) |
| { |
| struct vc4_crtc_state *vc4_state; |
| |
| vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); |
| if (!vc4_state) |
| return NULL; |
| |
| __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); |
| return &vc4_state->base; |
| } |
| |
| static void vc4_crtc_destroy_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); |
| struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); |
| |
| if (vc4_state->mm.allocated) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, flags); |
| drm_mm_remove_node(&vc4_state->mm); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); |
| |
| } |
| |
| drm_atomic_helper_crtc_destroy_state(crtc, state); |
| } |
| |
| static const struct drm_crtc_funcs vc4_crtc_funcs = { |
| .set_config = drm_atomic_helper_set_config, |
| .destroy = vc4_crtc_destroy, |
| .page_flip = vc4_page_flip, |
| .set_property = NULL, |
| .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ |
| .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ |
| .reset = drm_atomic_helper_crtc_reset, |
| .atomic_duplicate_state = vc4_crtc_duplicate_state, |
| .atomic_destroy_state = vc4_crtc_destroy_state, |
| .gamma_set = vc4_crtc_gamma_set, |
| }; |
| |
| static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { |
| .mode_set_nofb = vc4_crtc_mode_set_nofb, |
| .disable = vc4_crtc_disable, |
| .enable = vc4_crtc_enable, |
| .mode_fixup = vc4_crtc_mode_fixup, |
| .atomic_check = vc4_crtc_atomic_check, |
| .atomic_flush = vc4_crtc_atomic_flush, |
| }; |
| |
| static const struct vc4_crtc_data pv0_data = { |
| .hvs_channel = 0, |
| .encoder_types = { |
| [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, |
| [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, |
| }, |
| }; |
| |
| static const struct vc4_crtc_data pv1_data = { |
| .hvs_channel = 2, |
| .encoder_types = { |
| [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, |
| [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, |
| }, |
| }; |
| |
| static const struct vc4_crtc_data pv2_data = { |
| .hvs_channel = 1, |
| .encoder_types = { |
| [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, |
| [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, |
| }, |
| }; |
| |
| static const struct of_device_id vc4_crtc_dt_match[] = { |
| { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, |
| { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, |
| { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, |
| {} |
| }; |
| |
| static void vc4_set_crtc_possible_masks(struct drm_device *drm, |
| struct drm_crtc *crtc) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| const struct vc4_crtc_data *crtc_data = vc4_crtc->data; |
| const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; |
| struct drm_encoder *encoder; |
| |
| drm_for_each_encoder(encoder, drm) { |
| struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { |
| if (vc4_encoder->type == encoder_types[i]) { |
| vc4_encoder->clock_select = i; |
| encoder->possible_crtcs |= drm_crtc_mask(crtc); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void |
| vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) |
| { |
| struct drm_device *drm = vc4_crtc->base.dev; |
| struct vc4_dev *vc4 = to_vc4_dev(drm); |
| u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); |
| /* Top/base are supposed to be 4-pixel aligned, but the |
| * Raspberry Pi firmware fills the low bits (which are |
| * presumably ignored). |
| */ |
| u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; |
| u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; |
| |
| vc4_crtc->cob_size = top - base + 4; |
| } |
| |
| static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_crtc *vc4_crtc; |
| struct drm_crtc *crtc; |
| struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; |
| const struct of_device_id *match; |
| int ret, i; |
| |
| vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); |
| if (!vc4_crtc) |
| return -ENOMEM; |
| crtc = &vc4_crtc->base; |
| |
| match = of_match_device(vc4_crtc_dt_match, dev); |
| if (!match) |
| return -ENODEV; |
| vc4_crtc->data = match->data; |
| |
| vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); |
| if (IS_ERR(vc4_crtc->regs)) |
| return PTR_ERR(vc4_crtc->regs); |
| |
| /* For now, we create just the primary and the legacy cursor |
| * planes. We should be able to stack more planes on easily, |
| * but to do that we would need to compute the bandwidth |
| * requirement of the plane configuration, and reject ones |
| * that will take too much. |
| */ |
| primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); |
| if (IS_ERR(primary_plane)) { |
| dev_err(dev, "failed to construct primary plane\n"); |
| ret = PTR_ERR(primary_plane); |
| goto err; |
| } |
| |
| drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, |
| &vc4_crtc_funcs, NULL); |
| drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); |
| primary_plane->crtc = crtc; |
| vc4_crtc->channel = vc4_crtc->data->hvs_channel; |
| drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); |
| |
| /* Set up some arbitrary number of planes. We're not limited |
| * by a set number of physical registers, just the space in |
| * the HVS (16k) and how small an plane can be (28 bytes). |
| * However, each plane we set up takes up some memory, and |
| * increases the cost of looping over planes, which atomic |
| * modesetting does quite a bit. As a result, we pick a |
| * modest number of planes to expose, that should hopefully |
| * still cover any sane usecase. |
| */ |
| for (i = 0; i < 8; i++) { |
| struct drm_plane *plane = |
| vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); |
| |
| if (IS_ERR(plane)) |
| continue; |
| |
| plane->possible_crtcs = 1 << drm_crtc_index(crtc); |
| } |
| |
| /* Set up the legacy cursor after overlay initialization, |
| * since we overlay planes on the CRTC in the order they were |
| * initialized. |
| */ |
| cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); |
| if (!IS_ERR(cursor_plane)) { |
| cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); |
| cursor_plane->crtc = crtc; |
| crtc->cursor = cursor_plane; |
| } |
| |
| vc4_crtc_get_cob_allocation(vc4_crtc); |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); |
| ret = devm_request_irq(dev, platform_get_irq(pdev, 0), |
| vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); |
| if (ret) |
| goto err_destroy_planes; |
| |
| vc4_set_crtc_possible_masks(drm, crtc); |
| |
| for (i = 0; i < crtc->gamma_size; i++) { |
| vc4_crtc->lut_r[i] = i; |
| vc4_crtc->lut_g[i] = i; |
| vc4_crtc->lut_b[i] = i; |
| } |
| |
| platform_set_drvdata(pdev, vc4_crtc); |
| |
| return 0; |
| |
| err_destroy_planes: |
| list_for_each_entry_safe(destroy_plane, temp, |
| &drm->mode_config.plane_list, head) { |
| if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) |
| destroy_plane->funcs->destroy(destroy_plane); |
| } |
| err: |
| return ret; |
| } |
| |
| static void vc4_crtc_unbind(struct device *dev, struct device *master, |
| void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); |
| |
| vc4_crtc_destroy(&vc4_crtc->base); |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| |
| platform_set_drvdata(pdev, NULL); |
| } |
| |
| static const struct component_ops vc4_crtc_ops = { |
| .bind = vc4_crtc_bind, |
| .unbind = vc4_crtc_unbind, |
| }; |
| |
| static int vc4_crtc_dev_probe(struct platform_device *pdev) |
| { |
| return component_add(&pdev->dev, &vc4_crtc_ops); |
| } |
| |
| static int vc4_crtc_dev_remove(struct platform_device *pdev) |
| { |
| component_del(&pdev->dev, &vc4_crtc_ops); |
| return 0; |
| } |
| |
| struct platform_driver vc4_crtc_driver = { |
| .probe = vc4_crtc_dev_probe, |
| .remove = vc4_crtc_dev_remove, |
| .driver = { |
| .name = "vc4_crtc", |
| .of_match_table = vc4_crtc_dt_match, |
| }, |
| }; |