| /* |
| * Copyright (c) 2009-2010 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Authors: |
| * Jesse Barnes <jbarnes@virtuousgeek.org> |
| */ |
| |
| /* |
| * Some Intel Ibex Peak based platforms support so-called "intelligent |
| * power sharing", which allows the CPU and GPU to cooperate to maximize |
| * performance within a given TDP (thermal design point). This driver |
| * performs the coordination between the CPU and GPU, monitors thermal and |
| * power statistics in the platform, and initializes power monitoring |
| * hardware. It also provides a few tunables to control behavior. Its |
| * primary purpose is to safely allow CPU and GPU turbo modes to be enabled |
| * by tracking power and thermal budget; secondarily it can boost turbo |
| * performance by allocating more power or thermal budget to the CPU or GPU |
| * based on available headroom and activity. |
| * |
| * The basic algorithm is driven by a 5s moving average of temperature. If |
| * thermal headroom is available, the CPU and/or GPU power clamps may be |
| * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, |
| * we scale back the clamp. Aside from trigger events (when we're critically |
| * close or over our TDP) we don't adjust the clamps more than once every |
| * five seconds. |
| * |
| * The thermal device (device 31, function 6) has a set of registers that |
| * are updated by the ME firmware. The ME should also take the clamp values |
| * written to those registers and write them to the CPU, but we currently |
| * bypass that functionality and write the CPU MSR directly. |
| * |
| * UNSUPPORTED: |
| * - dual MCP configs |
| * |
| * TODO: |
| * - handle CPU hotplug |
| * - provide turbo enable/disable api |
| * |
| * Related documents: |
| * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 |
| * - CDI 401376 - Ibex Peak EDS |
| * - ref 26037, 26641 - IPS BIOS spec |
| * - ref 26489 - Nehalem BIOS writer's guide |
| * - ref 26921 - Ibex Peak BIOS Specification |
| */ |
| |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/sched.h> |
| #include <linux/sched/loadavg.h> |
| #include <linux/seq_file.h> |
| #include <linux/string.h> |
| #include <linux/tick.h> |
| #include <linux/timer.h> |
| #include <linux/dmi.h> |
| #include <drm/i915_drm.h> |
| #include <asm/msr.h> |
| #include <asm/processor.h> |
| #include "intel_ips.h" |
| |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| |
| #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 |
| |
| /* |
| * Package level MSRs for monitor/control |
| */ |
| #define PLATFORM_INFO 0xce |
| #define PLATFORM_TDP (1<<29) |
| #define PLATFORM_RATIO (1<<28) |
| |
| #define IA32_MISC_ENABLE 0x1a0 |
| #define IA32_MISC_TURBO_EN (1ULL<<38) |
| |
| #define TURBO_POWER_CURRENT_LIMIT 0x1ac |
| #define TURBO_TDC_OVR_EN (1UL<<31) |
| #define TURBO_TDC_MASK (0x000000007fff0000UL) |
| #define TURBO_TDC_SHIFT (16) |
| #define TURBO_TDP_OVR_EN (1UL<<15) |
| #define TURBO_TDP_MASK (0x0000000000003fffUL) |
| |
| /* |
| * Core/thread MSRs for monitoring |
| */ |
| #define IA32_PERF_CTL 0x199 |
| #define IA32_PERF_TURBO_DIS (1ULL<<32) |
| |
| /* |
| * Thermal PCI device regs |
| */ |
| #define THM_CFG_TBAR 0x10 |
| #define THM_CFG_TBAR_HI 0x14 |
| |
| #define THM_TSIU 0x00 |
| #define THM_TSE 0x01 |
| #define TSE_EN 0xb8 |
| #define THM_TSS 0x02 |
| #define THM_TSTR 0x03 |
| #define THM_TSTTP 0x04 |
| #define THM_TSCO 0x08 |
| #define THM_TSES 0x0c |
| #define THM_TSGPEN 0x0d |
| #define TSGPEN_HOT_LOHI (1<<1) |
| #define TSGPEN_CRIT_LOHI (1<<2) |
| #define THM_TSPC 0x0e |
| #define THM_PPEC 0x10 |
| #define THM_CTA 0x12 |
| #define THM_PTA 0x14 |
| #define PTA_SLOPE_MASK (0xff00) |
| #define PTA_SLOPE_SHIFT 8 |
| #define PTA_OFFSET_MASK (0x00ff) |
| #define THM_MGTA 0x16 |
| #define MGTA_SLOPE_MASK (0xff00) |
| #define MGTA_SLOPE_SHIFT 8 |
| #define MGTA_OFFSET_MASK (0x00ff) |
| #define THM_TRC 0x1a |
| #define TRC_CORE2_EN (1<<15) |
| #define TRC_THM_EN (1<<12) |
| #define TRC_C6_WAR (1<<8) |
| #define TRC_CORE1_EN (1<<7) |
| #define TRC_CORE_PWR (1<<6) |
| #define TRC_PCH_EN (1<<5) |
| #define TRC_MCH_EN (1<<4) |
| #define TRC_DIMM4 (1<<3) |
| #define TRC_DIMM3 (1<<2) |
| #define TRC_DIMM2 (1<<1) |
| #define TRC_DIMM1 (1<<0) |
| #define THM_TES 0x20 |
| #define THM_TEN 0x21 |
| #define TEN_UPDATE_EN 1 |
| #define THM_PSC 0x24 |
| #define PSC_NTG (1<<0) /* No GFX turbo support */ |
| #define PSC_NTPC (1<<1) /* No CPU turbo support */ |
| #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ |
| #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ |
| #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ |
| #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ |
| #define PSP_PBRT (1<<4) /* BIOS run time support */ |
| #define THM_CTV1 0x30 |
| #define CTV_TEMP_ERROR (1<<15) |
| #define CTV_TEMP_MASK 0x3f |
| #define CTV_ |
| #define THM_CTV2 0x32 |
| #define THM_CEC 0x34 /* undocumented power accumulator in joules */ |
| #define THM_AE 0x3f |
| #define THM_HTS 0x50 /* 32 bits */ |
| #define HTS_PCPL_MASK (0x7fe00000) |
| #define HTS_PCPL_SHIFT 21 |
| #define HTS_GPL_MASK (0x001ff000) |
| #define HTS_GPL_SHIFT 12 |
| #define HTS_PP_MASK (0x00000c00) |
| #define HTS_PP_SHIFT 10 |
| #define HTS_PP_DEF 0 |
| #define HTS_PP_PROC 1 |
| #define HTS_PP_BAL 2 |
| #define HTS_PP_GFX 3 |
| #define HTS_PCTD_DIS (1<<9) |
| #define HTS_GTD_DIS (1<<8) |
| #define HTS_PTL_MASK (0x000000fe) |
| #define HTS_PTL_SHIFT 1 |
| #define HTS_NVV (1<<0) |
| #define THM_HTSHI 0x54 /* 16 bits */ |
| #define HTS2_PPL_MASK (0x03ff) |
| #define HTS2_PRST_MASK (0x3c00) |
| #define HTS2_PRST_SHIFT 10 |
| #define HTS2_PRST_UNLOADED 0 |
| #define HTS2_PRST_RUNNING 1 |
| #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ |
| #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ |
| #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ |
| #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ |
| #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ |
| #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ |
| #define THM_PTL 0x56 |
| #define THM_MGTV 0x58 |
| #define TV_MASK 0x000000000000ff00 |
| #define TV_SHIFT 8 |
| #define THM_PTV 0x60 |
| #define PTV_MASK 0x00ff |
| #define THM_MMGPC 0x64 |
| #define THM_MPPC 0x66 |
| #define THM_MPCPC 0x68 |
| #define THM_TSPIEN 0x82 |
| #define TSPIEN_AUX_LOHI (1<<0) |
| #define TSPIEN_HOT_LOHI (1<<1) |
| #define TSPIEN_CRIT_LOHI (1<<2) |
| #define TSPIEN_AUX2_LOHI (1<<3) |
| #define THM_TSLOCK 0x83 |
| #define THM_ATR 0x84 |
| #define THM_TOF 0x87 |
| #define THM_STS 0x98 |
| #define STS_PCPL_MASK (0x7fe00000) |
| #define STS_PCPL_SHIFT 21 |
| #define STS_GPL_MASK (0x001ff000) |
| #define STS_GPL_SHIFT 12 |
| #define STS_PP_MASK (0x00000c00) |
| #define STS_PP_SHIFT 10 |
| #define STS_PP_DEF 0 |
| #define STS_PP_PROC 1 |
| #define STS_PP_BAL 2 |
| #define STS_PP_GFX 3 |
| #define STS_PCTD_DIS (1<<9) |
| #define STS_GTD_DIS (1<<8) |
| #define STS_PTL_MASK (0x000000fe) |
| #define STS_PTL_SHIFT 1 |
| #define STS_NVV (1<<0) |
| #define THM_SEC 0x9c |
| #define SEC_ACK (1<<0) |
| #define THM_TC3 0xa4 |
| #define THM_TC1 0xa8 |
| #define STS_PPL_MASK (0x0003ff00) |
| #define STS_PPL_SHIFT 16 |
| #define THM_TC2 0xac |
| #define THM_DTV 0xb0 |
| #define THM_ITV 0xd8 |
| #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ |
| #define ITV_ME_SEQNO_SHIFT (16) |
| #define ITV_MCH_TEMP_MASK 0x0000ff00 |
| #define ITV_MCH_TEMP_SHIFT (8) |
| #define ITV_PCH_TEMP_MASK 0x000000ff |
| |
| #define thm_readb(off) readb(ips->regmap + (off)) |
| #define thm_readw(off) readw(ips->regmap + (off)) |
| #define thm_readl(off) readl(ips->regmap + (off)) |
| #define thm_readq(off) readq(ips->regmap + (off)) |
| |
| #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) |
| #define thm_writew(off, val) writew((val), ips->regmap + (off)) |
| #define thm_writel(off, val) writel((val), ips->regmap + (off)) |
| |
| static const int IPS_ADJUST_PERIOD = 5000; /* ms */ |
| static bool late_i915_load = false; |
| |
| /* For initial average collection */ |
| static const int IPS_SAMPLE_PERIOD = 200; /* ms */ |
| static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ |
| #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) |
| |
| /* Per-SKU limits */ |
| struct ips_mcp_limits { |
| int mcp_power_limit; /* mW units */ |
| int core_power_limit; |
| int mch_power_limit; |
| int core_temp_limit; /* degrees C */ |
| int mch_temp_limit; |
| }; |
| |
| /* Max temps are -10 degrees C to avoid PROCHOT# */ |
| |
| static struct ips_mcp_limits ips_sv_limits = { |
| .mcp_power_limit = 35000, |
| .core_power_limit = 29000, |
| .mch_power_limit = 20000, |
| .core_temp_limit = 95, |
| .mch_temp_limit = 90 |
| }; |
| |
| static struct ips_mcp_limits ips_lv_limits = { |
| .mcp_power_limit = 25000, |
| .core_power_limit = 21000, |
| .mch_power_limit = 13000, |
| .core_temp_limit = 95, |
| .mch_temp_limit = 90 |
| }; |
| |
| static struct ips_mcp_limits ips_ulv_limits = { |
| .mcp_power_limit = 18000, |
| .core_power_limit = 14000, |
| .mch_power_limit = 11000, |
| .core_temp_limit = 95, |
| .mch_temp_limit = 90 |
| }; |
| |
| struct ips_driver { |
| struct device *dev; |
| void __iomem *regmap; |
| int irq; |
| |
| struct task_struct *monitor; |
| struct task_struct *adjust; |
| struct dentry *debug_root; |
| struct timer_list timer; |
| |
| /* Average CPU core temps (all averages in .01 degrees C for precision) */ |
| u16 ctv1_avg_temp; |
| u16 ctv2_avg_temp; |
| /* GMCH average */ |
| u16 mch_avg_temp; |
| /* Average for the CPU (both cores?) */ |
| u16 mcp_avg_temp; |
| /* Average power consumption (in mW) */ |
| u32 cpu_avg_power; |
| u32 mch_avg_power; |
| |
| /* Offset values */ |
| u16 cta_val; |
| u16 pta_val; |
| u16 mgta_val; |
| |
| /* Maximums & prefs, protected by turbo status lock */ |
| spinlock_t turbo_status_lock; |
| u16 mcp_temp_limit; |
| u16 mcp_power_limit; |
| u16 core_power_limit; |
| u16 mch_power_limit; |
| bool cpu_turbo_enabled; |
| bool __cpu_turbo_on; |
| bool gpu_turbo_enabled; |
| bool __gpu_turbo_on; |
| bool gpu_preferred; |
| bool poll_turbo_status; |
| bool second_cpu; |
| bool turbo_toggle_allowed; |
| struct ips_mcp_limits *limits; |
| |
| /* Optional MCH interfaces for if i915 is in use */ |
| unsigned long (*read_mch_val)(void); |
| bool (*gpu_raise)(void); |
| bool (*gpu_lower)(void); |
| bool (*gpu_busy)(void); |
| bool (*gpu_turbo_disable)(void); |
| |
| /* For restoration at unload */ |
| u64 orig_turbo_limit; |
| u64 orig_turbo_ratios; |
| }; |
| |
| static bool |
| ips_gpu_turbo_enabled(struct ips_driver *ips); |
| |
| /** |
| * ips_cpu_busy - is CPU busy? |
| * @ips: IPS driver struct |
| * |
| * Check CPU for load to see whether we should increase its thermal budget. |
| * |
| * RETURNS: |
| * True if the CPU could use more power, false otherwise. |
| */ |
| static bool ips_cpu_busy(struct ips_driver *ips) |
| { |
| if ((avenrun[0] >> FSHIFT) > 1) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * ips_cpu_raise - raise CPU power clamp |
| * @ips: IPS driver struct |
| * |
| * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for |
| * this platform. |
| * |
| * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as |
| * long as we haven't hit the TDP limit for the SKU). |
| */ |
| static void ips_cpu_raise(struct ips_driver *ips) |
| { |
| u64 turbo_override; |
| u16 cur_tdp_limit, new_tdp_limit; |
| |
| if (!ips->cpu_turbo_enabled) |
| return; |
| |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| |
| cur_tdp_limit = turbo_override & TURBO_TDP_MASK; |
| new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ |
| |
| /* Clamp to SKU TDP limit */ |
| if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) |
| new_tdp_limit = cur_tdp_limit; |
| |
| thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); |
| |
| turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| |
| turbo_override &= ~TURBO_TDP_MASK; |
| turbo_override |= new_tdp_limit; |
| |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| } |
| |
| /** |
| * ips_cpu_lower - lower CPU power clamp |
| * @ips: IPS driver struct |
| * |
| * Lower CPU power clamp b %IPS_CPU_STEP if possible. |
| * |
| * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going |
| * as low as the platform limits will allow (though we could go lower there |
| * wouldn't be much point). |
| */ |
| static void ips_cpu_lower(struct ips_driver *ips) |
| { |
| u64 turbo_override; |
| u16 cur_limit, new_limit; |
| |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| |
| cur_limit = turbo_override & TURBO_TDP_MASK; |
| new_limit = cur_limit - 8; /* 1W decrease */ |
| |
| /* Clamp to SKU TDP limit */ |
| if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) |
| new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; |
| |
| thm_writew(THM_MPCPC, (new_limit * 10) / 8); |
| |
| turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| |
| turbo_override &= ~TURBO_TDP_MASK; |
| turbo_override |= new_limit; |
| |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| } |
| |
| /** |
| * do_enable_cpu_turbo - internal turbo enable function |
| * @data: unused |
| * |
| * Internal function for actually updating MSRs. When we enable/disable |
| * turbo, we need to do it on each CPU; this function is the one called |
| * by on_each_cpu() when needed. |
| */ |
| static void do_enable_cpu_turbo(void *data) |
| { |
| u64 perf_ctl; |
| |
| rdmsrl(IA32_PERF_CTL, perf_ctl); |
| if (perf_ctl & IA32_PERF_TURBO_DIS) { |
| perf_ctl &= ~IA32_PERF_TURBO_DIS; |
| wrmsrl(IA32_PERF_CTL, perf_ctl); |
| } |
| } |
| |
| /** |
| * ips_enable_cpu_turbo - enable turbo mode on all CPUs |
| * @ips: IPS driver struct |
| * |
| * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on |
| * all logical threads. |
| */ |
| static void ips_enable_cpu_turbo(struct ips_driver *ips) |
| { |
| /* Already on, no need to mess with MSRs */ |
| if (ips->__cpu_turbo_on) |
| return; |
| |
| if (ips->turbo_toggle_allowed) |
| on_each_cpu(do_enable_cpu_turbo, ips, 1); |
| |
| ips->__cpu_turbo_on = true; |
| } |
| |
| /** |
| * do_disable_cpu_turbo - internal turbo disable function |
| * @data: unused |
| * |
| * Internal function for actually updating MSRs. When we enable/disable |
| * turbo, we need to do it on each CPU; this function is the one called |
| * by on_each_cpu() when needed. |
| */ |
| static void do_disable_cpu_turbo(void *data) |
| { |
| u64 perf_ctl; |
| |
| rdmsrl(IA32_PERF_CTL, perf_ctl); |
| if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { |
| perf_ctl |= IA32_PERF_TURBO_DIS; |
| wrmsrl(IA32_PERF_CTL, perf_ctl); |
| } |
| } |
| |
| /** |
| * ips_disable_cpu_turbo - disable turbo mode on all CPUs |
| * @ips: IPS driver struct |
| * |
| * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on |
| * all logical threads. |
| */ |
| static void ips_disable_cpu_turbo(struct ips_driver *ips) |
| { |
| /* Already off, leave it */ |
| if (!ips->__cpu_turbo_on) |
| return; |
| |
| if (ips->turbo_toggle_allowed) |
| on_each_cpu(do_disable_cpu_turbo, ips, 1); |
| |
| ips->__cpu_turbo_on = false; |
| } |
| |
| /** |
| * ips_gpu_busy - is GPU busy? |
| * @ips: IPS driver struct |
| * |
| * Check GPU for load to see whether we should increase its thermal budget. |
| * We need to call into the i915 driver in this case. |
| * |
| * RETURNS: |
| * True if the GPU could use more power, false otherwise. |
| */ |
| static bool ips_gpu_busy(struct ips_driver *ips) |
| { |
| if (!ips_gpu_turbo_enabled(ips)) |
| return false; |
| |
| return ips->gpu_busy(); |
| } |
| |
| /** |
| * ips_gpu_raise - raise GPU power clamp |
| * @ips: IPS driver struct |
| * |
| * Raise the GPU frequency/power if possible. We need to call into the |
| * i915 driver in this case. |
| */ |
| static void ips_gpu_raise(struct ips_driver *ips) |
| { |
| if (!ips_gpu_turbo_enabled(ips)) |
| return; |
| |
| if (!ips->gpu_raise()) |
| ips->gpu_turbo_enabled = false; |
| |
| return; |
| } |
| |
| /** |
| * ips_gpu_lower - lower GPU power clamp |
| * @ips: IPS driver struct |
| * |
| * Lower GPU frequency/power if possible. Need to call i915. |
| */ |
| static void ips_gpu_lower(struct ips_driver *ips) |
| { |
| if (!ips_gpu_turbo_enabled(ips)) |
| return; |
| |
| if (!ips->gpu_lower()) |
| ips->gpu_turbo_enabled = false; |
| |
| return; |
| } |
| |
| /** |
| * ips_enable_gpu_turbo - notify the gfx driver turbo is available |
| * @ips: IPS driver struct |
| * |
| * Call into the graphics driver indicating that it can safely use |
| * turbo mode. |
| */ |
| static void ips_enable_gpu_turbo(struct ips_driver *ips) |
| { |
| if (ips->__gpu_turbo_on) |
| return; |
| ips->__gpu_turbo_on = true; |
| } |
| |
| /** |
| * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode |
| * @ips: IPS driver struct |
| * |
| * Request that the graphics driver disable turbo mode. |
| */ |
| static void ips_disable_gpu_turbo(struct ips_driver *ips) |
| { |
| /* Avoid calling i915 if turbo is already disabled */ |
| if (!ips->__gpu_turbo_on) |
| return; |
| |
| if (!ips->gpu_turbo_disable()) |
| dev_err(ips->dev, "failed to disable graphics turbo\n"); |
| else |
| ips->__gpu_turbo_on = false; |
| } |
| |
| /** |
| * mcp_exceeded - check whether we're outside our thermal & power limits |
| * @ips: IPS driver struct |
| * |
| * Check whether the MCP is over its thermal or power budget. |
| */ |
| static bool mcp_exceeded(struct ips_driver *ips) |
| { |
| unsigned long flags; |
| bool ret = false; |
| u32 temp_limit; |
| u32 avg_power; |
| |
| spin_lock_irqsave(&ips->turbo_status_lock, flags); |
| |
| temp_limit = ips->mcp_temp_limit * 100; |
| if (ips->mcp_avg_temp > temp_limit) |
| ret = true; |
| |
| avg_power = ips->cpu_avg_power + ips->mch_avg_power; |
| if (avg_power > ips->mcp_power_limit) |
| ret = true; |
| |
| spin_unlock_irqrestore(&ips->turbo_status_lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * cpu_exceeded - check whether a CPU core is outside its limits |
| * @ips: IPS driver struct |
| * @cpu: CPU number to check |
| * |
| * Check a given CPU's average temp or power is over its limit. |
| */ |
| static bool cpu_exceeded(struct ips_driver *ips, int cpu) |
| { |
| unsigned long flags; |
| int avg; |
| bool ret = false; |
| |
| spin_lock_irqsave(&ips->turbo_status_lock, flags); |
| avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; |
| if (avg > (ips->limits->core_temp_limit * 100)) |
| ret = true; |
| if (ips->cpu_avg_power > ips->core_power_limit * 100) |
| ret = true; |
| spin_unlock_irqrestore(&ips->turbo_status_lock, flags); |
| |
| if (ret) |
| dev_info(ips->dev, "CPU power or thermal limit exceeded\n"); |
| |
| return ret; |
| } |
| |
| /** |
| * mch_exceeded - check whether the GPU is over budget |
| * @ips: IPS driver struct |
| * |
| * Check the MCH temp & power against their maximums. |
| */ |
| static bool mch_exceeded(struct ips_driver *ips) |
| { |
| unsigned long flags; |
| bool ret = false; |
| |
| spin_lock_irqsave(&ips->turbo_status_lock, flags); |
| if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) |
| ret = true; |
| if (ips->mch_avg_power > ips->mch_power_limit) |
| ret = true; |
| spin_unlock_irqrestore(&ips->turbo_status_lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * verify_limits - verify BIOS provided limits |
| * @ips: IPS structure |
| * |
| * BIOS can optionally provide non-default limits for power and temp. Check |
| * them here and use the defaults if the BIOS values are not provided or |
| * are otherwise unusable. |
| */ |
| static void verify_limits(struct ips_driver *ips) |
| { |
| if (ips->mcp_power_limit < ips->limits->mcp_power_limit || |
| ips->mcp_power_limit > 35000) |
| ips->mcp_power_limit = ips->limits->mcp_power_limit; |
| |
| if (ips->mcp_temp_limit < ips->limits->core_temp_limit || |
| ips->mcp_temp_limit < ips->limits->mch_temp_limit || |
| ips->mcp_temp_limit > 150) |
| ips->mcp_temp_limit = min(ips->limits->core_temp_limit, |
| ips->limits->mch_temp_limit); |
| } |
| |
| /** |
| * update_turbo_limits - get various limits & settings from regs |
| * @ips: IPS driver struct |
| * |
| * Update the IPS power & temp limits, along with turbo enable flags, |
| * based on latest register contents. |
| * |
| * Used at init time and for runtime BIOS support, which requires polling |
| * the regs for updates (as a result of AC->DC transition for example). |
| * |
| * LOCKING: |
| * Caller must hold turbo_status_lock (outside of init) |
| */ |
| static void update_turbo_limits(struct ips_driver *ips) |
| { |
| u32 hts = thm_readl(THM_HTS); |
| |
| ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); |
| /* |
| * Disable turbo for now, until we can figure out why the power figures |
| * are wrong |
| */ |
| ips->cpu_turbo_enabled = false; |
| |
| if (ips->gpu_busy) |
| ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); |
| |
| ips->core_power_limit = thm_readw(THM_MPCPC); |
| ips->mch_power_limit = thm_readw(THM_MMGPC); |
| ips->mcp_temp_limit = thm_readw(THM_PTL); |
| ips->mcp_power_limit = thm_readw(THM_MPPC); |
| |
| verify_limits(ips); |
| /* Ignore BIOS CPU vs GPU pref */ |
| } |
| |
| /** |
| * ips_adjust - adjust power clamp based on thermal state |
| * @data: ips driver structure |
| * |
| * Wake up every 5s or so and check whether we should adjust the power clamp. |
| * Check CPU and GPU load to determine which needs adjustment. There are |
| * several things to consider here: |
| * - do we need to adjust up or down? |
| * - is CPU busy? |
| * - is GPU busy? |
| * - is CPU in turbo? |
| * - is GPU in turbo? |
| * - is CPU or GPU preferred? (CPU is default) |
| * |
| * So, given the above, we do the following: |
| * - up (TDP available) |
| * - CPU not busy, GPU not busy - nothing |
| * - CPU busy, GPU not busy - adjust CPU up |
| * - CPU not busy, GPU busy - adjust GPU up |
| * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from |
| * non-preferred unit if necessary |
| * - down (at TDP limit) |
| * - adjust both CPU and GPU down if possible |
| * |
| cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- |
| cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing |
| cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- |
| cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- |
| cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- |
| * |
| */ |
| static int ips_adjust(void *data) |
| { |
| struct ips_driver *ips = data; |
| unsigned long flags; |
| |
| dev_dbg(ips->dev, "starting ips-adjust thread\n"); |
| |
| /* |
| * Adjust CPU and GPU clamps every 5s if needed. Doing it more |
| * often isn't recommended due to ME interaction. |
| */ |
| do { |
| bool cpu_busy = ips_cpu_busy(ips); |
| bool gpu_busy = ips_gpu_busy(ips); |
| |
| spin_lock_irqsave(&ips->turbo_status_lock, flags); |
| if (ips->poll_turbo_status) |
| update_turbo_limits(ips); |
| spin_unlock_irqrestore(&ips->turbo_status_lock, flags); |
| |
| /* Update turbo status if necessary */ |
| if (ips->cpu_turbo_enabled) |
| ips_enable_cpu_turbo(ips); |
| else |
| ips_disable_cpu_turbo(ips); |
| |
| if (ips->gpu_turbo_enabled) |
| ips_enable_gpu_turbo(ips); |
| else |
| ips_disable_gpu_turbo(ips); |
| |
| /* We're outside our comfort zone, crank them down */ |
| if (mcp_exceeded(ips)) { |
| ips_cpu_lower(ips); |
| ips_gpu_lower(ips); |
| goto sleep; |
| } |
| |
| if (!cpu_exceeded(ips, 0) && cpu_busy) |
| ips_cpu_raise(ips); |
| else |
| ips_cpu_lower(ips); |
| |
| if (!mch_exceeded(ips) && gpu_busy) |
| ips_gpu_raise(ips); |
| else |
| ips_gpu_lower(ips); |
| |
| sleep: |
| schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); |
| } while (!kthread_should_stop()); |
| |
| dev_dbg(ips->dev, "ips-adjust thread stopped\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Helpers for reading out temp/power values and calculating their |
| * averages for the decision making and monitoring functions. |
| */ |
| |
| static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) |
| { |
| u64 total = 0; |
| int i; |
| u16 avg; |
| |
| for (i = 0; i < IPS_SAMPLE_COUNT; i++) |
| total += (u64)(array[i] * 100); |
| |
| do_div(total, IPS_SAMPLE_COUNT); |
| |
| avg = (u16)total; |
| |
| return avg; |
| } |
| |
| static u16 read_mgtv(struct ips_driver *ips) |
| { |
| u16 ret; |
| u64 slope, offset; |
| u64 val; |
| |
| val = thm_readq(THM_MGTV); |
| val = (val & TV_MASK) >> TV_SHIFT; |
| |
| slope = offset = thm_readw(THM_MGTA); |
| slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; |
| offset = offset & MGTA_OFFSET_MASK; |
| |
| ret = ((val * slope + 0x40) >> 7) + offset; |
| |
| return 0; /* MCH temp reporting buggy */ |
| } |
| |
| static u16 read_ptv(struct ips_driver *ips) |
| { |
| u16 val, slope, offset; |
| |
| slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; |
| offset = ips->pta_val & PTA_OFFSET_MASK; |
| |
| val = thm_readw(THM_PTV) & PTV_MASK; |
| |
| return val; |
| } |
| |
| static u16 read_ctv(struct ips_driver *ips, int cpu) |
| { |
| int reg = cpu ? THM_CTV2 : THM_CTV1; |
| u16 val; |
| |
| val = thm_readw(reg); |
| if (!(val & CTV_TEMP_ERROR)) |
| val = (val) >> 6; /* discard fractional component */ |
| else |
| val = 0; |
| |
| return val; |
| } |
| |
| static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) |
| { |
| u32 val; |
| u32 ret; |
| |
| /* |
| * CEC is in joules/65535. Take difference over time to |
| * get watts. |
| */ |
| val = thm_readl(THM_CEC); |
| |
| /* period is in ms and we want mW */ |
| ret = (((val - *last) * 1000) / period); |
| ret = (ret * 1000) / 65535; |
| *last = val; |
| |
| return 0; |
| } |
| |
| static const u16 temp_decay_factor = 2; |
| static u16 update_average_temp(u16 avg, u16 val) |
| { |
| u16 ret; |
| |
| /* Multiply by 100 for extra precision */ |
| ret = (val * 100 / temp_decay_factor) + |
| (((temp_decay_factor - 1) * avg) / temp_decay_factor); |
| return ret; |
| } |
| |
| static const u16 power_decay_factor = 2; |
| static u16 update_average_power(u32 avg, u32 val) |
| { |
| u32 ret; |
| |
| ret = (val / power_decay_factor) + |
| (((power_decay_factor - 1) * avg) / power_decay_factor); |
| |
| return ret; |
| } |
| |
| static u32 calc_avg_power(struct ips_driver *ips, u32 *array) |
| { |
| u64 total = 0; |
| u32 avg; |
| int i; |
| |
| for (i = 0; i < IPS_SAMPLE_COUNT; i++) |
| total += array[i]; |
| |
| do_div(total, IPS_SAMPLE_COUNT); |
| avg = (u32)total; |
| |
| return avg; |
| } |
| |
| static void monitor_timeout(struct timer_list *t) |
| { |
| struct ips_driver *ips = from_timer(ips, t, timer); |
| wake_up_process(ips->monitor); |
| } |
| |
| /** |
| * ips_monitor - temp/power monitoring thread |
| * @data: ips driver structure |
| * |
| * This is the main function for the IPS driver. It monitors power and |
| * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. |
| * |
| * We keep a 5s moving average of power consumption and tempurature. Using |
| * that data, along with CPU vs GPU preference, we adjust the power clamps |
| * up or down. |
| */ |
| static int ips_monitor(void *data) |
| { |
| struct ips_driver *ips = data; |
| unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; |
| int i; |
| u32 *cpu_samples, *mchp_samples, old_cpu_power; |
| u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; |
| u8 cur_seqno, last_seqno; |
| |
| mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); |
| if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || |
| !cpu_samples || !mchp_samples) { |
| dev_err(ips->dev, |
| "failed to allocate sample array, ips disabled\n"); |
| kfree(mcp_samples); |
| kfree(ctv1_samples); |
| kfree(ctv2_samples); |
| kfree(mch_samples); |
| kfree(cpu_samples); |
| kfree(mchp_samples); |
| return -ENOMEM; |
| } |
| |
| last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> |
| ITV_ME_SEQNO_SHIFT; |
| seqno_timestamp = get_jiffies_64(); |
| |
| old_cpu_power = thm_readl(THM_CEC); |
| schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); |
| |
| /* Collect an initial average */ |
| for (i = 0; i < IPS_SAMPLE_COUNT; i++) { |
| u32 mchp, cpu_power; |
| u16 val; |
| |
| mcp_samples[i] = read_ptv(ips); |
| |
| val = read_ctv(ips, 0); |
| ctv1_samples[i] = val; |
| |
| val = read_ctv(ips, 1); |
| ctv2_samples[i] = val; |
| |
| val = read_mgtv(ips); |
| mch_samples[i] = val; |
| |
| cpu_power = get_cpu_power(ips, &old_cpu_power, |
| IPS_SAMPLE_PERIOD); |
| cpu_samples[i] = cpu_power; |
| |
| if (ips->read_mch_val) { |
| mchp = ips->read_mch_val(); |
| mchp_samples[i] = mchp; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); |
| if (kthread_should_stop()) |
| break; |
| } |
| |
| ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); |
| ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); |
| ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); |
| ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); |
| ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); |
| ips->mch_avg_power = calc_avg_power(ips, mchp_samples); |
| kfree(mcp_samples); |
| kfree(ctv1_samples); |
| kfree(ctv2_samples); |
| kfree(mch_samples); |
| kfree(cpu_samples); |
| kfree(mchp_samples); |
| |
| /* Start the adjustment thread now that we have data */ |
| wake_up_process(ips->adjust); |
| |
| /* |
| * Ok, now we have an initial avg. From here on out, we track the |
| * running avg using a decaying average calculation. This allows |
| * us to reduce the sample frequency if the CPU and GPU are idle. |
| */ |
| old_cpu_power = thm_readl(THM_CEC); |
| schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); |
| last_sample_period = IPS_SAMPLE_PERIOD; |
| |
| timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE); |
| do { |
| u32 cpu_val, mch_val; |
| u16 val; |
| |
| /* MCP itself */ |
| val = read_ptv(ips); |
| ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); |
| |
| /* Processor 0 */ |
| val = read_ctv(ips, 0); |
| ips->ctv1_avg_temp = |
| update_average_temp(ips->ctv1_avg_temp, val); |
| /* Power */ |
| cpu_val = get_cpu_power(ips, &old_cpu_power, |
| last_sample_period); |
| ips->cpu_avg_power = |
| update_average_power(ips->cpu_avg_power, cpu_val); |
| |
| if (ips->second_cpu) { |
| /* Processor 1 */ |
| val = read_ctv(ips, 1); |
| ips->ctv2_avg_temp = |
| update_average_temp(ips->ctv2_avg_temp, val); |
| } |
| |
| /* MCH */ |
| val = read_mgtv(ips); |
| ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); |
| /* Power */ |
| if (ips->read_mch_val) { |
| mch_val = ips->read_mch_val(); |
| ips->mch_avg_power = |
| update_average_power(ips->mch_avg_power, |
| mch_val); |
| } |
| |
| /* |
| * Make sure ME is updating thermal regs. |
| * Note: |
| * If it's been more than a second since the last update, |
| * the ME is probably hung. |
| */ |
| cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> |
| ITV_ME_SEQNO_SHIFT; |
| if (cur_seqno == last_seqno && |
| time_after(jiffies, seqno_timestamp + HZ)) { |
| dev_warn(ips->dev, |
| "ME failed to update for more than 1s, likely hung\n"); |
| } else { |
| seqno_timestamp = get_jiffies_64(); |
| last_seqno = cur_seqno; |
| } |
| |
| last_msecs = jiffies_to_msecs(jiffies); |
| expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); |
| |
| __set_current_state(TASK_INTERRUPTIBLE); |
| mod_timer(&ips->timer, expire); |
| schedule(); |
| |
| /* Calculate actual sample period for power averaging */ |
| last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; |
| if (!last_sample_period) |
| last_sample_period = 1; |
| } while (!kthread_should_stop()); |
| |
| del_timer_sync(&ips->timer); |
| |
| dev_dbg(ips->dev, "ips-monitor thread stopped\n"); |
| |
| return 0; |
| } |
| |
| #if 0 |
| #define THM_DUMPW(reg) \ |
| { \ |
| u16 val = thm_readw(reg); \ |
| dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \ |
| } |
| #define THM_DUMPL(reg) \ |
| { \ |
| u32 val = thm_readl(reg); \ |
| dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \ |
| } |
| #define THM_DUMPQ(reg) \ |
| { \ |
| u64 val = thm_readq(reg); \ |
| dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \ |
| } |
| |
| static void dump_thermal_info(struct ips_driver *ips) |
| { |
| u16 ptl; |
| |
| ptl = thm_readw(THM_PTL); |
| dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl); |
| |
| THM_DUMPW(THM_CTA); |
| THM_DUMPW(THM_TRC); |
| THM_DUMPW(THM_CTV1); |
| THM_DUMPL(THM_STS); |
| THM_DUMPW(THM_PTV); |
| THM_DUMPQ(THM_MGTV); |
| } |
| #endif |
| |
| /** |
| * ips_irq_handler - handle temperature triggers and other IPS events |
| * @irq: irq number |
| * @arg: unused |
| * |
| * Handle temperature limit trigger events, generally by lowering the clamps. |
| * If we're at a critical limit, we clamp back to the lowest possible value |
| * to prevent emergency shutdown. |
| */ |
| static irqreturn_t ips_irq_handler(int irq, void *arg) |
| { |
| struct ips_driver *ips = arg; |
| u8 tses = thm_readb(THM_TSES); |
| u8 tes = thm_readb(THM_TES); |
| |
| if (!tses && !tes) |
| return IRQ_NONE; |
| |
| dev_info(ips->dev, "TSES: 0x%02x\n", tses); |
| dev_info(ips->dev, "TES: 0x%02x\n", tes); |
| |
| /* STS update from EC? */ |
| if (tes & 1) { |
| u32 sts, tc1; |
| |
| sts = thm_readl(THM_STS); |
| tc1 = thm_readl(THM_TC1); |
| |
| if (sts & STS_NVV) { |
| spin_lock(&ips->turbo_status_lock); |
| ips->core_power_limit = (sts & STS_PCPL_MASK) >> |
| STS_PCPL_SHIFT; |
| ips->mch_power_limit = (sts & STS_GPL_MASK) >> |
| STS_GPL_SHIFT; |
| /* ignore EC CPU vs GPU pref */ |
| ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); |
| /* |
| * Disable turbo for now, until we can figure |
| * out why the power figures are wrong |
| */ |
| ips->cpu_turbo_enabled = false; |
| if (ips->gpu_busy) |
| ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); |
| ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> |
| STS_PTL_SHIFT; |
| ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> |
| STS_PPL_SHIFT; |
| verify_limits(ips); |
| spin_unlock(&ips->turbo_status_lock); |
| |
| thm_writeb(THM_SEC, SEC_ACK); |
| } |
| thm_writeb(THM_TES, tes); |
| } |
| |
| /* Thermal trip */ |
| if (tses) { |
| dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n", |
| tses); |
| thm_writeb(THM_TSES, tses); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifndef CONFIG_DEBUG_FS |
| static void ips_debugfs_init(struct ips_driver *ips) { return; } |
| static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } |
| #else |
| |
| /* Expose current state and limits in debugfs if possible */ |
| |
| struct ips_debugfs_node { |
| struct ips_driver *ips; |
| char *name; |
| int (*show)(struct seq_file *m, void *data); |
| }; |
| |
| static int show_cpu_temp(struct seq_file *m, void *data) |
| { |
| struct ips_driver *ips = m->private; |
| |
| seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, |
| ips->ctv1_avg_temp % 100); |
| |
| return 0; |
| } |
| |
| static int show_cpu_power(struct seq_file *m, void *data) |
| { |
| struct ips_driver *ips = m->private; |
| |
| seq_printf(m, "%dmW\n", ips->cpu_avg_power); |
| |
| return 0; |
| } |
| |
| static int show_cpu_clamp(struct seq_file *m, void *data) |
| { |
| u64 turbo_override; |
| int tdp, tdc; |
| |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| |
| tdp = (int)(turbo_override & TURBO_TDP_MASK); |
| tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); |
| |
| /* Convert to .1W/A units */ |
| tdp = tdp * 10 / 8; |
| tdc = tdc * 10 / 8; |
| |
| /* Watts Amperes */ |
| seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, |
| tdc / 10, tdc % 10); |
| |
| return 0; |
| } |
| |
| static int show_mch_temp(struct seq_file *m, void *data) |
| { |
| struct ips_driver *ips = m->private; |
| |
| seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, |
| ips->mch_avg_temp % 100); |
| |
| return 0; |
| } |
| |
| static int show_mch_power(struct seq_file *m, void *data) |
| { |
| struct ips_driver *ips = m->private; |
| |
| seq_printf(m, "%dmW\n", ips->mch_avg_power); |
| |
| return 0; |
| } |
| |
| static struct ips_debugfs_node ips_debug_files[] = { |
| { NULL, "cpu_temp", show_cpu_temp }, |
| { NULL, "cpu_power", show_cpu_power }, |
| { NULL, "cpu_clamp", show_cpu_clamp }, |
| { NULL, "mch_temp", show_mch_temp }, |
| { NULL, "mch_power", show_mch_power }, |
| }; |
| |
| static int ips_debugfs_open(struct inode *inode, struct file *file) |
| { |
| struct ips_debugfs_node *node = inode->i_private; |
| |
| return single_open(file, node->show, node->ips); |
| } |
| |
| static const struct file_operations ips_debugfs_ops = { |
| .owner = THIS_MODULE, |
| .open = ips_debugfs_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void ips_debugfs_cleanup(struct ips_driver *ips) |
| { |
| if (ips->debug_root) |
| debugfs_remove_recursive(ips->debug_root); |
| return; |
| } |
| |
| static void ips_debugfs_init(struct ips_driver *ips) |
| { |
| int i; |
| |
| ips->debug_root = debugfs_create_dir("ips", NULL); |
| if (!ips->debug_root) { |
| dev_err(ips->dev, "failed to create debugfs entries: %ld\n", |
| PTR_ERR(ips->debug_root)); |
| return; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { |
| struct dentry *ent; |
| struct ips_debugfs_node *node = &ips_debug_files[i]; |
| |
| node->ips = ips; |
| ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, |
| ips->debug_root, node, |
| &ips_debugfs_ops); |
| if (!ent) { |
| dev_err(ips->dev, "failed to create debug file: %ld\n", |
| PTR_ERR(ent)); |
| goto err_cleanup; |
| } |
| } |
| |
| return; |
| |
| err_cleanup: |
| ips_debugfs_cleanup(ips); |
| return; |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| /** |
| * ips_detect_cpu - detect whether CPU supports IPS |
| * |
| * Walk our list and see if we're on a supported CPU. If we find one, |
| * return the limits for it. |
| */ |
| static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) |
| { |
| u64 turbo_power, misc_en; |
| struct ips_mcp_limits *limits = NULL; |
| u16 tdp; |
| |
| if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { |
| dev_info(ips->dev, "Non-IPS CPU detected.\n"); |
| return NULL; |
| } |
| |
| rdmsrl(IA32_MISC_ENABLE, misc_en); |
| /* |
| * If the turbo enable bit isn't set, we shouldn't try to enable/disable |
| * turbo manually or we'll get an illegal MSR access, even though |
| * turbo will still be available. |
| */ |
| if (misc_en & IA32_MISC_TURBO_EN) |
| ips->turbo_toggle_allowed = true; |
| else |
| ips->turbo_toggle_allowed = false; |
| |
| if (strstr(boot_cpu_data.x86_model_id, "CPU M")) |
| limits = &ips_sv_limits; |
| else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) |
| limits = &ips_lv_limits; |
| else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) |
| limits = &ips_ulv_limits; |
| else { |
| dev_info(ips->dev, "No CPUID match found.\n"); |
| return NULL; |
| } |
| |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); |
| tdp = turbo_power & TURBO_TDP_MASK; |
| |
| /* Sanity check TDP against CPU */ |
| if (limits->core_power_limit != (tdp / 8) * 1000) { |
| dev_info(ips->dev, |
| "CPU TDP doesn't match expected value (found %d, expected %d)\n", |
| tdp / 8, limits->core_power_limit / 1000); |
| limits->core_power_limit = (tdp / 8) * 1000; |
| } |
| |
| return limits; |
| } |
| |
| /** |
| * ips_get_i915_syms - try to get GPU control methods from i915 driver |
| * @ips: IPS driver |
| * |
| * The i915 driver exports several interfaces to allow the IPS driver to |
| * monitor and control graphics turbo mode. If we can find them, we can |
| * enable graphics turbo, otherwise we must disable it to avoid exceeding |
| * thermal and power limits in the MCP. |
| */ |
| static bool ips_get_i915_syms(struct ips_driver *ips) |
| { |
| ips->read_mch_val = symbol_get(i915_read_mch_val); |
| if (!ips->read_mch_val) |
| goto out_err; |
| ips->gpu_raise = symbol_get(i915_gpu_raise); |
| if (!ips->gpu_raise) |
| goto out_put_mch; |
| ips->gpu_lower = symbol_get(i915_gpu_lower); |
| if (!ips->gpu_lower) |
| goto out_put_raise; |
| ips->gpu_busy = symbol_get(i915_gpu_busy); |
| if (!ips->gpu_busy) |
| goto out_put_lower; |
| ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); |
| if (!ips->gpu_turbo_disable) |
| goto out_put_busy; |
| |
| return true; |
| |
| out_put_busy: |
| symbol_put(i915_gpu_busy); |
| out_put_lower: |
| symbol_put(i915_gpu_lower); |
| out_put_raise: |
| symbol_put(i915_gpu_raise); |
| out_put_mch: |
| symbol_put(i915_read_mch_val); |
| out_err: |
| return false; |
| } |
| |
| static bool |
| ips_gpu_turbo_enabled(struct ips_driver *ips) |
| { |
| if (!ips->gpu_busy && late_i915_load) { |
| if (ips_get_i915_syms(ips)) { |
| dev_info(ips->dev, |
| "i915 driver attached, reenabling gpu turbo\n"); |
| ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); |
| } |
| } |
| |
| return ips->gpu_turbo_enabled; |
| } |
| |
| void |
| ips_link_to_i915_driver(void) |
| { |
| /* We can't cleanly get at the various ips_driver structs from |
| * this caller (the i915 driver), so just set a flag saying |
| * that it's time to try getting the symbols again. |
| */ |
| late_i915_load = true; |
| } |
| EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); |
| |
| static const struct pci_device_id ips_id_table[] = { |
| { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, ips_id_table); |
| |
| static int ips_blacklist_callback(const struct dmi_system_id *id) |
| { |
| pr_info("Blacklisted intel_ips for %s\n", id->ident); |
| return 1; |
| } |
| |
| static const struct dmi_system_id ips_blacklist[] = { |
| { |
| .callback = ips_blacklist_callback, |
| .ident = "HP ProBook", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), |
| }, |
| }, |
| { } /* terminating entry */ |
| }; |
| |
| static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| u64 platform_info; |
| struct ips_driver *ips; |
| u32 hts; |
| int ret = 0; |
| u16 htshi, trc, trc_required_mask; |
| u8 tse; |
| |
| if (dmi_check_system(ips_blacklist)) |
| return -ENODEV; |
| |
| ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL); |
| if (!ips) |
| return -ENOMEM; |
| |
| spin_lock_init(&ips->turbo_status_lock); |
| ips->dev = &dev->dev; |
| |
| ips->limits = ips_detect_cpu(ips); |
| if (!ips->limits) { |
| dev_info(&dev->dev, "IPS not supported on this CPU\n"); |
| return -ENXIO; |
| } |
| |
| ret = pcim_enable_device(dev); |
| if (ret) { |
| dev_err(&dev->dev, "can't enable PCI device, aborting\n"); |
| return ret; |
| } |
| |
| ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev)); |
| if (ret) { |
| dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); |
| return ret; |
| } |
| ips->regmap = pcim_iomap_table(dev)[0]; |
| |
| pci_set_drvdata(dev, ips); |
| |
| tse = thm_readb(THM_TSE); |
| if (tse != TSE_EN) { |
| dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); |
| return -ENXIO; |
| } |
| |
| trc = thm_readw(THM_TRC); |
| trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; |
| if ((trc & trc_required_mask) != trc_required_mask) { |
| dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); |
| return -ENXIO; |
| } |
| |
| if (trc & TRC_CORE2_EN) |
| ips->second_cpu = true; |
| |
| update_turbo_limits(ips); |
| dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", |
| ips->mcp_power_limit / 10); |
| dev_dbg(&dev->dev, "max core power clamp: %dW\n", |
| ips->core_power_limit / 10); |
| /* BIOS may update limits at runtime */ |
| if (thm_readl(THM_PSC) & PSP_PBRT) |
| ips->poll_turbo_status = true; |
| |
| if (!ips_get_i915_syms(ips)) { |
| dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); |
| ips->gpu_turbo_enabled = false; |
| } else { |
| dev_dbg(&dev->dev, "graphics turbo enabled\n"); |
| ips->gpu_turbo_enabled = true; |
| } |
| |
| /* |
| * Check PLATFORM_INFO MSR to make sure this chip is |
| * turbo capable. |
| */ |
| rdmsrl(PLATFORM_INFO, platform_info); |
| if (!(platform_info & PLATFORM_TDP)) { |
| dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * IRQ handler for ME interaction |
| * Note: don't use MSI here as the PCH has bugs. |
| */ |
| ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY); |
| if (ret < 0) |
| return ret; |
| |
| ips->irq = pci_irq_vector(dev, 0); |
| |
| ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips); |
| if (ret) { |
| dev_err(&dev->dev, "request irq failed, aborting\n"); |
| return ret; |
| } |
| |
| /* Enable aux, hot & critical interrupts */ |
| thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | |
| TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); |
| thm_writeb(THM_TEN, TEN_UPDATE_EN); |
| |
| /* Collect adjustment values */ |
| ips->cta_val = thm_readw(THM_CTA); |
| ips->pta_val = thm_readw(THM_PTA); |
| ips->mgta_val = thm_readw(THM_MGTA); |
| |
| /* Save turbo limits & ratios */ |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); |
| |
| ips_disable_cpu_turbo(ips); |
| ips->cpu_turbo_enabled = false; |
| |
| /* Create thermal adjust thread */ |
| ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); |
| if (IS_ERR(ips->adjust)) { |
| dev_err(&dev->dev, |
| "failed to create thermal adjust thread, aborting\n"); |
| ret = -ENOMEM; |
| goto error_free_irq; |
| |
| } |
| |
| /* |
| * Set up the work queue and monitor thread. The monitor thread |
| * will wake up ips_adjust thread. |
| */ |
| ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); |
| if (IS_ERR(ips->monitor)) { |
| dev_err(&dev->dev, |
| "failed to create thermal monitor thread, aborting\n"); |
| ret = -ENOMEM; |
| goto error_thread_cleanup; |
| } |
| |
| hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | |
| (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; |
| htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; |
| |
| thm_writew(THM_HTSHI, htshi); |
| thm_writel(THM_HTS, hts); |
| |
| ips_debugfs_init(ips); |
| |
| dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", |
| ips->mcp_temp_limit); |
| return ret; |
| |
| error_thread_cleanup: |
| kthread_stop(ips->adjust); |
| error_free_irq: |
| free_irq(ips->irq, ips); |
| pci_free_irq_vectors(dev); |
| return ret; |
| } |
| |
| static void ips_remove(struct pci_dev *dev) |
| { |
| struct ips_driver *ips = pci_get_drvdata(dev); |
| u64 turbo_override; |
| |
| if (!ips) |
| return; |
| |
| ips_debugfs_cleanup(ips); |
| |
| /* Release i915 driver */ |
| if (ips->read_mch_val) |
| symbol_put(i915_read_mch_val); |
| if (ips->gpu_raise) |
| symbol_put(i915_gpu_raise); |
| if (ips->gpu_lower) |
| symbol_put(i915_gpu_lower); |
| if (ips->gpu_busy) |
| symbol_put(i915_gpu_busy); |
| if (ips->gpu_turbo_disable) |
| symbol_put(i915_gpu_turbo_disable); |
| |
| rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); |
| wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); |
| |
| free_irq(ips->irq, ips); |
| pci_free_irq_vectors(dev); |
| if (ips->adjust) |
| kthread_stop(ips->adjust); |
| if (ips->monitor) |
| kthread_stop(ips->monitor); |
| dev_dbg(&dev->dev, "IPS driver removed\n"); |
| } |
| |
| static struct pci_driver ips_pci_driver = { |
| .name = "intel ips", |
| .id_table = ips_id_table, |
| .probe = ips_probe, |
| .remove = ips_remove, |
| }; |
| |
| module_pci_driver(ips_pci_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); |
| MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); |