blob: 8d142a547e7fd9e29b1037af075d225b3a51924c [file] [log] [blame]
/**
@file Qos.C
This file contains the routines related to Quality of Service.
*/
#include "headers.h"
static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter,PVOID pvEthPayload, struct bcm_eth_packet_info *pstEthCsPktInfo);
static BOOLEAN EThCSClassifyPkt(struct bcm_mini_adapter *Adapter,struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo,struct bcm_classifier_rule *pstClassifierRule, B_UINT8 EthCSCupport);
static USHORT IpVersion4(struct bcm_mini_adapter *Adapter, struct iphdr *iphd,
struct bcm_classifier_rule *pstClassifierRule );
static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex);
/*******************************************************************
* Function - MatchSrcIpAddress()
*
* Description - Checks whether the Source IP address from the packet
* matches with that of Queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ulSrcIP : Source IP address from the packet.
*
* Returns - TRUE(If address matches) else FAIL .
*********************************************************************/
BOOLEAN MatchSrcIpAddress(struct bcm_classifier_rule *pstClassifierRule,ULONG ulSrcIP)
{
UCHAR ucLoopIndex=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
ulSrcIP=ntohl(ulSrcIP);
if(0 == pstClassifierRule->ucIPSourceAddressLength)
return TRUE;
for(ucLoopIndex=0; ucLoopIndex < (pstClassifierRule->ucIPSourceAddressLength);ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Mask:0x%x PacketIp:0x%x and Classification:0x%x", (UINT)pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)ulSrcIP, (UINT)pstClassifierRule->stSrcIpAddress.ulIpv6Addr[ucLoopIndex]);
if((pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex] & ulSrcIP)==
(pstClassifierRule->stSrcIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex] ))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Not Matched");
return FALSE;
}
/*******************************************************************
* Function - MatchDestIpAddress()
*
* Description - Checks whether the Destination IP address from the packet
* matches with that of Queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ulDestIP : Destination IP address from the packet.
*
* Returns - TRUE(If address matches) else FAIL .
*********************************************************************/
BOOLEAN MatchDestIpAddress(struct bcm_classifier_rule *pstClassifierRule,ULONG ulDestIP)
{
UCHAR ucLoopIndex=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
ulDestIP=ntohl(ulDestIP);
if(0 == pstClassifierRule->ucIPDestinationAddressLength)
return TRUE;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address 0x%x 0x%x 0x%x ", (UINT)ulDestIP, (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex]);
for(ucLoopIndex=0;ucLoopIndex<(pstClassifierRule->ucIPDestinationAddressLength);ucLoopIndex++)
{
if((pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex] & ulDestIP)==
(pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex]))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address Not Matched");
return FALSE;
}
/************************************************************************
* Function - MatchTos()
*
* Description - Checks the TOS from the packet matches with that of queue.
*
* Parameters - pstClassifierRule : Pointer to the packet info structure.
* - ucTypeOfService: TOS from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
**************************************************************************/
BOOLEAN MatchTos(struct bcm_classifier_rule *pstClassifierRule,UCHAR ucTypeOfService)
{
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if( 3 != pstClassifierRule->ucIPTypeOfServiceLength )
return TRUE;
if(((pstClassifierRule->ucTosMask & ucTypeOfService)<=pstClassifierRule->ucTosHigh) && ((pstClassifierRule->ucTosMask & ucTypeOfService)>=pstClassifierRule->ucTosLow))
{
return TRUE;
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Type Of Service Not Matched");
return FALSE;
}
/***************************************************************************
* Function - MatchProtocol()
*
* Description - Checks the protocol from the packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ucProtocol : Protocol from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
****************************************************************************/
bool MatchProtocol(struct bcm_classifier_rule *pstClassifierRule,UCHAR ucProtocol)
{
UCHAR ucLoopIndex=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if(0 == pstClassifierRule->ucProtocolLength)
return TRUE;
for(ucLoopIndex=0;ucLoopIndex<pstClassifierRule->ucProtocolLength;ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol:0x%X Classification Protocol:0x%X",ucProtocol,pstClassifierRule->ucProtocol[ucLoopIndex]);
if(pstClassifierRule->ucProtocol[ucLoopIndex]==ucProtocol)
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Not Matched");
return FALSE;
}
/***********************************************************************
* Function - MatchSrcPort()
*
* Description - Checks, Source port from the packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ushSrcPort : Source port from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchSrcPort(struct bcm_classifier_rule *pstClassifierRule,USHORT ushSrcPort)
{
UCHAR ucLoopIndex=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if(0 == pstClassifierRule->ucSrcPortRangeLength)
return TRUE;
for(ucLoopIndex=0;ucLoopIndex<pstClassifierRule->ucSrcPortRangeLength;ucLoopIndex++)
{
if(ushSrcPort <= pstClassifierRule->usSrcPortRangeHi[ucLoopIndex] &&
ushSrcPort >= pstClassifierRule->usSrcPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port: %x Not Matched ",ushSrcPort);
return FALSE;
}
/***********************************************************************
* Function - MatchDestPort()
*
* Description - Checks, Destination port from packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ushDestPort : Destination port from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchDestPort(struct bcm_classifier_rule *pstClassifierRule,USHORT ushDestPort)
{
UCHAR ucLoopIndex=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if(0 == pstClassifierRule->ucDestPortRangeLength)
return TRUE;
for(ucLoopIndex=0;ucLoopIndex<pstClassifierRule->ucDestPortRangeLength;ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Matching Port:0x%X 0x%X 0x%X",ushDestPort,pstClassifierRule->usDestPortRangeLo[ucLoopIndex],pstClassifierRule->usDestPortRangeHi[ucLoopIndex]);
if(ushDestPort <= pstClassifierRule->usDestPortRangeHi[ucLoopIndex] &&
ushDestPort >= pstClassifierRule->usDestPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dest Port: %x Not Matched",ushDestPort);
return FALSE;
}
/**
@ingroup tx_functions
Compares IPV4 Ip address and port number
@return Queue Index.
*/
static USHORT IpVersion4(struct bcm_mini_adapter *Adapter,
struct iphdr *iphd,
struct bcm_classifier_rule *pstClassifierRule)
{
struct bcm_transport_header *xprt_hdr = NULL;
BOOLEAN bClassificationSucceed=FALSE;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "========>");
xprt_hdr=(struct bcm_transport_header *)((PUCHAR)iphd + sizeof(struct iphdr));
do {
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to see Direction = %d %d",
pstClassifierRule->ucDirection,
pstClassifierRule->usVCID_Value);
//Checking classifier validity
if(!pstClassifierRule->bUsed || pstClassifierRule->ucDirection == DOWNLINK_DIR)
{
bClassificationSucceed = FALSE;
break;
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "is IPv6 check!");
if(pstClassifierRule->bIpv6Protocol)
break;
//**************Checking IP header parameter**************************//
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to match Source IP Address");
if(FALSE == (bClassificationSucceed =
MatchSrcIpAddress(pstClassifierRule, iphd->saddr)))
break;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source IP Address Matched");
if(FALSE == (bClassificationSucceed =
MatchDestIpAddress(pstClassifierRule, iphd->daddr)))
break;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination IP Address Matched");
if(FALSE == (bClassificationSucceed =
MatchTos(pstClassifierRule, iphd->tos)))
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Match failed\n");
break;
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Matched");
if(FALSE == (bClassificationSucceed =
MatchProtocol(pstClassifierRule,iphd->protocol)))
break;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Matched");
//if protocol is not TCP or UDP then no need of comparing source port and destination port
if(iphd->protocol!=TCP && iphd->protocol!=UDP)
break;
//******************Checking Transport Layer Header field if present *****************//
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source Port %04x",
(iphd->protocol==UDP)?xprt_hdr->uhdr.source:xprt_hdr->thdr.source);
if(FALSE == (bClassificationSucceed =
MatchSrcPort(pstClassifierRule,
ntohs((iphd->protocol == UDP)?
xprt_hdr->uhdr.source:xprt_hdr->thdr.source))))
break;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port Matched");
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Port %04x",
(iphd->protocol==UDP)?xprt_hdr->uhdr.dest:
xprt_hdr->thdr.dest);
if(FALSE == (bClassificationSucceed =
MatchDestPort(pstClassifierRule,
ntohs((iphd->protocol == UDP)?
xprt_hdr->uhdr.dest:xprt_hdr->thdr.dest))))
break;
} while(0);
if(TRUE==bClassificationSucceed)
{
INT iMatchedSFQueueIndex = 0;
iMatchedSFQueueIndex = SearchSfid(Adapter,pstClassifierRule->ulSFID);
if(iMatchedSFQueueIndex >= NO_OF_QUEUES)
{
bClassificationSucceed = FALSE;
}
else
{
if(FALSE == Adapter->PackInfo[iMatchedSFQueueIndex].bActive)
{
bClassificationSucceed = FALSE;
}
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "IpVersion4 <==========");
return bClassificationSucceed;
}
VOID PruneQueueAllSF(struct bcm_mini_adapter *Adapter)
{
UINT iIndex = 0;
for(iIndex = 0; iIndex < HiPriority; iIndex++)
{
if(!Adapter->PackInfo[iIndex].bValid)
continue;
PruneQueue(Adapter, iIndex);
}
}
/**
@ingroup tx_functions
This function checks if the max queue size for a queue
is less than number of bytes in the queue. If so -
drops packets from the Head till the number of bytes is
less than or equal to max queue size for the queue.
*/
static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex)
{
struct sk_buff* PacketToDrop=NULL;
struct net_device_stats *netstats;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "=====> Index %d",iIndex);
if(iIndex == HiPriority)
return;
if(!Adapter || (iIndex < 0) || (iIndex > HiPriority))
return;
/* To Store the netdevice statistic */
netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iIndex].SFQueueLock);
while(1)
// while((UINT)Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost >
// SF_MAX_ALLOWED_PACKETS_TO_BACKUP)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "uiCurrentBytesOnHost:%x uiMaxBucketSize :%x",
Adapter->PackInfo[iIndex].uiCurrentBytesOnHost,
Adapter->PackInfo[iIndex].uiMaxBucketSize);
PacketToDrop = Adapter->PackInfo[iIndex].FirstTxQueue;
if(PacketToDrop == NULL)
break;
if((Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost < SF_MAX_ALLOWED_PACKETS_TO_BACKUP) &&
((1000*(jiffies - *((B_UINT32 *)(PacketToDrop->cb)+SKB_CB_LATENCY_OFFSET))/HZ) <= Adapter->PackInfo[iIndex].uiMaxLatency))
break;
if(PacketToDrop)
{
if (netif_msg_tx_err(Adapter))
pr_info(PFX "%s: tx queue %d overlimit\n",
Adapter->dev->name, iIndex);
netstats->tx_dropped++;
DEQUEUEPACKET(Adapter->PackInfo[iIndex].FirstTxQueue,
Adapter->PackInfo[iIndex].LastTxQueue);
/// update current bytes and packets count
Adapter->PackInfo[iIndex].uiCurrentBytesOnHost -=
PacketToDrop->len;
Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost--;
/// update dropped bytes and packets counts
Adapter->PackInfo[iIndex].uiDroppedCountBytes += PacketToDrop->len;
Adapter->PackInfo[iIndex].uiDroppedCountPackets++;
dev_kfree_skb(PacketToDrop);
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
Adapter->PackInfo[iIndex].uiDroppedCountBytes,
Adapter->PackInfo[iIndex].uiDroppedCountPackets);
atomic_dec(&Adapter->TotalPacketCount);
}
spin_unlock_bh(&Adapter->PackInfo[iIndex].SFQueueLock);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "TotalPacketCount:%x",
atomic_read(&Adapter->TotalPacketCount));
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "<=====");
}
VOID flush_all_queues(struct bcm_mini_adapter *Adapter)
{
INT iQIndex;
UINT uiTotalPacketLength;
struct sk_buff* PacketToDrop=NULL;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "=====>");
// down(&Adapter->data_packet_queue_lock);
for(iQIndex=LowPriority; iQIndex<HiPriority; iQIndex++)
{
struct net_device_stats *netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
while(Adapter->PackInfo[iQIndex].FirstTxQueue)
{
PacketToDrop = Adapter->PackInfo[iQIndex].FirstTxQueue;
if(PacketToDrop)
{
uiTotalPacketLength = PacketToDrop->len;
netstats->tx_dropped++;
}
else
uiTotalPacketLength = 0;
DEQUEUEPACKET(Adapter->PackInfo[iQIndex].FirstTxQueue,
Adapter->PackInfo[iQIndex].LastTxQueue);
/* Free the skb */
dev_kfree_skb(PacketToDrop);
/// update current bytes and packets count
Adapter->PackInfo[iQIndex].uiCurrentBytesOnHost -= uiTotalPacketLength;
Adapter->PackInfo[iQIndex].uiCurrentPacketsOnHost--;
/// update dropped bytes and packets counts
Adapter->PackInfo[iQIndex].uiDroppedCountBytes += uiTotalPacketLength;
Adapter->PackInfo[iQIndex].uiDroppedCountPackets++;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
Adapter->PackInfo[iQIndex].uiDroppedCountBytes,
Adapter->PackInfo[iQIndex].uiDroppedCountPackets);
atomic_dec(&Adapter->TotalPacketCount);
}
spin_unlock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
}
// up(&Adapter->data_packet_queue_lock);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "<=====");
}
USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter,struct sk_buff* skb)
{
INT uiLoopIndex=0;
struct bcm_classifier_rule *pstClassifierRule = NULL;
struct bcm_eth_packet_info stEthCsPktInfo;
PVOID pvEThPayload = NULL;
struct iphdr *pIpHeader = NULL;
INT uiSfIndex=0;
USHORT usIndex=Adapter->usBestEffortQueueIndex;
BOOLEAN bFragmentedPkt=FALSE,bClassificationSucceed=FALSE;
USHORT usCurrFragment =0;
struct bcm_tcp_header *pTcpHeader;
UCHAR IpHeaderLength;
UCHAR TcpHeaderLength;
pvEThPayload = skb->data;
*((UINT32*) (skb->cb) +SKB_CB_TCPACK_OFFSET ) = 0;
EThCSGetPktInfo(Adapter,pvEThPayload,&stEthCsPktInfo);
switch(stEthCsPktInfo.eNwpktEthFrameType)
{
case eEth802LLCFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLCFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_frame);
break;
}
case eEth802LLCSNAPFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLC SNAP Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_snap_frame);
break;
}
case eEth802QVLANFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802.1Q VLANFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_q_frame);
break;
}
case eEthOtherFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : ETH Other Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
default:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Unrecognized ETH Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
}
if(stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
{
usCurrFragment = (ntohs(pIpHeader->frag_off) & IP_OFFSET);
if((ntohs(pIpHeader->frag_off) & IP_MF) || usCurrFragment)
bFragmentedPkt = TRUE;
if(bFragmentedPkt)
{
//Fragmented Packet. Get Frag Classifier Entry.
pstClassifierRule = GetFragIPClsEntry(Adapter,pIpHeader->id, pIpHeader->saddr);
if(pstClassifierRule)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,"It is next Fragmented pkt");
bClassificationSucceed=TRUE;
}
if(!(ntohs(pIpHeader->frag_off) & IP_MF))
{
//Fragmented Last packet . Remove Frag Classifier Entry
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,"This is the last fragmented Pkt");
DelFragIPClsEntry(Adapter,pIpHeader->id, pIpHeader->saddr);
}
}
}
for(uiLoopIndex = MAX_CLASSIFIERS - 1; uiLoopIndex >= 0; uiLoopIndex--)
{
if(bClassificationSucceed)
break;
//Iterate through all classifiers which are already in order of priority
//to classify the packet until match found
do
{
if(FALSE==Adapter->astClassifierTable[uiLoopIndex].bUsed)
{
bClassificationSucceed=FALSE;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Adapter->PackInfo[%d].bvalid=True\n",uiLoopIndex);
if(0 == Adapter->astClassifierTable[uiLoopIndex].ucDirection)
{
bClassificationSucceed=FALSE;//cannot be processed for classification.
break; // it is a down link connection
}
pstClassifierRule = &Adapter->astClassifierTable[uiLoopIndex];
uiSfIndex = SearchSfid(Adapter,pstClassifierRule->ulSFID);
if (uiSfIndex >= NO_OF_QUEUES) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Queue Not Valid. SearchSfid for this classifier Failed\n");
break;
}
if(Adapter->PackInfo[uiSfIndex].bEthCSSupport)
{
if(eEthUnsupportedFrame==stEthCsPktInfo.eNwpktEthFrameType)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a Valid Supported Ethernet Frame \n");
bClassificationSucceed = FALSE;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Performing ETH CS Classification on Classifier Rule ID : %x Service Flow ID : %lx\n",pstClassifierRule->uiClassifierRuleIndex,Adapter->PackInfo[uiSfIndex].ulSFID);
bClassificationSucceed = EThCSClassifyPkt(Adapter,skb,&stEthCsPktInfo,pstClassifierRule, Adapter->PackInfo[uiSfIndex].bEthCSSupport);
if(!bClassificationSucceed)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Ethernet CS Classification Failed\n");
break;
}
}
else // No ETH Supported on this SF
{
if(eEthOtherFrame != stEthCsPktInfo.eNwpktEthFrameType)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a 802.3 Ethernet Frame... hence not allowed over non-ETH CS SF \n");
bClassificationSucceed = FALSE;
break;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Proceeding to IP CS Clasification");
if(Adapter->PackInfo[uiSfIndex].bIPCSSupport)
{
if(stEthCsPktInfo.eNwpktIPFrameType == eNonIPPacket)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet is Not an IP Packet \n");
bClassificationSucceed = FALSE;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dump IP Header : \n");
DumpFullPacket((PUCHAR)pIpHeader,20);
if(stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
bClassificationSucceed = IpVersion4(Adapter,pIpHeader,pstClassifierRule);
else if(stEthCsPktInfo.eNwpktIPFrameType == eIPv6Packet)
bClassificationSucceed = IpVersion6(Adapter,pIpHeader,pstClassifierRule);
}
}while(0);
}
if(bClassificationSucceed == TRUE)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "CF id : %d, SF ID is =%lu",pstClassifierRule->uiClassifierRuleIndex, pstClassifierRule->ulSFID);
//Store The matched Classifier in SKB
*((UINT32*)(skb->cb)+SKB_CB_CLASSIFICATION_OFFSET) = pstClassifierRule->uiClassifierRuleIndex;
if((TCP == pIpHeader->protocol ) && !bFragmentedPkt && (ETH_AND_IP_HEADER_LEN + TCP_HEADER_LEN <= skb->len) )
{
IpHeaderLength = pIpHeader->ihl;
pTcpHeader = (struct bcm_tcp_header *)(((PUCHAR)pIpHeader)+(IpHeaderLength*4));
TcpHeaderLength = GET_TCP_HEADER_LEN(pTcpHeader->HeaderLength);
if((pTcpHeader->ucFlags & TCP_ACK) &&
(ntohs(pIpHeader->tot_len) == (IpHeaderLength*4)+(TcpHeaderLength*4)))
{
*((UINT32*) (skb->cb) +SKB_CB_TCPACK_OFFSET ) = TCP_ACK;
}
}
usIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "index is =%d", usIndex);
//If this is the first fragment of a Fragmented pkt, add this CF. Only This CF should be used for all other fragment of this Pkt.
if(bFragmentedPkt && (usCurrFragment == 0))
{
//First Fragment of Fragmented Packet. Create Frag CLS Entry
struct bcm_fragmented_packet_info stFragPktInfo;
stFragPktInfo.bUsed = TRUE;
stFragPktInfo.ulSrcIpAddress = pIpHeader->saddr;
stFragPktInfo.usIpIdentification = pIpHeader->id;
stFragPktInfo.pstMatchedClassifierEntry = pstClassifierRule;
stFragPktInfo.bOutOfOrderFragment = FALSE;
AddFragIPClsEntry(Adapter,&stFragPktInfo);
}
}
if(bClassificationSucceed)
return usIndex;
else
return INVALID_QUEUE_INDEX;
}
static BOOLEAN EthCSMatchSrcMACAddress(struct bcm_classifier_rule *pstClassifierRule,PUCHAR Mac)
{
UINT i=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if(pstClassifierRule->ucEthCSSrcMACLen==0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s \n",__FUNCTION__);
for(i=0;i<MAC_ADDRESS_SIZE;i++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n",i,Mac[i],pstClassifierRule->au8EThCSSrcMAC[i],pstClassifierRule->au8EThCSSrcMACMask[i]);
if((pstClassifierRule->au8EThCSSrcMAC[i] & pstClassifierRule->au8EThCSSrcMACMask[i])!=
(Mac[i] & pstClassifierRule->au8EThCSSrcMACMask[i]))
return FALSE;
}
return TRUE;
}
static BOOLEAN EthCSMatchDestMACAddress(struct bcm_classifier_rule *pstClassifierRule,PUCHAR Mac)
{
UINT i=0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if(pstClassifierRule->ucEthCSDestMACLen==0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s \n",__FUNCTION__);
for(i=0;i<MAC_ADDRESS_SIZE;i++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n",i,Mac[i],pstClassifierRule->au8EThCSDestMAC[i],pstClassifierRule->au8EThCSDestMACMask[i]);
if((pstClassifierRule->au8EThCSDestMAC[i] & pstClassifierRule->au8EThCSDestMACMask[i])!=
(Mac[i] & pstClassifierRule->au8EThCSDestMACMask[i]))
return FALSE;
}
return TRUE;
}
static BOOLEAN EthCSMatchEThTypeSAP(struct bcm_classifier_rule *pstClassifierRule,struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if((pstClassifierRule->ucEtherTypeLen==0)||
(pstClassifierRule->au8EthCSEtherType[0] == 0))
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s SrcEtherType:%x CLS EtherType[0]:%x\n",__FUNCTION__,pstEthCsPktInfo->usEtherType,pstClassifierRule->au8EthCSEtherType[0]);
if(pstClassifierRule->au8EthCSEtherType[0] == 1)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS EtherType[1]:%x EtherType[2]:%x\n",__FUNCTION__,pstClassifierRule->au8EthCSEtherType[1],pstClassifierRule->au8EthCSEtherType[2]);
if(memcmp(&pstEthCsPktInfo->usEtherType,&pstClassifierRule->au8EthCSEtherType[1],2)==0)
return TRUE;
else
return FALSE;
}
if(pstClassifierRule->au8EthCSEtherType[0] == 2)
{
if(eEth802LLCFrame != pstEthCsPktInfo->eNwpktEthFrameType)
return FALSE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s EthCS DSAP:%x EtherType[2]:%x\n",__FUNCTION__,pstEthCsPktInfo->ucDSAP,pstClassifierRule->au8EthCSEtherType[2]);
if(pstEthCsPktInfo->ucDSAP == pstClassifierRule->au8EthCSEtherType[2])
return TRUE;
else
return FALSE;
}
return FALSE;
}
static BOOLEAN EthCSMatchVLANRules(struct bcm_classifier_rule *pstClassifierRule,struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
BOOLEAN bClassificationSucceed = FALSE;
USHORT usVLANID;
B_UINT8 uPriority = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS UserPrio:%x CLS VLANID:%x\n",__FUNCTION__,ntohs(*((USHORT *)pstClassifierRule->usUserPriority)),pstClassifierRule->usVLANID);
/* In case FW didn't receive the TLV, the priority field should be ignored */
if(pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_USER_PRIORITY_VALID))
{
if(pstEthCsPktInfo->eNwpktEthFrameType!=eEth802QVLANFrame)
return FALSE;
uPriority = (ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xF000) >> 13;
if((uPriority >= pstClassifierRule->usUserPriority[0]) && (uPriority <= pstClassifierRule->usUserPriority[1]))
bClassificationSucceed = TRUE;
if(!bClassificationSucceed)
return FALSE;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 D User Priority Rule Matched\n");
bClassificationSucceed = FALSE;
if(pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_VLANID_VALID))
{
if(pstEthCsPktInfo->eNwpktEthFrameType!=eEth802QVLANFrame)
return FALSE;
usVLANID = ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xFFF;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s Pkt VLANID %x Priority: %d\n",__FUNCTION__,usVLANID, uPriority);
if(usVLANID == ((pstClassifierRule->usVLANID & 0xFFF0) >> 4))
bClassificationSucceed = TRUE;
if(!bClassificationSucceed)
return FALSE;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 Q VLAN ID Rule Matched\n");
return TRUE;
}
static BOOLEAN EThCSClassifyPkt(struct bcm_mini_adapter *Adapter,struct sk_buff* skb,
struct bcm_eth_packet_info *pstEthCsPktInfo,
struct bcm_classifier_rule *pstClassifierRule,
B_UINT8 EthCSCupport)
{
BOOLEAN bClassificationSucceed = FALSE;
bClassificationSucceed = EthCSMatchSrcMACAddress(pstClassifierRule,((struct bcm_eth_header *)(skb->data))->au8SourceAddress);
if(!bClassificationSucceed)
return FALSE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS SrcMAC Matched\n");
bClassificationSucceed = EthCSMatchDestMACAddress(pstClassifierRule,((struct bcm_eth_header *)(skb->data))->au8DestinationAddress);
if(!bClassificationSucceed)
return FALSE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS DestMAC Matched\n");
//classify on ETHType/802.2SAP TLV
bClassificationSucceed = EthCSMatchEThTypeSAP(pstClassifierRule,skb,pstEthCsPktInfo);
if(!bClassificationSucceed)
return FALSE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS EthType/802.2SAP Matched\n");
//classify on 802.1VLAN Header Parameters
bClassificationSucceed = EthCSMatchVLANRules(pstClassifierRule,skb,pstEthCsPktInfo);
if(!bClassificationSucceed)
return FALSE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 VLAN Rules Matched\n");
return bClassificationSucceed;
}
static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter,PVOID pvEthPayload,
struct bcm_eth_packet_info *pstEthCsPktInfo)
{
USHORT u16Etype = ntohs(((struct bcm_eth_header *)pvEthPayload)->u16Etype);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : Eth Hdr Type : %X\n",u16Etype);
if(u16Etype > 0x5dc)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : ETH2 Frame \n");
//ETH2 Frame
if(u16Etype == ETHERNET_FRAMETYPE_802QVLAN)
{
//802.1Q VLAN Header
pstEthCsPktInfo->eNwpktEthFrameType = eEth802QVLANFrame;
u16Etype = ((struct bcm_eth_q_frame *)pvEthPayload)->EthType;
//((ETH_CS_802_Q_FRAME*)pvEthPayload)->UserPriority
}
else
{
pstEthCsPktInfo->eNwpktEthFrameType = eEthOtherFrame;
u16Etype = ntohs(u16Etype);
}
}
else
{
//802.2 LLC
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "802.2 LLC Frame \n");
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCFrame;
pstEthCsPktInfo->ucDSAP = ((struct bcm_eth_llc_frame *)pvEthPayload)->DSAP;
if(pstEthCsPktInfo->ucDSAP == 0xAA && ((struct bcm_eth_llc_frame *)pvEthPayload)->SSAP == 0xAA)
{
//SNAP Frame
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCSNAPFrame;
u16Etype = ((struct bcm_eth_llc_snap_frame *)pvEthPayload)->usEtherType;
}
}
if(u16Etype == ETHERNET_FRAMETYPE_IPV4)
pstEthCsPktInfo->eNwpktIPFrameType = eIPv4Packet;
else if(u16Etype == ETHERNET_FRAMETYPE_IPV6)
pstEthCsPktInfo->eNwpktIPFrameType = eIPv6Packet;
else
pstEthCsPktInfo->eNwpktIPFrameType = eNonIPPacket;
pstEthCsPktInfo->usEtherType = ((struct bcm_eth_header *)pvEthPayload)->u16Etype;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->eNwpktIPFrameType : %x\n",pstEthCsPktInfo->eNwpktIPFrameType);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->eNwpktEthFrameType : %x\n",pstEthCsPktInfo->eNwpktEthFrameType);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->usEtherType : %x\n",pstEthCsPktInfo->usEtherType);
}