| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/coproc.c: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| * Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bsearch.h> |
| #include <linux/kvm_host.h> |
| #include <linux/mm.h> |
| #include <linux/printk.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/esr.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/perf_event.h> |
| #include <asm/sysreg.h> |
| |
| #include <trace/events/kvm.h> |
| |
| #include "sys_regs.h" |
| |
| #include "trace.h" |
| |
| /* |
| * All of this file is extremely similar to the ARM coproc.c, but the |
| * types are different. My gut feeling is that it should be pretty |
| * easy to merge, but that would be an ABI breakage -- again. VFP |
| * would also need to be abstracted. |
| * |
| * For AArch32, we only take care of what is being trapped. Anything |
| * that has to do with init and userspace access has to go via the |
| * 64bit interface. |
| */ |
| |
| static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| static u32 cache_levels; |
| |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| #define CSSELR_MAX 14 |
| |
| /* Which cache CCSIDR represents depends on CSSELR value. */ |
| static u32 get_ccsidr(u32 csselr) |
| { |
| u32 ccsidr; |
| |
| /* Make sure noone else changes CSSELR during this! */ |
| local_irq_disable(); |
| write_sysreg(csselr, csselr_el1); |
| isb(); |
| ccsidr = read_sysreg(ccsidr_el1); |
| local_irq_enable(); |
| |
| return ccsidr; |
| } |
| |
| /* |
| * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| */ |
| static bool access_dcsw(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| /* |
| * Only track S/W ops if we don't have FWB. It still indicates |
| * that the guest is a bit broken (S/W operations should only |
| * be done by firmware, knowing that there is only a single |
| * CPU left in the system, and certainly not from non-secure |
| * software). |
| */ |
| if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| kvm_set_way_flush(vcpu); |
| |
| return true; |
| } |
| |
| static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) |
| { |
| switch (r->aarch32_map) { |
| case AA32_LO: |
| *mask = GENMASK_ULL(31, 0); |
| *shift = 0; |
| break; |
| case AA32_HI: |
| *mask = GENMASK_ULL(63, 32); |
| *shift = 32; |
| break; |
| default: |
| *mask = GENMASK_ULL(63, 0); |
| *shift = 0; |
| break; |
| } |
| } |
| |
| /* |
| * Generic accessor for VM registers. Only called as long as HCR_TVM |
| * is set. If the guest enables the MMU, we stop trapping the VM |
| * sys_regs and leave it in complete control of the caches. |
| */ |
| static bool access_vm_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| u64 val, mask, shift; |
| |
| BUG_ON(!p->is_write); |
| |
| get_access_mask(r, &mask, &shift); |
| |
| if (~mask) { |
| val = vcpu_read_sys_reg(vcpu, r->reg); |
| val &= ~mask; |
| } else { |
| val = 0; |
| } |
| |
| val |= (p->regval & (mask >> shift)) << shift; |
| vcpu_write_sys_reg(vcpu, val, r->reg); |
| |
| kvm_toggle_cache(vcpu, was_enabled); |
| return true; |
| } |
| |
| static bool access_actlr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask, shift; |
| |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| get_access_mask(r, &mask, &shift); |
| p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; |
| |
| return true; |
| } |
| |
| /* |
| * Trap handler for the GICv3 SGI generation system register. |
| * Forward the request to the VGIC emulation. |
| * The cp15_64 code makes sure this automatically works |
| * for both AArch64 and AArch32 accesses. |
| */ |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool g1; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| /* |
| * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates |
| * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, |
| * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively |
| * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure |
| * group. |
| */ |
| if (p->Op0 == 0) { /* AArch32 */ |
| switch (p->Op1) { |
| default: /* Keep GCC quiet */ |
| case 0: /* ICC_SGI1R */ |
| g1 = true; |
| break; |
| case 1: /* ICC_ASGI1R */ |
| case 2: /* ICC_SGI0R */ |
| g1 = false; |
| break; |
| } |
| } else { /* AArch64 */ |
| switch (p->Op2) { |
| default: /* Keep GCC quiet */ |
| case 5: /* ICC_SGI1R_EL1 */ |
| g1 = true; |
| break; |
| case 6: /* ICC_ASGI1R_EL1 */ |
| case 7: /* ICC_SGI0R_EL1 */ |
| g1 = false; |
| break; |
| } |
| } |
| |
| vgic_v3_dispatch_sgi(vcpu, p->regval, g1); |
| |
| return true; |
| } |
| |
| static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| return true; |
| } |
| |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| else |
| return read_zero(vcpu, p); |
| } |
| |
| /* |
| * ARMv8.1 mandates at least a trivial LORegion implementation, where all the |
| * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 |
| * system, these registers should UNDEF. LORID_EL1 being a RO register, we |
| * treat it separately. |
| */ |
| static bool trap_loregion(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| u32 sr = reg_to_encoding(r); |
| |
| if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| if (p->is_write && sr == SYS_LORID_EL1) |
| return write_to_read_only(vcpu, p, r); |
| |
| return trap_raz_wi(vcpu, p, r); |
| } |
| |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| p->regval = (1 << 3); |
| return true; |
| } |
| } |
| |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| p->regval = read_sysreg(dbgauthstatus_el1); |
| return true; |
| } |
| } |
| |
| /* |
| * We want to avoid world-switching all the DBG registers all the |
| * time: |
| * |
| * - If we've touched any debug register, it is likely that we're |
| * going to touch more of them. It then makes sense to disable the |
| * traps and start doing the save/restore dance |
| * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is |
| * then mandatory to save/restore the registers, as the guest |
| * depends on them. |
| * |
| * For this, we use a DIRTY bit, indicating the guest has modified the |
| * debug registers, used as follow: |
| * |
| * On guest entry: |
| * - If the dirty bit is set (because we're coming back from trapping), |
| * disable the traps, save host registers, restore guest registers. |
| * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), |
| * set the dirty bit, disable the traps, save host registers, |
| * restore guest registers. |
| * - Otherwise, enable the traps |
| * |
| * On guest exit: |
| * - If the dirty bit is set, save guest registers, restore host |
| * registers and clear the dirty bit. This ensure that the host can |
| * now use the debug registers. |
| */ |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| vcpu_write_sys_reg(vcpu, p->regval, r->reg); |
| vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| p->regval = vcpu_read_sys_reg(vcpu, r->reg); |
| } |
| |
| trace_trap_reg(__func__, r->reg, p->is_write, p->regval); |
| |
| return true; |
| } |
| |
| /* |
| * reg_to_dbg/dbg_to_reg |
| * |
| * A 32 bit write to a debug register leave top bits alone |
| * A 32 bit read from a debug register only returns the bottom bits |
| * |
| * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the |
| * hyp.S code switches between host and guest values in future. |
| */ |
| static void reg_to_dbg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd, |
| u64 *dbg_reg) |
| { |
| u64 mask, shift, val; |
| |
| get_access_mask(rd, &mask, &shift); |
| |
| val = *dbg_reg; |
| val &= ~mask; |
| val |= (p->regval & (mask >> shift)) << shift; |
| *dbg_reg = val; |
| |
| vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; |
| } |
| |
| static void dbg_to_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd, |
| u64 *dbg_reg) |
| { |
| u64 mask, shift; |
| |
| get_access_mask(rd, &mask, &shift); |
| p->regval = (*dbg_reg & mask) >> shift; |
| } |
| |
| static bool trap_bvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_bvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; |
| } |
| |
| static bool trap_bcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_bcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; |
| } |
| |
| static bool trap_wvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); |
| |
| return true; |
| } |
| |
| static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_wvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; |
| } |
| |
| static bool trap_wcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, rd, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, rd, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_wcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; |
| } |
| |
| static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 amair = read_sysreg(amair_el1); |
| vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); |
| } |
| |
| static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 actlr = read_sysreg(actlr_el1); |
| vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); |
| } |
| |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| vcpu_write_sys_reg(vcpu, calculate_mpidr(vcpu), MPIDR_EL1); |
| } |
| |
| static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| if (kvm_vcpu_has_pmu(vcpu)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); |
| |
| /* No PMU available, any PMU reg may UNDEF... */ |
| if (!kvm_arm_support_pmu_v3()) |
| return; |
| |
| n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; |
| n &= ARMV8_PMU_PMCR_N_MASK; |
| if (n) |
| mask |= GENMASK(n - 1, 0); |
| |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= mask; |
| } |
| |
| static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); |
| } |
| |
| static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; |
| } |
| |
| static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| reset_unknown(vcpu, r); |
| __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; |
| } |
| |
| static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 pmcr, val; |
| |
| /* No PMU available, PMCR_EL0 may UNDEF... */ |
| if (!kvm_arm_support_pmu_v3()) |
| return; |
| |
| pmcr = read_sysreg(pmcr_el0); |
| /* |
| * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN |
| * except PMCR.E resetting to zero. |
| */ |
| val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) |
| | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); |
| if (!system_supports_32bit_el0()) |
| val |= ARMV8_PMU_PMCR_LC; |
| __vcpu_sys_reg(vcpu, r->reg) = val; |
| } |
| |
| static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) |
| { |
| u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); |
| bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); |
| |
| if (!enabled) |
| kvm_inject_undefined(vcpu); |
| |
| return !enabled; |
| } |
| |
| static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| /* Only update writeable bits of PMCR */ |
| val = __vcpu_sys_reg(vcpu, PMCR_EL0); |
| val &= ~ARMV8_PMU_PMCR_MASK; |
| val |= p->regval & ARMV8_PMU_PMCR_MASK; |
| if (!system_supports_32bit_el0()) |
| val |= ARMV8_PMU_PMCR_LC; |
| __vcpu_sys_reg(vcpu, PMCR_EL0) = val; |
| kvm_pmu_handle_pmcr(vcpu, val); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| } else { |
| /* PMCR.P & PMCR.C are RAZ */ |
| val = __vcpu_sys_reg(vcpu, PMCR_EL0) |
| & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); |
| p->regval = val; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) |
| __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; |
| else |
| /* return PMSELR.SEL field */ |
| p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| |
| return true; |
| } |
| |
| static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 pmceid, mask, shift; |
| |
| BUG_ON(p->is_write); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| get_access_mask(r, &mask, &shift); |
| |
| pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); |
| pmceid &= mask; |
| pmceid >>= shift; |
| |
| p->regval = pmceid; |
| |
| return true; |
| } |
| |
| static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) |
| { |
| u64 pmcr, val; |
| |
| pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); |
| val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; |
| if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx = ~0UL; |
| |
| if (r->CRn == 9 && r->CRm == 13) { |
| if (r->Op2 == 2) { |
| /* PMXEVCNTR_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| } else if (r->Op2 == 0) { |
| /* PMCCNTR_EL0 */ |
| if (pmu_access_cycle_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } |
| } else if (r->CRn == 0 && r->CRm == 9) { |
| /* PMCCNTR */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 8) { |
| /* PMEVCNTRn_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| } |
| |
| /* Catch any decoding mistake */ |
| WARN_ON(idx == ~0UL); |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| kvm_pmu_set_counter_value(vcpu, idx, p->regval); |
| } else { |
| p->regval = kvm_pmu_get_counter_value(vcpu, idx); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx, reg; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { |
| /* PMXEVTYPER_EL0 */ |
| idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; |
| reg = PMEVTYPER0_EL0 + idx; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 12) { |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| if (idx == ARMV8_PMU_CYCLE_IDX) |
| reg = PMCCFILTR_EL0; |
| else |
| /* PMEVTYPERn_EL0 */ |
| reg = PMEVTYPER0_EL0 + idx; |
| } else { |
| BUG(); |
| } |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); |
| __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val, mask; |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| if (p->is_write) { |
| val = p->regval & mask; |
| if (r->Op2 & 0x1) { |
| /* accessing PMCNTENSET_EL0 */ |
| __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; |
| kvm_pmu_enable_counter_mask(vcpu, val); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| } else { |
| /* accessing PMCNTENCLR_EL0 */ |
| __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; |
| kvm_pmu_disable_counter_mask(vcpu, val); |
| } |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (check_pmu_access_disabled(vcpu, 0)) |
| return false; |
| |
| if (p->is_write) { |
| u64 val = p->regval & mask; |
| |
| if (r->Op2 & 0x1) |
| /* accessing PMINTENSET_EL1 */ |
| __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; |
| else |
| /* accessing PMINTENCLR_EL1 */ |
| __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| if (r->CRm & 0x2) |
| /* accessing PMOVSSET_EL0 */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); |
| else |
| /* accessing PMOVSCLR_EL0 */ |
| __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| if (pmu_write_swinc_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| kvm_pmu_software_increment(vcpu, p->regval & mask); |
| return true; |
| } |
| |
| static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| if (!vcpu_mode_priv(vcpu)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = |
| p->regval & ARMV8_PMU_USERENR_MASK; |
| } else { |
| p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) |
| & ARMV8_PMU_USERENR_MASK; |
| } |
| |
| return true; |
| } |
| |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ |
| { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ |
| trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ |
| { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ |
| trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ |
| { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ |
| trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ |
| { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ |
| trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } |
| |
| #define PMU_SYS_REG(r) \ |
| SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility |
| |
| /* Macro to expand the PMEVCNTRn_EL0 register */ |
| #define PMU_PMEVCNTR_EL0(n) \ |
| { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \ |
| .reset = reset_pmevcntr, \ |
| .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } |
| |
| /* Macro to expand the PMEVTYPERn_EL0 register */ |
| #define PMU_PMEVTYPER_EL0(n) \ |
| { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \ |
| .reset = reset_pmevtyper, \ |
| .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } |
| |
| static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| kvm_inject_undefined(vcpu); |
| |
| return false; |
| } |
| |
| /* Macro to expand the AMU counter and type registers*/ |
| #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } |
| #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } |
| #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } |
| #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } |
| |
| static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; |
| } |
| |
| /* |
| * If we land here on a PtrAuth access, that is because we didn't |
| * fixup the access on exit by allowing the PtrAuth sysregs. The only |
| * way this happens is when the guest does not have PtrAuth support |
| * enabled. |
| */ |
| #define __PTRAUTH_KEY(k) \ |
| { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ |
| .visibility = ptrauth_visibility} |
| |
| #define PTRAUTH_KEY(k) \ |
| __PTRAUTH_KEY(k ## KEYLO_EL1), \ |
| __PTRAUTH_KEY(k ## KEYHI_EL1) |
| |
| static bool access_arch_timer(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| enum kvm_arch_timers tmr; |
| enum kvm_arch_timer_regs treg; |
| u64 reg = reg_to_encoding(r); |
| |
| switch (reg) { |
| case SYS_CNTP_TVAL_EL0: |
| case SYS_AARCH32_CNTP_TVAL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_TVAL; |
| break; |
| case SYS_CNTP_CTL_EL0: |
| case SYS_AARCH32_CNTP_CTL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_CTL; |
| break; |
| case SYS_CNTP_CVAL_EL0: |
| case SYS_AARCH32_CNTP_CVAL: |
| tmr = TIMER_PTIMER; |
| treg = TIMER_REG_CVAL; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (p->is_write) |
| kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); |
| else |
| p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); |
| |
| return true; |
| } |
| |
| /* Read a sanitised cpufeature ID register by sys_reg_desc */ |
| static u64 read_id_reg(const struct kvm_vcpu *vcpu, |
| struct sys_reg_desc const *r, bool raz) |
| { |
| u32 id = reg_to_encoding(r); |
| u64 val; |
| |
| if (raz) |
| return 0; |
| |
| val = read_sanitised_ftr_reg(id); |
| |
| switch (id) { |
| case SYS_ID_AA64PFR0_EL1: |
| if (!vcpu_has_sve(vcpu)) |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE); |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU); |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2); |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2); |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3); |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3); |
| if (irqchip_in_kernel(vcpu->kvm) && |
| vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC); |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1); |
| } |
| break; |
| case SYS_ID_AA64PFR1_EL1: |
| if (!kvm_has_mte(vcpu->kvm)) |
| val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE); |
| break; |
| case SYS_ID_AA64ISAR1_EL1: |
| if (!vcpu_has_ptrauth(vcpu)) |
| val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_API) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) | |
| ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI)); |
| break; |
| case SYS_ID_AA64DFR0_EL1: |
| /* Limit debug to ARMv8.0 */ |
| val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER); |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6); |
| /* Limit guests to PMUv3 for ARMv8.4 */ |
| val = cpuid_feature_cap_perfmon_field(val, |
| ID_AA64DFR0_PMUVER_SHIFT, |
| kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0); |
| /* Hide SPE from guests */ |
| val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER); |
| break; |
| case SYS_ID_DFR0_EL1: |
| /* Limit guests to PMUv3 for ARMv8.4 */ |
| val = cpuid_feature_cap_perfmon_field(val, |
| ID_DFR0_PERFMON_SHIFT, |
| kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0); |
| break; |
| } |
| |
| return val; |
| } |
| |
| static unsigned int id_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *r) |
| { |
| u32 id = reg_to_encoding(r); |
| |
| switch (id) { |
| case SYS_ID_AA64ZFR0_EL1: |
| if (!vcpu_has_sve(vcpu)) |
| return REG_RAZ; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* cpufeature ID register access trap handlers */ |
| |
| static bool __access_id_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r, |
| bool raz) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = read_id_reg(vcpu, r, raz); |
| return true; |
| } |
| |
| static bool access_id_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool raz = sysreg_visible_as_raz(vcpu, r); |
| |
| return __access_id_reg(vcpu, p, r, raz); |
| } |
| |
| static bool access_raz_id_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| return __access_id_reg(vcpu, p, r, true); |
| } |
| |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id); |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id); |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg); |
| |
| /* Visibility overrides for SVE-specific control registers */ |
| static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| if (vcpu_has_sve(vcpu)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| const u64 id = sys_reg_to_index(rd); |
| u8 csv2, csv3; |
| int err; |
| u64 val; |
| |
| err = reg_from_user(&val, uaddr, id); |
| if (err) |
| return err; |
| |
| /* |
| * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as |
| * it doesn't promise more than what is actually provided (the |
| * guest could otherwise be covered in ectoplasmic residue). |
| */ |
| csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT); |
| if (csv2 > 1 || |
| (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) |
| return -EINVAL; |
| |
| /* Same thing for CSV3 */ |
| csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT); |
| if (csv3 > 1 || |
| (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) |
| return -EINVAL; |
| |
| /* We can only differ with CSV[23], and anything else is an error */ |
| val ^= read_id_reg(vcpu, rd, false); |
| val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) | |
| (0xFUL << ID_AA64PFR0_CSV3_SHIFT)); |
| if (val) |
| return -EINVAL; |
| |
| vcpu->kvm->arch.pfr0_csv2 = csv2; |
| vcpu->kvm->arch.pfr0_csv3 = csv3 ; |
| |
| return 0; |
| } |
| |
| /* |
| * cpufeature ID register user accessors |
| * |
| * For now, these registers are immutable for userspace, so no values |
| * are stored, and for set_id_reg() we don't allow the effective value |
| * to be changed. |
| */ |
| static int __get_id_reg(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, void __user *uaddr, |
| bool raz) |
| { |
| const u64 id = sys_reg_to_index(rd); |
| const u64 val = read_id_reg(vcpu, rd, raz); |
| |
| return reg_to_user(uaddr, &val, id); |
| } |
| |
| static int __set_id_reg(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, void __user *uaddr, |
| bool raz) |
| { |
| const u64 id = sys_reg_to_index(rd); |
| int err; |
| u64 val; |
| |
| err = reg_from_user(&val, uaddr, id); |
| if (err) |
| return err; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (val != read_id_reg(vcpu, rd, raz)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| bool raz = sysreg_visible_as_raz(vcpu, rd); |
| |
| return __get_id_reg(vcpu, rd, uaddr, raz); |
| } |
| |
| static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| bool raz = sysreg_visible_as_raz(vcpu, rd); |
| |
| return __set_id_reg(vcpu, rd, uaddr, raz); |
| } |
| |
| static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| return __set_id_reg(vcpu, rd, uaddr, true); |
| } |
| |
| static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| const u64 id = sys_reg_to_index(rd); |
| const u64 val = 0; |
| |
| return reg_to_user(uaddr, &val, id); |
| } |
| |
| static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| int err; |
| u64 val; |
| |
| /* Perform the access even if we are going to ignore the value */ |
| err = reg_from_user(&val, uaddr, sys_reg_to_index(rd)); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| return true; |
| } |
| |
| static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| p->regval = read_sysreg(clidr_el1); |
| return true; |
| } |
| |
| static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| int reg = r->reg; |
| |
| if (p->is_write) |
| vcpu_write_sys_reg(vcpu, p->regval, reg); |
| else |
| p->regval = vcpu_read_sys_reg(vcpu, reg); |
| return true; |
| } |
| |
| static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u32 csselr; |
| |
| if (p->is_write) |
| return write_to_read_only(vcpu, p, r); |
| |
| csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); |
| p->regval = get_ccsidr(csselr); |
| |
| /* |
| * Guests should not be doing cache operations by set/way at all, and |
| * for this reason, we trap them and attempt to infer the intent, so |
| * that we can flush the entire guest's address space at the appropriate |
| * time. |
| * To prevent this trapping from causing performance problems, let's |
| * expose the geometry of all data and unified caches (which are |
| * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way. |
| * [If guests should attempt to infer aliasing properties from the |
| * geometry (which is not permitted by the architecture), they would |
| * only do so for virtually indexed caches.] |
| */ |
| if (!(csselr & 1)) // data or unified cache |
| p->regval &= ~GENMASK(27, 3); |
| return true; |
| } |
| |
| static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| if (kvm_has_mte(vcpu->kvm)) |
| return 0; |
| |
| return REG_HIDDEN; |
| } |
| |
| #define MTE_REG(name) { \ |
| SYS_DESC(SYS_##name), \ |
| .access = undef_access, \ |
| .reset = reset_unknown, \ |
| .reg = name, \ |
| .visibility = mte_visibility, \ |
| } |
| |
| /* sys_reg_desc initialiser for known cpufeature ID registers */ |
| #define ID_SANITISED(name) { \ |
| SYS_DESC(SYS_##name), \ |
| .access = access_id_reg, \ |
| .get_user = get_id_reg, \ |
| .set_user = set_id_reg, \ |
| .visibility = id_visibility, \ |
| } |
| |
| /* |
| * sys_reg_desc initialiser for architecturally unallocated cpufeature ID |
| * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 |
| * (1 <= crm < 8, 0 <= Op2 < 8). |
| */ |
| #define ID_UNALLOCATED(crm, op2) { \ |
| Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ |
| .access = access_raz_id_reg, \ |
| .get_user = get_raz_reg, \ |
| .set_user = set_raz_id_reg, \ |
| } |
| |
| /* |
| * sys_reg_desc initialiser for known ID registers that we hide from guests. |
| * For now, these are exposed just like unallocated ID regs: they appear |
| * RAZ for the guest. |
| */ |
| #define ID_HIDDEN(name) { \ |
| SYS_DESC(SYS_##name), \ |
| .access = access_raz_id_reg, \ |
| .get_user = get_raz_reg, \ |
| .set_user = set_raz_id_reg, \ |
| } |
| |
| /* |
| * Architected system registers. |
| * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| * |
| * Debug handling: We do trap most, if not all debug related system |
| * registers. The implementation is good enough to ensure that a guest |
| * can use these with minimal performance degradation. The drawback is |
| * that we don't implement any of the external debug, none of the |
| * OSlock protocol. This should be revisited if we ever encounter a |
| * more demanding guest... |
| */ |
| static const struct sys_reg_desc sys_reg_descs[] = { |
| { SYS_DESC(SYS_DC_ISW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CSW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CISW), access_dcsw }, |
| |
| DBG_BCR_BVR_WCR_WVR_EL1(0), |
| DBG_BCR_BVR_WCR_WVR_EL1(1), |
| { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, |
| { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, |
| DBG_BCR_BVR_WCR_WVR_EL1(2), |
| DBG_BCR_BVR_WCR_WVR_EL1(3), |
| DBG_BCR_BVR_WCR_WVR_EL1(4), |
| DBG_BCR_BVR_WCR_WVR_EL1(5), |
| DBG_BCR_BVR_WCR_WVR_EL1(6), |
| DBG_BCR_BVR_WCR_WVR_EL1(7), |
| DBG_BCR_BVR_WCR_WVR_EL1(8), |
| DBG_BCR_BVR_WCR_WVR_EL1(9), |
| DBG_BCR_BVR_WCR_WVR_EL1(10), |
| DBG_BCR_BVR_WCR_WVR_EL1(11), |
| DBG_BCR_BVR_WCR_WVR_EL1(12), |
| DBG_BCR_BVR_WCR_WVR_EL1(13), |
| DBG_BCR_BVR_WCR_WVR_EL1(14), |
| DBG_BCR_BVR_WCR_WVR_EL1(15), |
| |
| { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 }, |
| { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, |
| |
| { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, |
| // DBGDTR[TR]X_EL0 share the same encoding |
| { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, |
| |
| { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, |
| |
| { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, |
| |
| /* |
| * ID regs: all ID_SANITISED() entries here must have corresponding |
| * entries in arm64_ftr_regs[]. |
| */ |
| |
| /* AArch64 mappings of the AArch32 ID registers */ |
| /* CRm=1 */ |
| ID_SANITISED(ID_PFR0_EL1), |
| ID_SANITISED(ID_PFR1_EL1), |
| ID_SANITISED(ID_DFR0_EL1), |
| ID_HIDDEN(ID_AFR0_EL1), |
| ID_SANITISED(ID_MMFR0_EL1), |
| ID_SANITISED(ID_MMFR1_EL1), |
| ID_SANITISED(ID_MMFR2_EL1), |
| ID_SANITISED(ID_MMFR3_EL1), |
| |
| /* CRm=2 */ |
| ID_SANITISED(ID_ISAR0_EL1), |
| ID_SANITISED(ID_ISAR1_EL1), |
| ID_SANITISED(ID_ISAR2_EL1), |
| ID_SANITISED(ID_ISAR3_EL1), |
| ID_SANITISED(ID_ISAR4_EL1), |
| ID_SANITISED(ID_ISAR5_EL1), |
| ID_SANITISED(ID_MMFR4_EL1), |
| ID_SANITISED(ID_ISAR6_EL1), |
| |
| /* CRm=3 */ |
| ID_SANITISED(MVFR0_EL1), |
| ID_SANITISED(MVFR1_EL1), |
| ID_SANITISED(MVFR2_EL1), |
| ID_UNALLOCATED(3,3), |
| ID_SANITISED(ID_PFR2_EL1), |
| ID_HIDDEN(ID_DFR1_EL1), |
| ID_SANITISED(ID_MMFR5_EL1), |
| ID_UNALLOCATED(3,7), |
| |
| /* AArch64 ID registers */ |
| /* CRm=4 */ |
| { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, |
| .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, |
| ID_SANITISED(ID_AA64PFR1_EL1), |
| ID_UNALLOCATED(4,2), |
| ID_UNALLOCATED(4,3), |
| ID_SANITISED(ID_AA64ZFR0_EL1), |
| ID_UNALLOCATED(4,5), |
| ID_UNALLOCATED(4,6), |
| ID_UNALLOCATED(4,7), |
| |
| /* CRm=5 */ |
| ID_SANITISED(ID_AA64DFR0_EL1), |
| ID_SANITISED(ID_AA64DFR1_EL1), |
| ID_UNALLOCATED(5,2), |
| ID_UNALLOCATED(5,3), |
| ID_HIDDEN(ID_AA64AFR0_EL1), |
| ID_HIDDEN(ID_AA64AFR1_EL1), |
| ID_UNALLOCATED(5,6), |
| ID_UNALLOCATED(5,7), |
| |
| /* CRm=6 */ |
| ID_SANITISED(ID_AA64ISAR0_EL1), |
| ID_SANITISED(ID_AA64ISAR1_EL1), |
| ID_SANITISED(ID_AA64ISAR2_EL1), |
| ID_UNALLOCATED(6,3), |
| ID_UNALLOCATED(6,4), |
| ID_UNALLOCATED(6,5), |
| ID_UNALLOCATED(6,6), |
| ID_UNALLOCATED(6,7), |
| |
| /* CRm=7 */ |
| ID_SANITISED(ID_AA64MMFR0_EL1), |
| ID_SANITISED(ID_AA64MMFR1_EL1), |
| ID_SANITISED(ID_AA64MMFR2_EL1), |
| ID_UNALLOCATED(7,3), |
| ID_UNALLOCATED(7,4), |
| ID_UNALLOCATED(7,5), |
| ID_UNALLOCATED(7,6), |
| ID_UNALLOCATED(7,7), |
| |
| { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, |
| { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, |
| { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, |
| |
| MTE_REG(RGSR_EL1), |
| MTE_REG(GCR_EL1), |
| |
| { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, |
| { SYS_DESC(SYS_TRFCR_EL1), undef_access }, |
| { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, |
| { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, |
| { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, |
| |
| PTRAUTH_KEY(APIA), |
| PTRAUTH_KEY(APIB), |
| PTRAUTH_KEY(APDA), |
| PTRAUTH_KEY(APDB), |
| PTRAUTH_KEY(APGA), |
| |
| { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, |
| { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, |
| { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, |
| |
| { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, |
| |
| MTE_REG(TFSR_EL1), |
| MTE_REG(TFSRE0_EL1), |
| |
| { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, |
| { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, |
| |
| { SYS_DESC(SYS_PMSCR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSICR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, |
| { SYS_DESC(SYS_PMBSR_EL1), undef_access }, |
| /* PMBIDR_EL1 is not trapped */ |
| |
| { PMU_SYS_REG(SYS_PMINTENSET_EL1), |
| .access = access_pminten, .reg = PMINTENSET_EL1 }, |
| { PMU_SYS_REG(SYS_PMINTENCLR_EL1), |
| .access = access_pminten, .reg = PMINTENSET_EL1 }, |
| { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, |
| |
| { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, |
| { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, |
| |
| { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORN_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORC_EL1), trap_loregion }, |
| { SYS_DESC(SYS_LORID_EL1), trap_loregion }, |
| |
| { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, |
| { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, |
| |
| { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, |
| |
| { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, |
| { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, |
| |
| { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, |
| |
| { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, |
| |
| { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, |
| { SYS_DESC(SYS_CLIDR_EL1), access_clidr }, |
| { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, |
| { SYS_DESC(SYS_CTR_EL0), access_ctr }, |
| |
| { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr, |
| .reset = reset_pmcr, .reg = PMCR_EL0 }, |
| { PMU_SYS_REG(SYS_PMCNTENSET_EL0), |
| .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, |
| { PMU_SYS_REG(SYS_PMCNTENCLR_EL0), |
| .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, |
| { PMU_SYS_REG(SYS_PMOVSCLR_EL0), |
| .access = access_pmovs, .reg = PMOVSSET_EL0 }, |
| /* |
| * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was |
| * previously (and pointlessly) advertised in the past... |
| */ |
| { PMU_SYS_REG(SYS_PMSWINC_EL0), |
| .get_user = get_raz_reg, .set_user = set_wi_reg, |
| .access = access_pmswinc, .reset = NULL }, |
| { PMU_SYS_REG(SYS_PMSELR_EL0), |
| .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, |
| { PMU_SYS_REG(SYS_PMCEID0_EL0), |
| .access = access_pmceid, .reset = NULL }, |
| { PMU_SYS_REG(SYS_PMCEID1_EL0), |
| .access = access_pmceid, .reset = NULL }, |
| { PMU_SYS_REG(SYS_PMCCNTR_EL0), |
| .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 }, |
| { PMU_SYS_REG(SYS_PMXEVTYPER_EL0), |
| .access = access_pmu_evtyper, .reset = NULL }, |
| { PMU_SYS_REG(SYS_PMXEVCNTR_EL0), |
| .access = access_pmu_evcntr, .reset = NULL }, |
| /* |
| * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr, |
| .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, |
| { PMU_SYS_REG(SYS_PMOVSSET_EL0), |
| .access = access_pmovs, .reg = PMOVSSET_EL0 }, |
| |
| { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, |
| { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, |
| |
| { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, |
| |
| { SYS_DESC(SYS_AMCR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, |
| { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, |
| AMU_AMEVCNTR0_EL0(0), |
| AMU_AMEVCNTR0_EL0(1), |
| AMU_AMEVCNTR0_EL0(2), |
| AMU_AMEVCNTR0_EL0(3), |
| AMU_AMEVCNTR0_EL0(4), |
| AMU_AMEVCNTR0_EL0(5), |
| AMU_AMEVCNTR0_EL0(6), |
| AMU_AMEVCNTR0_EL0(7), |
| AMU_AMEVCNTR0_EL0(8), |
| AMU_AMEVCNTR0_EL0(9), |
| AMU_AMEVCNTR0_EL0(10), |
| AMU_AMEVCNTR0_EL0(11), |
| AMU_AMEVCNTR0_EL0(12), |
| AMU_AMEVCNTR0_EL0(13), |
| AMU_AMEVCNTR0_EL0(14), |
| AMU_AMEVCNTR0_EL0(15), |
| AMU_AMEVTYPER0_EL0(0), |
| AMU_AMEVTYPER0_EL0(1), |
| AMU_AMEVTYPER0_EL0(2), |
| AMU_AMEVTYPER0_EL0(3), |
| AMU_AMEVTYPER0_EL0(4), |
| AMU_AMEVTYPER0_EL0(5), |
| AMU_AMEVTYPER0_EL0(6), |
| AMU_AMEVTYPER0_EL0(7), |
| AMU_AMEVTYPER0_EL0(8), |
| AMU_AMEVTYPER0_EL0(9), |
| AMU_AMEVTYPER0_EL0(10), |
| AMU_AMEVTYPER0_EL0(11), |
| AMU_AMEVTYPER0_EL0(12), |
| AMU_AMEVTYPER0_EL0(13), |
| AMU_AMEVTYPER0_EL0(14), |
| AMU_AMEVTYPER0_EL0(15), |
| AMU_AMEVCNTR1_EL0(0), |
| AMU_AMEVCNTR1_EL0(1), |
| AMU_AMEVCNTR1_EL0(2), |
| AMU_AMEVCNTR1_EL0(3), |
| AMU_AMEVCNTR1_EL0(4), |
| AMU_AMEVCNTR1_EL0(5), |
| AMU_AMEVCNTR1_EL0(6), |
| AMU_AMEVCNTR1_EL0(7), |
| AMU_AMEVCNTR1_EL0(8), |
| AMU_AMEVCNTR1_EL0(9), |
| AMU_AMEVCNTR1_EL0(10), |
| AMU_AMEVCNTR1_EL0(11), |
| AMU_AMEVCNTR1_EL0(12), |
| AMU_AMEVCNTR1_EL0(13), |
| AMU_AMEVCNTR1_EL0(14), |
| AMU_AMEVCNTR1_EL0(15), |
| AMU_AMEVTYPER1_EL0(0), |
| AMU_AMEVTYPER1_EL0(1), |
| AMU_AMEVTYPER1_EL0(2), |
| AMU_AMEVTYPER1_EL0(3), |
| AMU_AMEVTYPER1_EL0(4), |
| AMU_AMEVTYPER1_EL0(5), |
| AMU_AMEVTYPER1_EL0(6), |
| AMU_AMEVTYPER1_EL0(7), |
| AMU_AMEVTYPER1_EL0(8), |
| AMU_AMEVTYPER1_EL0(9), |
| AMU_AMEVTYPER1_EL0(10), |
| AMU_AMEVTYPER1_EL0(11), |
| AMU_AMEVTYPER1_EL0(12), |
| AMU_AMEVTYPER1_EL0(13), |
| AMU_AMEVTYPER1_EL0(14), |
| AMU_AMEVTYPER1_EL0(15), |
| |
| { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, |
| { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, |
| |
| /* PMEVCNTRn_EL0 */ |
| PMU_PMEVCNTR_EL0(0), |
| PMU_PMEVCNTR_EL0(1), |
| PMU_PMEVCNTR_EL0(2), |
| PMU_PMEVCNTR_EL0(3), |
| PMU_PMEVCNTR_EL0(4), |
| PMU_PMEVCNTR_EL0(5), |
| PMU_PMEVCNTR_EL0(6), |
| PMU_PMEVCNTR_EL0(7), |
| PMU_PMEVCNTR_EL0(8), |
| PMU_PMEVCNTR_EL0(9), |
| PMU_PMEVCNTR_EL0(10), |
| PMU_PMEVCNTR_EL0(11), |
| PMU_PMEVCNTR_EL0(12), |
| PMU_PMEVCNTR_EL0(13), |
| PMU_PMEVCNTR_EL0(14), |
| PMU_PMEVCNTR_EL0(15), |
| PMU_PMEVCNTR_EL0(16), |
| PMU_PMEVCNTR_EL0(17), |
| PMU_PMEVCNTR_EL0(18), |
| PMU_PMEVCNTR_EL0(19), |
| PMU_PMEVCNTR_EL0(20), |
| PMU_PMEVCNTR_EL0(21), |
| PMU_PMEVCNTR_EL0(22), |
| PMU_PMEVCNTR_EL0(23), |
| PMU_PMEVCNTR_EL0(24), |
| PMU_PMEVCNTR_EL0(25), |
| PMU_PMEVCNTR_EL0(26), |
| PMU_PMEVCNTR_EL0(27), |
| PMU_PMEVCNTR_EL0(28), |
| PMU_PMEVCNTR_EL0(29), |
| PMU_PMEVCNTR_EL0(30), |
| /* PMEVTYPERn_EL0 */ |
| PMU_PMEVTYPER_EL0(0), |
| PMU_PMEVTYPER_EL0(1), |
| PMU_PMEVTYPER_EL0(2), |
| PMU_PMEVTYPER_EL0(3), |
| PMU_PMEVTYPER_EL0(4), |
| PMU_PMEVTYPER_EL0(5), |
| PMU_PMEVTYPER_EL0(6), |
| PMU_PMEVTYPER_EL0(7), |
| PMU_PMEVTYPER_EL0(8), |
| PMU_PMEVTYPER_EL0(9), |
| PMU_PMEVTYPER_EL0(10), |
| PMU_PMEVTYPER_EL0(11), |
| PMU_PMEVTYPER_EL0(12), |
| PMU_PMEVTYPER_EL0(13), |
| PMU_PMEVTYPER_EL0(14), |
| PMU_PMEVTYPER_EL0(15), |
| PMU_PMEVTYPER_EL0(16), |
| PMU_PMEVTYPER_EL0(17), |
| PMU_PMEVTYPER_EL0(18), |
| PMU_PMEVTYPER_EL0(19), |
| PMU_PMEVTYPER_EL0(20), |
| PMU_PMEVTYPER_EL0(21), |
| PMU_PMEVTYPER_EL0(22), |
| PMU_PMEVTYPER_EL0(23), |
| PMU_PMEVTYPER_EL0(24), |
| PMU_PMEVTYPER_EL0(25), |
| PMU_PMEVTYPER_EL0(26), |
| PMU_PMEVTYPER_EL0(27), |
| PMU_PMEVTYPER_EL0(28), |
| PMU_PMEVTYPER_EL0(29), |
| PMU_PMEVTYPER_EL0(30), |
| /* |
| * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper, |
| .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, |
| |
| { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, |
| { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, |
| { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, |
| }; |
| |
| static bool trap_dbgdidr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); |
| u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); |
| |
| p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | |
| (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | |
| (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) |
| | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); |
| return true; |
| } |
| } |
| |
| /* |
| * AArch32 debug register mappings |
| * |
| * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] |
| * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] |
| * |
| * None of the other registers share their location, so treat them as |
| * if they were 64bit. |
| */ |
| #define DBG_BCR_BVR_WCR_WVR(n) \ |
| /* DBGBVRn */ \ |
| { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ |
| /* DBGBCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ |
| /* DBGWVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ |
| /* DBGWCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } |
| |
| #define DBGBXVR(n) \ |
| { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } |
| |
| /* |
| * Trapped cp14 registers. We generally ignore most of the external |
| * debug, on the principle that they don't really make sense to a |
| * guest. Revisit this one day, would this principle change. |
| */ |
| static const struct sys_reg_desc cp14_regs[] = { |
| /* DBGDIDR */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, |
| /* DBGDTRRXext */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, |
| |
| DBG_BCR_BVR_WCR_WVR(0), |
| /* DBGDSCRint */ |
| { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(1), |
| /* DBGDCCINT */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, |
| /* DBGDSCRext */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, |
| DBG_BCR_BVR_WCR_WVR(2), |
| /* DBGDTR[RT]Xint */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, |
| /* DBGDTR[RT]Xext */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(3), |
| DBG_BCR_BVR_WCR_WVR(4), |
| DBG_BCR_BVR_WCR_WVR(5), |
| /* DBGWFAR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, |
| /* DBGOSECCR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(6), |
| /* DBGVCR */ |
| { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, |
| DBG_BCR_BVR_WCR_WVR(7), |
| DBG_BCR_BVR_WCR_WVR(8), |
| DBG_BCR_BVR_WCR_WVR(9), |
| DBG_BCR_BVR_WCR_WVR(10), |
| DBG_BCR_BVR_WCR_WVR(11), |
| DBG_BCR_BVR_WCR_WVR(12), |
| DBG_BCR_BVR_WCR_WVR(13), |
| DBG_BCR_BVR_WCR_WVR(14), |
| DBG_BCR_BVR_WCR_WVR(15), |
| |
| /* DBGDRAR (32bit) */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| DBGBXVR(0), |
| /* DBGOSLAR */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, |
| DBGBXVR(1), |
| /* DBGOSLSR */ |
| { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, |
| DBGBXVR(2), |
| DBGBXVR(3), |
| /* DBGOSDLR */ |
| { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, |
| DBGBXVR(4), |
| /* DBGPRCR */ |
| { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, |
| DBGBXVR(5), |
| DBGBXVR(6), |
| DBGBXVR(7), |
| DBGBXVR(8), |
| DBGBXVR(9), |
| DBGBXVR(10), |
| DBGBXVR(11), |
| DBGBXVR(12), |
| DBGBXVR(13), |
| DBGBXVR(14), |
| DBGBXVR(15), |
| |
| /* DBGDSAR (32bit) */ |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| /* DBGDEVID2 */ |
| { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID1 */ |
| { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID */ |
| { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, |
| /* DBGCLAIMSET */ |
| { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, |
| /* DBGCLAIMCLR */ |
| { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, |
| /* DBGAUTHSTATUS */ |
| { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, |
| }; |
| |
| /* Trapped cp14 64bit registers */ |
| static const struct sys_reg_desc cp14_64_regs[] = { |
| /* DBGDRAR (64bit) */ |
| { Op1( 0), CRm( 1), .access = trap_raz_wi }, |
| |
| /* DBGDSAR (64bit) */ |
| { Op1( 0), CRm( 2), .access = trap_raz_wi }, |
| }; |
| |
| /* Macro to expand the PMEVCNTRn register */ |
| #define PMU_PMEVCNTR(n) \ |
| /* PMEVCNTRn */ \ |
| { Op1(0), CRn(0b1110), \ |
| CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ |
| access_pmu_evcntr } |
| |
| /* Macro to expand the PMEVTYPERn register */ |
| #define PMU_PMEVTYPER(n) \ |
| /* PMEVTYPERn */ \ |
| { Op1(0), CRn(0b1110), \ |
| CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ |
| access_pmu_evtyper } |
| |
| /* |
| * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, |
| * depending on the way they are accessed (as a 32bit or a 64bit |
| * register). |
| */ |
| static const struct sys_reg_desc cp15_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, |
| /* ACTLR */ |
| { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, |
| /* ACTLR2 */ |
| { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, |
| /* TTBCR */ |
| { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, |
| /* TTBCR2 */ |
| { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, |
| { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, |
| /* DFSR */ |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, |
| /* ADFSR */ |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, |
| /* AIFSR */ |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, |
| /* DFAR */ |
| { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, |
| /* IFAR */ |
| { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, |
| |
| /* |
| * DC{C,I,CI}SW operations: |
| */ |
| { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, |
| |
| /* PMU */ |
| { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr }, |
| { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid }, |
| { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs }, |
| { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid }, |
| { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid }, |
| /* PMMIR */ |
| { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi }, |
| |
| /* PRRR/MAIR0 */ |
| { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, |
| /* NMRR/MAIR1 */ |
| { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, |
| /* AMAIR0 */ |
| { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, |
| /* AMAIR1 */ |
| { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, |
| |
| /* ICC_SRE */ |
| { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, |
| |
| { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, |
| |
| /* Arch Tmers */ |
| { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, |
| { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, |
| |
| /* PMEVCNTRn */ |
| PMU_PMEVCNTR(0), |
| PMU_PMEVCNTR(1), |
| PMU_PMEVCNTR(2), |
| PMU_PMEVCNTR(3), |
| PMU_PMEVCNTR(4), |
| PMU_PMEVCNTR(5), |
| PMU_PMEVCNTR(6), |
| PMU_PMEVCNTR(7), |
| PMU_PMEVCNTR(8), |
| PMU_PMEVCNTR(9), |
| PMU_PMEVCNTR(10), |
| PMU_PMEVCNTR(11), |
| PMU_PMEVCNTR(12), |
| PMU_PMEVCNTR(13), |
| PMU_PMEVCNTR(14), |
| PMU_PMEVCNTR(15), |
| PMU_PMEVCNTR(16), |
| PMU_PMEVCNTR(17), |
| PMU_PMEVCNTR(18), |
| PMU_PMEVCNTR(19), |
| PMU_PMEVCNTR(20), |
| PMU_PMEVCNTR(21), |
| PMU_PMEVCNTR(22), |
| PMU_PMEVCNTR(23), |
| PMU_PMEVCNTR(24), |
| PMU_PMEVCNTR(25), |
| PMU_PMEVCNTR(26), |
| PMU_PMEVCNTR(27), |
| PMU_PMEVCNTR(28), |
| PMU_PMEVCNTR(29), |
| PMU_PMEVCNTR(30), |
| /* PMEVTYPERn */ |
| PMU_PMEVTYPER(0), |
| PMU_PMEVTYPER(1), |
| PMU_PMEVTYPER(2), |
| PMU_PMEVTYPER(3), |
| PMU_PMEVTYPER(4), |
| PMU_PMEVTYPER(5), |
| PMU_PMEVTYPER(6), |
| PMU_PMEVTYPER(7), |
| PMU_PMEVTYPER(8), |
| PMU_PMEVTYPER(9), |
| PMU_PMEVTYPER(10), |
| PMU_PMEVTYPER(11), |
| PMU_PMEVTYPER(12), |
| PMU_PMEVTYPER(13), |
| PMU_PMEVTYPER(14), |
| PMU_PMEVTYPER(15), |
| PMU_PMEVTYPER(16), |
| PMU_PMEVTYPER(17), |
| PMU_PMEVTYPER(18), |
| PMU_PMEVTYPER(19), |
| PMU_PMEVTYPER(20), |
| PMU_PMEVTYPER(21), |
| PMU_PMEVTYPER(22), |
| PMU_PMEVTYPER(23), |
| PMU_PMEVTYPER(24), |
| PMU_PMEVTYPER(25), |
| PMU_PMEVTYPER(26), |
| PMU_PMEVTYPER(27), |
| PMU_PMEVTYPER(28), |
| PMU_PMEVTYPER(29), |
| PMU_PMEVTYPER(30), |
| /* PMCCFILTR */ |
| { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper }, |
| |
| { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, |
| { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, |
| { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, |
| }; |
| |
| static const struct sys_reg_desc cp15_64_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr }, |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ |
| { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, |
| { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ |
| { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ |
| { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, |
| }; |
| |
| static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, |
| bool is_32) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n; i++) { |
| if (!is_32 && table[i].reg && !table[i].reset) { |
| kvm_err("sys_reg table %p entry %d has lacks reset\n", |
| table, i); |
| return 1; |
| } |
| |
| if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { |
| kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static void perform_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); |
| |
| /* Check for regs disabled by runtime config */ |
| if (sysreg_hidden(vcpu, r)) { |
| kvm_inject_undefined(vcpu); |
| return; |
| } |
| |
| /* |
| * Not having an accessor means that we have configured a trap |
| * that we don't know how to handle. This certainly qualifies |
| * as a gross bug that should be fixed right away. |
| */ |
| BUG_ON(!r->access); |
| |
| /* Skip instruction if instructed so */ |
| if (likely(r->access(vcpu, params, r))) |
| kvm_incr_pc(vcpu); |
| } |
| |
| /* |
| * emulate_cp -- tries to match a sys_reg access in a handling table, and |
| * call the corresponding trap handler. |
| * |
| * @params: pointer to the descriptor of the access |
| * @table: array of trap descriptors |
| * @num: size of the trap descriptor array |
| * |
| * Return 0 if the access has been handled, and -1 if not. |
| */ |
| static int emulate_cp(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *table, |
| size_t num) |
| { |
| const struct sys_reg_desc *r; |
| |
| if (!table) |
| return -1; /* Not handled */ |
| |
| r = find_reg(params, table, num); |
| |
| if (r) { |
| perform_access(vcpu, params, r); |
| return 0; |
| } |
| |
| /* Not handled */ |
| return -1; |
| } |
| |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); |
| int cp = -1; |
| |
| switch (esr_ec) { |
| case ESR_ELx_EC_CP15_32: |
| case ESR_ELx_EC_CP15_64: |
| cp = 15; |
| break; |
| case ESR_ELx_EC_CP14_MR: |
| case ESR_ELx_EC_CP14_64: |
| cp = 14; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| print_sys_reg_msg(params, |
| "Unsupported guest CP%d access at: %08lx [%08lx]\n", |
| cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| kvm_inject_undefined(vcpu); |
| } |
| |
| /** |
| * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global) |
| { |
| struct sys_reg_params params; |
| u32 esr = kvm_vcpu_get_esr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int Rt2 = (esr >> 10) & 0x1f; |
| |
| params.CRm = (esr >> 1) & 0xf; |
| params.is_write = ((esr & 1) == 0); |
| |
| params.Op0 = 0; |
| params.Op1 = (esr >> 16) & 0xf; |
| params.Op2 = 0; |
| params.CRn = 0; |
| |
| /* |
| * Make a 64-bit value out of Rt and Rt2. As we use the same trap |
| * backends between AArch32 and AArch64, we get away with it. |
| */ |
| if (params.is_write) { |
| params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; |
| params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; |
| } |
| |
| /* |
| * If the table contains a handler, handle the |
| * potential register operation in the case of a read and return |
| * with success. |
| */ |
| if (!emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| /* Split up the value between registers for the read side */ |
| if (!params.is_write) { |
| vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); |
| vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); |
| } |
| |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| /** |
| * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global) |
| { |
| struct sys_reg_params params; |
| u32 esr = kvm_vcpu_get_esr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| |
| params.CRm = (esr >> 1) & 0xf; |
| params.regval = vcpu_get_reg(vcpu, Rt); |
| params.is_write = ((esr & 1) == 0); |
| params.CRn = (esr >> 10) & 0xf; |
| params.Op0 = 0; |
| params.Op1 = (esr >> 14) & 0x7; |
| params.Op2 = (esr >> 17) & 0x7; |
| |
| if (!emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| if (!params.is_write) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); |
| } |
| |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| } |
| |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); |
| } |
| |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) |
| { |
| return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs)); |
| } |
| |
| static bool is_imp_def_sys_reg(struct sys_reg_params *params) |
| { |
| // See ARM DDI 0487E.a, section D12.3.2 |
| return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; |
| } |
| |
| static int emulate_sys_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| const struct sys_reg_desc *r; |
| |
| r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| if (likely(r)) { |
| perform_access(vcpu, params, r); |
| } else if (is_imp_def_sys_reg(params)) { |
| kvm_inject_undefined(vcpu); |
| } else { |
| print_sys_reg_msg(params, |
| "Unsupported guest sys_reg access at: %lx [%08lx]\n", |
| *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| kvm_inject_undefined(vcpu); |
| } |
| return 1; |
| } |
| |
| /** |
| * kvm_reset_sys_regs - sets system registers to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on the |
| * virtual CPU struct to their architecturally defined reset values. |
| */ |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) |
| if (sys_reg_descs[i].reset) |
| sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); |
| } |
| |
| /** |
| * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access |
| * @vcpu: The VCPU pointer |
| */ |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) |
| { |
| struct sys_reg_params params; |
| unsigned long esr = kvm_vcpu_get_esr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int ret; |
| |
| trace_kvm_handle_sys_reg(esr); |
| |
| params = esr_sys64_to_params(esr); |
| params.regval = vcpu_get_reg(vcpu, Rt); |
| |
| ret = emulate_sys_reg(vcpu, ¶ms); |
| |
| if (!params.is_write) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * Userspace API |
| *****************************************************************************/ |
| |
| static bool index_to_params(u64 id, struct sys_reg_params *params) |
| { |
| switch (id & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U64: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM64_SYSREG_OP0_MASK |
| | KVM_REG_ARM64_SYSREG_OP1_MASK |
| | KVM_REG_ARM64_SYSREG_CRN_MASK |
| | KVM_REG_ARM64_SYSREG_CRM_MASK |
| | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| return false; |
| params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| const struct sys_reg_desc *find_reg_by_id(u64 id, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc table[], |
| unsigned int num) |
| { |
| if (!index_to_params(id, params)) |
| return NULL; |
| |
| return find_reg(params, table, num); |
| } |
| |
| /* Decode an index value, and find the sys_reg_desc entry. */ |
| static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, |
| u64 id) |
| { |
| const struct sys_reg_desc *r; |
| struct sys_reg_params params; |
| |
| /* We only do sys_reg for now. */ |
| if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| return NULL; |
| |
| if (!index_to_params(id, ¶ms)) |
| return NULL; |
| |
| r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| /* Not saved in the sys_reg array and not otherwise accessible? */ |
| if (r && !(r->reg || r->get_user)) |
| r = NULL; |
| |
| return r; |
| } |
| |
| /* |
| * These are the invariant sys_reg registers: we let the guest see the |
| * host versions of these, so they're part of the guest state. |
| * |
| * A future CPU may provide a mechanism to present different values to |
| * the guest, or a future kvm may trap them. |
| */ |
| |
| #define FUNCTION_INVARIANT(reg) \ |
| static void get_##reg(struct kvm_vcpu *v, \ |
| const struct sys_reg_desc *r) \ |
| { \ |
| ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ |
| } |
| |
| FUNCTION_INVARIANT(midr_el1) |
| FUNCTION_INVARIANT(revidr_el1) |
| FUNCTION_INVARIANT(clidr_el1) |
| FUNCTION_INVARIANT(aidr_el1) |
| |
| static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) |
| { |
| ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| } |
| |
| /* ->val is filled in by kvm_sys_reg_table_init() */ |
| static struct sys_reg_desc invariant_sys_regs[] = { |
| { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, |
| { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, |
| { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, |
| { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, |
| { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, |
| }; |
| |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) |
| { |
| if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) |
| { |
| if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| |
| r = find_reg_by_id(id, ¶ms, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| return reg_to_user(uaddr, &r->val, id); |
| } |
| |
| static int set_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| int err; |
| u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ |
| |
| r = find_reg_by_id(id, ¶ms, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| err = reg_from_user(&val, uaddr, id); |
| if (err) |
| return err; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (r->val != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool is_valid_cache(u32 val) |
| { |
| u32 level, ctype; |
| |
| if (val >= CSSELR_MAX) |
| return false; |
| |
| /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| level = (val >> 1); |
| ctype = (cache_levels >> (level * 3)) & 7; |
| |
| switch (ctype) { |
| case 0: /* No cache */ |
| return false; |
| case 1: /* Instruction cache only */ |
| return (val & 1); |
| case 2: /* Data cache only */ |
| case 4: /* Unified cache */ |
| return !(val & 1); |
| case 3: /* Separate instruction and data caches */ |
| return true; |
| default: /* Reserved: we can't know instruction or data. */ |
| return false; |
| } |
| } |
| |
| static int demux_c15_get(u64 id, void __user *uaddr) |
| { |
| u32 val; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| return put_user(get_ccsidr(val), uval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int demux_c15_set(u64 id, void __user *uaddr) |
| { |
| u32 val, newval; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| if (get_user(newval, uval)) |
| return -EFAULT; |
| |
| /* This is also invariant: you can't change it. */ |
| if (newval != get_ccsidr(val)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_get(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return get_invariant_sys_reg(reg->id, uaddr); |
| |
| /* Check for regs disabled by runtime config */ |
| if (sysreg_hidden(vcpu, r)) |
| return -ENOENT; |
| |
| if (r->get_user) |
| return (r->get_user)(vcpu, r, reg, uaddr); |
| |
| return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id); |
| } |
| |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_set(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return set_invariant_sys_reg(reg->id, uaddr); |
| |
| /* Check for regs disabled by runtime config */ |
| if (sysreg_hidden(vcpu, r)) |
| return -ENOENT; |
| |
| if (r->set_user) |
| return (r->set_user)(vcpu, r, reg, uaddr); |
| |
| return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); |
| } |
| |
| static unsigned int num_demux_regs(void) |
| { |
| unsigned int i, count = 0; |
| |
| for (i = 0; i < CSSELR_MAX; i++) |
| if (is_valid_cache(i)) |
| count++; |
| |
| return count; |
| } |
| |
| static int write_demux_regids(u64 __user *uindices) |
| { |
| u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| unsigned int i; |
| |
| val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| for (i = 0; i < CSSELR_MAX; i++) { |
| if (!is_valid_cache(i)) |
| continue; |
| if (put_user(val | i, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| return 0; |
| } |
| |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| { |
| return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| KVM_REG_ARM64_SYSREG | |
| (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| } |
| |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| { |
| if (!*uind) |
| return true; |
| |
| if (put_user(sys_reg_to_index(reg), *uind)) |
| return false; |
| |
| (*uind)++; |
| return true; |
| } |
| |
| static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd, |
| u64 __user **uind, |
| unsigned int *total) |
| { |
| /* |
| * Ignore registers we trap but don't save, |
| * and for which no custom user accessor is provided. |
| */ |
| if (!(rd->reg || rd->get_user)) |
| return 0; |
| |
| if (sysreg_hidden(vcpu, rd)) |
| return 0; |
| |
| if (!copy_reg_to_user(rd, uind)) |
| return -EFAULT; |
| |
| (*total)++; |
| return 0; |
| } |
| |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| { |
| const struct sys_reg_desc *i2, *end2; |
| unsigned int total = 0; |
| int err; |
| |
| i2 = sys_reg_descs; |
| end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| |
| while (i2 != end2) { |
| err = walk_one_sys_reg(vcpu, i2++, &uind, &total); |
| if (err) |
| return err; |
| } |
| return total; |
| } |
| |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(invariant_sys_regs) |
| + num_demux_regs() |
| + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| } |
| |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| unsigned int i; |
| int err; |
| |
| /* Then give them all the invariant registers' indices. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { |
| if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| err = walk_sys_regs(vcpu, uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| return write_demux_regids(uindices); |
| } |
| |
| void kvm_sys_reg_table_init(void) |
| { |
| unsigned int i; |
| struct sys_reg_desc clidr; |
| |
| /* Make sure tables are unique and in order. */ |
| BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false)); |
| BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true)); |
| BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true)); |
| BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true)); |
| BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true)); |
| BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false)); |
| |
| /* We abuse the reset function to overwrite the table itself. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) |
| invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); |
| |
| /* |
| * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| * |
| * If software reads the Cache Type fields from Ctype1 |
| * upwards, once it has seen a value of 0b000, no caches |
| * exist at further-out levels of the hierarchy. So, for |
| * example, if Ctype3 is the first Cache Type field with a |
| * value of 0b000, the values of Ctype4 to Ctype7 must be |
| * ignored. |
| */ |
| get_clidr_el1(NULL, &clidr); /* Ugly... */ |
| cache_levels = clidr.val; |
| for (i = 0; i < 7; i++) |
| if (((cache_levels >> (i*3)) & 7) == 0) |
| break; |
| /* Clear all higher bits. */ |
| cache_levels &= (1 << (i*3))-1; |
| } |