| User Interface for Resource Allocation in Intel Resource Director Technology |
| |
| Copyright (C) 2016 Intel Corporation |
| |
| Fenghua Yu <fenghua.yu@intel.com> |
| Tony Luck <tony.luck@intel.com> |
| Vikas Shivappa <vikas.shivappa@intel.com> |
| |
| This feature is enabled by the CONFIG_INTEL_RDT Kconfig and the |
| X86 /proc/cpuinfo flag bits "rdt", "cqm", "cat_l3" and "cdp_l3". |
| |
| To use the feature mount the file system: |
| |
| # mount -t resctrl resctrl [-o cdp] /sys/fs/resctrl |
| |
| mount options are: |
| |
| "cdp": Enable code/data prioritization in L3 cache allocations. |
| |
| RDT features are orthogonal. A particular system may support only |
| monitoring, only control, or both monitoring and control. |
| |
| The mount succeeds if either of allocation or monitoring is present, but |
| only those files and directories supported by the system will be created. |
| For more details on the behavior of the interface during monitoring |
| and allocation, see the "Resource alloc and monitor groups" section. |
| |
| Info directory |
| -------------- |
| |
| The 'info' directory contains information about the enabled |
| resources. Each resource has its own subdirectory. The subdirectory |
| names reflect the resource names. |
| |
| Each subdirectory contains the following files with respect to |
| allocation: |
| |
| Cache resource(L3/L2) subdirectory contains the following files |
| related to allocation: |
| |
| "num_closids": The number of CLOSIDs which are valid for this |
| resource. The kernel uses the smallest number of |
| CLOSIDs of all enabled resources as limit. |
| |
| "cbm_mask": The bitmask which is valid for this resource. |
| This mask is equivalent to 100%. |
| |
| "min_cbm_bits": The minimum number of consecutive bits which |
| must be set when writing a mask. |
| |
| "shareable_bits": Bitmask of shareable resource with other executing |
| entities (e.g. I/O). User can use this when |
| setting up exclusive cache partitions. Note that |
| some platforms support devices that have their |
| own settings for cache use which can over-ride |
| these bits. |
| |
| Memory bandwitdh(MB) subdirectory contains the following files |
| with respect to allocation: |
| |
| "min_bandwidth": The minimum memory bandwidth percentage which |
| user can request. |
| |
| "bandwidth_gran": The granularity in which the memory bandwidth |
| percentage is allocated. The allocated |
| b/w percentage is rounded off to the next |
| control step available on the hardware. The |
| available bandwidth control steps are: |
| min_bandwidth + N * bandwidth_gran. |
| |
| "delay_linear": Indicates if the delay scale is linear or |
| non-linear. This field is purely informational |
| only. |
| |
| If RDT monitoring is available there will be an "L3_MON" directory |
| with the following files: |
| |
| "num_rmids": The number of RMIDs available. This is the |
| upper bound for how many "CTRL_MON" + "MON" |
| groups can be created. |
| |
| "mon_features": Lists the monitoring events if |
| monitoring is enabled for the resource. |
| |
| "max_threshold_occupancy": |
| Read/write file provides the largest value (in |
| bytes) at which a previously used LLC_occupancy |
| counter can be considered for re-use. |
| |
| Finally, in the top level of the "info" directory there is a file |
| named "last_cmd_status". This is reset with every "command" issued |
| via the file system (making new directories or writing to any of the |
| control files). If the command was successful, it will read as "ok". |
| If the command failed, it will provide more information that can be |
| conveyed in the error returns from file operations. E.g. |
| |
| # echo L3:0=f7 > schemata |
| bash: echo: write error: Invalid argument |
| # cat info/last_cmd_status |
| mask f7 has non-consecutive 1-bits |
| |
| Resource alloc and monitor groups |
| --------------------------------- |
| |
| Resource groups are represented as directories in the resctrl file |
| system. The default group is the root directory which, immediately |
| after mounting, owns all the tasks and cpus in the system and can make |
| full use of all resources. |
| |
| On a system with RDT control features additional directories can be |
| created in the root directory that specify different amounts of each |
| resource (see "schemata" below). The root and these additional top level |
| directories are referred to as "CTRL_MON" groups below. |
| |
| On a system with RDT monitoring the root directory and other top level |
| directories contain a directory named "mon_groups" in which additional |
| directories can be created to monitor subsets of tasks in the CTRL_MON |
| group that is their ancestor. These are called "MON" groups in the rest |
| of this document. |
| |
| Removing a directory will move all tasks and cpus owned by the group it |
| represents to the parent. Removing one of the created CTRL_MON groups |
| will automatically remove all MON groups below it. |
| |
| All groups contain the following files: |
| |
| "tasks": |
| Reading this file shows the list of all tasks that belong to |
| this group. Writing a task id to the file will add a task to the |
| group. If the group is a CTRL_MON group the task is removed from |
| whichever previous CTRL_MON group owned the task and also from |
| any MON group that owned the task. If the group is a MON group, |
| then the task must already belong to the CTRL_MON parent of this |
| group. The task is removed from any previous MON group. |
| |
| |
| "cpus": |
| Reading this file shows a bitmask of the logical CPUs owned by |
| this group. Writing a mask to this file will add and remove |
| CPUs to/from this group. As with the tasks file a hierarchy is |
| maintained where MON groups may only include CPUs owned by the |
| parent CTRL_MON group. |
| |
| |
| "cpus_list": |
| Just like "cpus", only using ranges of CPUs instead of bitmasks. |
| |
| |
| When control is enabled all CTRL_MON groups will also contain: |
| |
| "schemata": |
| A list of all the resources available to this group. |
| Each resource has its own line and format - see below for details. |
| |
| When monitoring is enabled all MON groups will also contain: |
| |
| "mon_data": |
| This contains a set of files organized by L3 domain and by |
| RDT event. E.g. on a system with two L3 domains there will |
| be subdirectories "mon_L3_00" and "mon_L3_01". Each of these |
| directories have one file per event (e.g. "llc_occupancy", |
| "mbm_total_bytes", and "mbm_local_bytes"). In a MON group these |
| files provide a read out of the current value of the event for |
| all tasks in the group. In CTRL_MON groups these files provide |
| the sum for all tasks in the CTRL_MON group and all tasks in |
| MON groups. Please see example section for more details on usage. |
| |
| Resource allocation rules |
| ------------------------- |
| When a task is running the following rules define which resources are |
| available to it: |
| |
| 1) If the task is a member of a non-default group, then the schemata |
| for that group is used. |
| |
| 2) Else if the task belongs to the default group, but is running on a |
| CPU that is assigned to some specific group, then the schemata for the |
| CPU's group is used. |
| |
| 3) Otherwise the schemata for the default group is used. |
| |
| Resource monitoring rules |
| ------------------------- |
| 1) If a task is a member of a MON group, or non-default CTRL_MON group |
| then RDT events for the task will be reported in that group. |
| |
| 2) If a task is a member of the default CTRL_MON group, but is running |
| on a CPU that is assigned to some specific group, then the RDT events |
| for the task will be reported in that group. |
| |
| 3) Otherwise RDT events for the task will be reported in the root level |
| "mon_data" group. |
| |
| |
| Notes on cache occupancy monitoring and control |
| ----------------------------------------------- |
| When moving a task from one group to another you should remember that |
| this only affects *new* cache allocations by the task. E.g. you may have |
| a task in a monitor group showing 3 MB of cache occupancy. If you move |
| to a new group and immediately check the occupancy of the old and new |
| groups you will likely see that the old group is still showing 3 MB and |
| the new group zero. When the task accesses locations still in cache from |
| before the move, the h/w does not update any counters. On a busy system |
| you will likely see the occupancy in the old group go down as cache lines |
| are evicted and re-used while the occupancy in the new group rises as |
| the task accesses memory and loads into the cache are counted based on |
| membership in the new group. |
| |
| The same applies to cache allocation control. Moving a task to a group |
| with a smaller cache partition will not evict any cache lines. The |
| process may continue to use them from the old partition. |
| |
| Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID) |
| to identify a control group and a monitoring group respectively. Each of |
| the resource groups are mapped to these IDs based on the kind of group. The |
| number of CLOSid and RMID are limited by the hardware and hence the creation of |
| a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID |
| and creation of "MON" group may fail if we run out of RMIDs. |
| |
| max_threshold_occupancy - generic concepts |
| ------------------------------------------ |
| |
| Note that an RMID once freed may not be immediately available for use as |
| the RMID is still tagged the cache lines of the previous user of RMID. |
| Hence such RMIDs are placed on limbo list and checked back if the cache |
| occupancy has gone down. If there is a time when system has a lot of |
| limbo RMIDs but which are not ready to be used, user may see an -EBUSY |
| during mkdir. |
| |
| max_threshold_occupancy is a user configurable value to determine the |
| occupancy at which an RMID can be freed. |
| |
| Schemata files - general concepts |
| --------------------------------- |
| Each line in the file describes one resource. The line starts with |
| the name of the resource, followed by specific values to be applied |
| in each of the instances of that resource on the system. |
| |
| Cache IDs |
| --------- |
| On current generation systems there is one L3 cache per socket and L2 |
| caches are generally just shared by the hyperthreads on a core, but this |
| isn't an architectural requirement. We could have multiple separate L3 |
| caches on a socket, multiple cores could share an L2 cache. So instead |
| of using "socket" or "core" to define the set of logical cpus sharing |
| a resource we use a "Cache ID". At a given cache level this will be a |
| unique number across the whole system (but it isn't guaranteed to be a |
| contiguous sequence, there may be gaps). To find the ID for each logical |
| CPU look in /sys/devices/system/cpu/cpu*/cache/index*/id |
| |
| Cache Bit Masks (CBM) |
| --------------------- |
| For cache resources we describe the portion of the cache that is available |
| for allocation using a bitmask. The maximum value of the mask is defined |
| by each cpu model (and may be different for different cache levels). It |
| is found using CPUID, but is also provided in the "info" directory of |
| the resctrl file system in "info/{resource}/cbm_mask". X86 hardware |
| requires that these masks have all the '1' bits in a contiguous block. So |
| 0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9 |
| and 0xA are not. On a system with a 20-bit mask each bit represents 5% |
| of the capacity of the cache. You could partition the cache into four |
| equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000. |
| |
| Memory bandwidth(b/w) percentage |
| -------------------------------- |
| For Memory b/w resource, user controls the resource by indicating the |
| percentage of total memory b/w. |
| |
| The minimum bandwidth percentage value for each cpu model is predefined |
| and can be looked up through "info/MB/min_bandwidth". The bandwidth |
| granularity that is allocated is also dependent on the cpu model and can |
| be looked up at "info/MB/bandwidth_gran". The available bandwidth |
| control steps are: min_bw + N * bw_gran. Intermediate values are rounded |
| to the next control step available on the hardware. |
| |
| The bandwidth throttling is a core specific mechanism on some of Intel |
| SKUs. Using a high bandwidth and a low bandwidth setting on two threads |
| sharing a core will result in both threads being throttled to use the |
| low bandwidth. |
| |
| L3 schemata file details (code and data prioritization disabled) |
| ---------------------------------------------------------------- |
| With CDP disabled the L3 schemata format is: |
| |
| L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... |
| |
| L3 schemata file details (CDP enabled via mount option to resctrl) |
| ------------------------------------------------------------------ |
| When CDP is enabled L3 control is split into two separate resources |
| so you can specify independent masks for code and data like this: |
| |
| L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... |
| L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... |
| |
| L2 schemata file details |
| ------------------------ |
| L2 cache does not support code and data prioritization, so the |
| schemata format is always: |
| |
| L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... |
| |
| Memory b/w Allocation details |
| ----------------------------- |
| |
| Memory b/w domain is L3 cache. |
| |
| MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;... |
| |
| Reading/writing the schemata file |
| --------------------------------- |
| Reading the schemata file will show the state of all resources |
| on all domains. When writing you only need to specify those values |
| which you wish to change. E.g. |
| |
| # cat schemata |
| L3DATA:0=fffff;1=fffff;2=fffff;3=fffff |
| L3CODE:0=fffff;1=fffff;2=fffff;3=fffff |
| # echo "L3DATA:2=3c0;" > schemata |
| # cat schemata |
| L3DATA:0=fffff;1=fffff;2=3c0;3=fffff |
| L3CODE:0=fffff;1=fffff;2=fffff;3=fffff |
| |
| Examples for RDT allocation usage: |
| |
| Example 1 |
| --------- |
| On a two socket machine (one L3 cache per socket) with just four bits |
| for cache bit masks, minimum b/w of 10% with a memory bandwidth |
| granularity of 10% |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| # mkdir p0 p1 |
| # echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata |
| # echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata |
| |
| The default resource group is unmodified, so we have access to all parts |
| of all caches (its schemata file reads "L3:0=f;1=f"). |
| |
| Tasks that are under the control of group "p0" may only allocate from the |
| "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1. |
| Tasks in group "p1" use the "lower" 50% of cache on both sockets. |
| |
| Similarly, tasks that are under the control of group "p0" may use a |
| maximum memory b/w of 50% on socket0 and 50% on socket 1. |
| Tasks in group "p1" may also use 50% memory b/w on both sockets. |
| Note that unlike cache masks, memory b/w cannot specify whether these |
| allocations can overlap or not. The allocations specifies the maximum |
| b/w that the group may be able to use and the system admin can configure |
| the b/w accordingly. |
| |
| Example 2 |
| --------- |
| Again two sockets, but this time with a more realistic 20-bit mask. |
| |
| Two real time tasks pid=1234 running on processor 0 and pid=5678 running on |
| processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy |
| neighbors, each of the two real-time tasks exclusively occupies one quarter |
| of L3 cache on socket 0. |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| |
| First we reset the schemata for the default group so that the "upper" |
| 50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by |
| ordinary tasks: |
| |
| # echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata |
| |
| Next we make a resource group for our first real time task and give |
| it access to the "top" 25% of the cache on socket 0. |
| |
| # mkdir p0 |
| # echo "L3:0=f8000;1=fffff" > p0/schemata |
| |
| Finally we move our first real time task into this resource group. We |
| also use taskset(1) to ensure the task always runs on a dedicated CPU |
| on socket 0. Most uses of resource groups will also constrain which |
| processors tasks run on. |
| |
| # echo 1234 > p0/tasks |
| # taskset -cp 1 1234 |
| |
| Ditto for the second real time task (with the remaining 25% of cache): |
| |
| # mkdir p1 |
| # echo "L3:0=7c00;1=fffff" > p1/schemata |
| # echo 5678 > p1/tasks |
| # taskset -cp 2 5678 |
| |
| For the same 2 socket system with memory b/w resource and CAT L3 the |
| schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is |
| 10): |
| |
| For our first real time task this would request 20% memory b/w on socket |
| 0. |
| |
| # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata |
| |
| For our second real time task this would request an other 20% memory b/w |
| on socket 0. |
| |
| # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata |
| |
| Example 3 |
| --------- |
| |
| A single socket system which has real-time tasks running on core 4-7 and |
| non real-time workload assigned to core 0-3. The real-time tasks share text |
| and data, so a per task association is not required and due to interaction |
| with the kernel it's desired that the kernel on these cores shares L3 with |
| the tasks. |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| |
| First we reset the schemata for the default group so that the "upper" |
| 50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0 |
| cannot be used by ordinary tasks: |
| |
| # echo "L3:0=3ff\nMB:0=50" > schemata |
| |
| Next we make a resource group for our real time cores and give it access |
| to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on |
| socket 0. |
| |
| # mkdir p0 |
| # echo "L3:0=ffc00\nMB:0=50" > p0/schemata |
| |
| Finally we move core 4-7 over to the new group and make sure that the |
| kernel and the tasks running there get 50% of the cache. They should |
| also get 50% of memory bandwidth assuming that the cores 4-7 are SMT |
| siblings and only the real time threads are scheduled on the cores 4-7. |
| |
| # echo F0 > p0/cpus |
| |
| 4) Locking between applications |
| |
| Certain operations on the resctrl filesystem, composed of read/writes |
| to/from multiple files, must be atomic. |
| |
| As an example, the allocation of an exclusive reservation of L3 cache |
| involves: |
| |
| 1. Read the cbmmasks from each directory |
| 2. Find a contiguous set of bits in the global CBM bitmask that is clear |
| in any of the directory cbmmasks |
| 3. Create a new directory |
| 4. Set the bits found in step 2 to the new directory "schemata" file |
| |
| If two applications attempt to allocate space concurrently then they can |
| end up allocating the same bits so the reservations are shared instead of |
| exclusive. |
| |
| To coordinate atomic operations on the resctrlfs and to avoid the problem |
| above, the following locking procedure is recommended: |
| |
| Locking is based on flock, which is available in libc and also as a shell |
| script command |
| |
| Write lock: |
| |
| A) Take flock(LOCK_EX) on /sys/fs/resctrl |
| B) Read/write the directory structure. |
| C) funlock |
| |
| Read lock: |
| |
| A) Take flock(LOCK_SH) on /sys/fs/resctrl |
| B) If success read the directory structure. |
| C) funlock |
| |
| Example with bash: |
| |
| # Atomically read directory structure |
| $ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl |
| |
| # Read directory contents and create new subdirectory |
| |
| $ cat create-dir.sh |
| find /sys/fs/resctrl/ > output.txt |
| mask = function-of(output.txt) |
| mkdir /sys/fs/resctrl/newres/ |
| echo mask > /sys/fs/resctrl/newres/schemata |
| |
| $ flock /sys/fs/resctrl/ ./create-dir.sh |
| |
| Example with C: |
| |
| /* |
| * Example code do take advisory locks |
| * before accessing resctrl filesystem |
| */ |
| #include <sys/file.h> |
| #include <stdlib.h> |
| |
| void resctrl_take_shared_lock(int fd) |
| { |
| int ret; |
| |
| /* take shared lock on resctrl filesystem */ |
| ret = flock(fd, LOCK_SH); |
| if (ret) { |
| perror("flock"); |
| exit(-1); |
| } |
| } |
| |
| void resctrl_take_exclusive_lock(int fd) |
| { |
| int ret; |
| |
| /* release lock on resctrl filesystem */ |
| ret = flock(fd, LOCK_EX); |
| if (ret) { |
| perror("flock"); |
| exit(-1); |
| } |
| } |
| |
| void resctrl_release_lock(int fd) |
| { |
| int ret; |
| |
| /* take shared lock on resctrl filesystem */ |
| ret = flock(fd, LOCK_UN); |
| if (ret) { |
| perror("flock"); |
| exit(-1); |
| } |
| } |
| |
| void main(void) |
| { |
| int fd, ret; |
| |
| fd = open("/sys/fs/resctrl", O_DIRECTORY); |
| if (fd == -1) { |
| perror("open"); |
| exit(-1); |
| } |
| resctrl_take_shared_lock(fd); |
| /* code to read directory contents */ |
| resctrl_release_lock(fd); |
| |
| resctrl_take_exclusive_lock(fd); |
| /* code to read and write directory contents */ |
| resctrl_release_lock(fd); |
| } |
| |
| Examples for RDT Monitoring along with allocation usage: |
| |
| Reading monitored data |
| ---------------------- |
| Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would |
| show the current snapshot of LLC occupancy of the corresponding MON |
| group or CTRL_MON group. |
| |
| |
| Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group) |
| --------- |
| On a two socket machine (one L3 cache per socket) with just four bits |
| for cache bit masks |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| # mkdir p0 p1 |
| # echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata |
| # echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata |
| # echo 5678 > p1/tasks |
| # echo 5679 > p1/tasks |
| |
| The default resource group is unmodified, so we have access to all parts |
| of all caches (its schemata file reads "L3:0=f;1=f"). |
| |
| Tasks that are under the control of group "p0" may only allocate from the |
| "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1. |
| Tasks in group "p1" use the "lower" 50% of cache on both sockets. |
| |
| Create monitor groups and assign a subset of tasks to each monitor group. |
| |
| # cd /sys/fs/resctrl/p1/mon_groups |
| # mkdir m11 m12 |
| # echo 5678 > m11/tasks |
| # echo 5679 > m12/tasks |
| |
| fetch data (data shown in bytes) |
| |
| # cat m11/mon_data/mon_L3_00/llc_occupancy |
| 16234000 |
| # cat m11/mon_data/mon_L3_01/llc_occupancy |
| 14789000 |
| # cat m12/mon_data/mon_L3_00/llc_occupancy |
| 16789000 |
| |
| The parent ctrl_mon group shows the aggregated data. |
| |
| # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy |
| 31234000 |
| |
| Example 2 (Monitor a task from its creation) |
| --------- |
| On a two socket machine (one L3 cache per socket) |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| # mkdir p0 p1 |
| |
| An RMID is allocated to the group once its created and hence the <cmd> |
| below is monitored from its creation. |
| |
| # echo $$ > /sys/fs/resctrl/p1/tasks |
| # <cmd> |
| |
| Fetch the data |
| |
| # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy |
| 31789000 |
| |
| Example 3 (Monitor without CAT support or before creating CAT groups) |
| --------- |
| |
| Assume a system like HSW has only CQM and no CAT support. In this case |
| the resctrl will still mount but cannot create CTRL_MON directories. |
| But user can create different MON groups within the root group thereby |
| able to monitor all tasks including kernel threads. |
| |
| This can also be used to profile jobs cache size footprint before being |
| able to allocate them to different allocation groups. |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| # mkdir mon_groups/m01 |
| # mkdir mon_groups/m02 |
| |
| # echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks |
| # echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks |
| |
| Monitor the groups separately and also get per domain data. From the |
| below its apparent that the tasks are mostly doing work on |
| domain(socket) 0. |
| |
| # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy |
| 31234000 |
| # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy |
| 34555 |
| # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy |
| 31234000 |
| # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy |
| 32789 |
| |
| |
| Example 4 (Monitor real time tasks) |
| ----------------------------------- |
| |
| A single socket system which has real time tasks running on cores 4-7 |
| and non real time tasks on other cpus. We want to monitor the cache |
| occupancy of the real time threads on these cores. |
| |
| # mount -t resctrl resctrl /sys/fs/resctrl |
| # cd /sys/fs/resctrl |
| # mkdir p1 |
| |
| Move the cpus 4-7 over to p1 |
| # echo f0 > p0/cpus |
| |
| View the llc occupancy snapshot |
| |
| # cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy |
| 11234000 |