| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM-SEV support |
| * |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| */ |
| |
| #include <linux/kvm_types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kernel.h> |
| #include <linux/highmem.h> |
| #include <linux/psp-sev.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| |
| #include "x86.h" |
| #include "svm.h" |
| |
| static int sev_flush_asids(void); |
| static DECLARE_RWSEM(sev_deactivate_lock); |
| static DEFINE_MUTEX(sev_bitmap_lock); |
| unsigned int max_sev_asid; |
| static unsigned int min_sev_asid; |
| static unsigned long *sev_asid_bitmap; |
| static unsigned long *sev_reclaim_asid_bitmap; |
| #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) |
| |
| struct enc_region { |
| struct list_head list; |
| unsigned long npages; |
| struct page **pages; |
| unsigned long uaddr; |
| unsigned long size; |
| }; |
| |
| static int sev_flush_asids(void) |
| { |
| int ret, error = 0; |
| |
| /* |
| * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, |
| * so it must be guarded. |
| */ |
| down_write(&sev_deactivate_lock); |
| |
| wbinvd_on_all_cpus(); |
| ret = sev_guest_df_flush(&error); |
| |
| up_write(&sev_deactivate_lock); |
| |
| if (ret) |
| pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); |
| |
| return ret; |
| } |
| |
| /* Must be called with the sev_bitmap_lock held */ |
| static bool __sev_recycle_asids(void) |
| { |
| int pos; |
| |
| /* Check if there are any ASIDs to reclaim before performing a flush */ |
| pos = find_next_bit(sev_reclaim_asid_bitmap, |
| max_sev_asid, min_sev_asid - 1); |
| if (pos >= max_sev_asid) |
| return false; |
| |
| if (sev_flush_asids()) |
| return false; |
| |
| bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, |
| max_sev_asid); |
| bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); |
| |
| return true; |
| } |
| |
| static int sev_asid_new(void) |
| { |
| bool retry = true; |
| int pos; |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| /* |
| * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. |
| */ |
| again: |
| pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); |
| if (pos >= max_sev_asid) { |
| if (retry && __sev_recycle_asids()) { |
| retry = false; |
| goto again; |
| } |
| mutex_unlock(&sev_bitmap_lock); |
| return -EBUSY; |
| } |
| |
| __set_bit(pos, sev_asid_bitmap); |
| |
| mutex_unlock(&sev_bitmap_lock); |
| |
| return pos + 1; |
| } |
| |
| static int sev_get_asid(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return sev->asid; |
| } |
| |
| static void sev_asid_free(int asid) |
| { |
| struct svm_cpu_data *sd; |
| int cpu, pos; |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| pos = asid - 1; |
| __set_bit(pos, sev_reclaim_asid_bitmap); |
| |
| for_each_possible_cpu(cpu) { |
| sd = per_cpu(svm_data, cpu); |
| sd->sev_vmcbs[asid] = NULL; |
| } |
| |
| mutex_unlock(&sev_bitmap_lock); |
| } |
| |
| static void sev_decommission(unsigned int handle) |
| { |
| struct sev_data_decommission *decommission; |
| |
| if (!handle) |
| return; |
| |
| decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); |
| if (!decommission) |
| return; |
| |
| decommission->handle = handle; |
| sev_guest_decommission(decommission, NULL); |
| |
| kfree(decommission); |
| } |
| |
| static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
| { |
| struct sev_data_deactivate *data; |
| |
| if (!handle) |
| return; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return; |
| |
| /* deactivate handle */ |
| data->handle = handle; |
| |
| /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ |
| down_read(&sev_deactivate_lock); |
| sev_guest_deactivate(data, NULL); |
| up_read(&sev_deactivate_lock); |
| |
| kfree(data); |
| |
| sev_decommission(handle); |
| } |
| |
| static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| int asid, ret; |
| |
| if (kvm->created_vcpus) |
| return -EINVAL; |
| |
| ret = -EBUSY; |
| if (unlikely(sev->active)) |
| return ret; |
| |
| asid = sev_asid_new(); |
| if (asid < 0) |
| return ret; |
| |
| ret = sev_platform_init(&argp->error); |
| if (ret) |
| goto e_free; |
| |
| sev->active = true; |
| sev->asid = asid; |
| INIT_LIST_HEAD(&sev->regions_list); |
| |
| return 0; |
| |
| e_free: |
| sev_asid_free(asid); |
| return ret; |
| } |
| |
| static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
| { |
| struct sev_data_activate *data; |
| int asid = sev_get_asid(kvm); |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| /* activate ASID on the given handle */ |
| data->handle = handle; |
| data->asid = asid; |
| ret = sev_guest_activate(data, error); |
| kfree(data); |
| |
| return ret; |
| } |
| |
| static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
| { |
| struct fd f; |
| int ret; |
| |
| f = fdget(fd); |
| if (!f.file) |
| return -EBADF; |
| |
| ret = sev_issue_cmd_external_user(f.file, id, data, error); |
| |
| fdput(f); |
| return ret; |
| } |
| |
| static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return __sev_issue_cmd(sev->fd, id, data, error); |
| } |
| |
| static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_start *start; |
| struct kvm_sev_launch_start params; |
| void *dh_blob, *session_blob; |
| int *error = &argp->error; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); |
| if (!start) |
| return -ENOMEM; |
| |
| dh_blob = NULL; |
| if (params.dh_uaddr) { |
| dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); |
| if (IS_ERR(dh_blob)) { |
| ret = PTR_ERR(dh_blob); |
| goto e_free; |
| } |
| |
| start->dh_cert_address = __sme_set(__pa(dh_blob)); |
| start->dh_cert_len = params.dh_len; |
| } |
| |
| session_blob = NULL; |
| if (params.session_uaddr) { |
| session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); |
| if (IS_ERR(session_blob)) { |
| ret = PTR_ERR(session_blob); |
| goto e_free_dh; |
| } |
| |
| start->session_address = __sme_set(__pa(session_blob)); |
| start->session_len = params.session_len; |
| } |
| |
| start->handle = params.handle; |
| start->policy = params.policy; |
| |
| /* create memory encryption context */ |
| ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); |
| if (ret) |
| goto e_free_session; |
| |
| /* Bind ASID to this guest */ |
| ret = sev_bind_asid(kvm, start->handle, error); |
| if (ret) { |
| sev_decommission(start->handle); |
| goto e_free_session; |
| } |
| |
| /* return handle to userspace */ |
| params.handle = start->handle; |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { |
| sev_unbind_asid(kvm, start->handle); |
| ret = -EFAULT; |
| goto e_free_session; |
| } |
| |
| sev->handle = start->handle; |
| sev->fd = argp->sev_fd; |
| |
| e_free_session: |
| kfree(session_blob); |
| e_free_dh: |
| kfree(dh_blob); |
| e_free: |
| kfree(start); |
| return ret; |
| } |
| |
| static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
| unsigned long ulen, unsigned long *n, |
| int write) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| unsigned long npages, size; |
| int npinned; |
| unsigned long locked, lock_limit; |
| struct page **pages; |
| unsigned long first, last; |
| int ret; |
| |
| lockdep_assert_held(&kvm->lock); |
| |
| if (ulen == 0 || uaddr + ulen < uaddr) |
| return ERR_PTR(-EINVAL); |
| |
| /* Calculate number of pages. */ |
| first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; |
| last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; |
| npages = (last - first + 1); |
| |
| locked = sev->pages_locked + npages; |
| lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { |
| pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (WARN_ON_ONCE(npages > INT_MAX)) |
| return ERR_PTR(-EINVAL); |
| |
| /* Avoid using vmalloc for smaller buffers. */ |
| size = npages * sizeof(struct page *); |
| if (size > PAGE_SIZE) |
| pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| else |
| pages = kmalloc(size, GFP_KERNEL_ACCOUNT); |
| |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Pin the user virtual address. */ |
| npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); |
| if (npinned != npages) { |
| pr_err("SEV: Failure locking %lu pages.\n", npages); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| *n = npages; |
| sev->pages_locked = locked; |
| |
| return pages; |
| |
| err: |
| if (npinned > 0) |
| unpin_user_pages(pages, npinned); |
| |
| kvfree(pages); |
| return ERR_PTR(ret); |
| } |
| |
| static void sev_unpin_memory(struct kvm *kvm, struct page **pages, |
| unsigned long npages) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| unpin_user_pages(pages, npages); |
| kvfree(pages); |
| sev->pages_locked -= npages; |
| } |
| |
| static void sev_clflush_pages(struct page *pages[], unsigned long npages) |
| { |
| uint8_t *page_virtual; |
| unsigned long i; |
| |
| if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || |
| pages == NULL) |
| return; |
| |
| for (i = 0; i < npages; i++) { |
| page_virtual = kmap_atomic(pages[i]); |
| clflush_cache_range(page_virtual, PAGE_SIZE); |
| kunmap_atomic(page_virtual); |
| } |
| } |
| |
| static unsigned long get_num_contig_pages(unsigned long idx, |
| struct page **inpages, unsigned long npages) |
| { |
| unsigned long paddr, next_paddr; |
| unsigned long i = idx + 1, pages = 1; |
| |
| /* find the number of contiguous pages starting from idx */ |
| paddr = __sme_page_pa(inpages[idx]); |
| while (i < npages) { |
| next_paddr = __sme_page_pa(inpages[i++]); |
| if ((paddr + PAGE_SIZE) == next_paddr) { |
| pages++; |
| paddr = next_paddr; |
| continue; |
| } |
| break; |
| } |
| |
| return pages; |
| } |
| |
| static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_launch_update_data params; |
| struct sev_data_launch_update_data *data; |
| struct page **inpages; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| vaddr = params.uaddr; |
| size = params.len; |
| vaddr_end = vaddr + size; |
| |
| /* Lock the user memory. */ |
| inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); |
| if (IS_ERR(inpages)) { |
| ret = PTR_ERR(inpages); |
| goto e_free; |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(inpages, npages); |
| |
| for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { |
| int offset, len; |
| |
| /* |
| * If the user buffer is not page-aligned, calculate the offset |
| * within the page. |
| */ |
| offset = vaddr & (PAGE_SIZE - 1); |
| |
| /* Calculate the number of pages that can be encrypted in one go. */ |
| pages = get_num_contig_pages(i, inpages, npages); |
| |
| len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); |
| |
| data->handle = sev->handle; |
| data->len = len; |
| data->address = __sme_page_pa(inpages[i]) + offset; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); |
| if (ret) |
| goto e_unpin; |
| |
| size -= len; |
| next_vaddr = vaddr + len; |
| } |
| |
| e_unpin: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < npages; i++) { |
| set_page_dirty_lock(inpages[i]); |
| mark_page_accessed(inpages[i]); |
| } |
| /* unlock the user pages */ |
| sev_unpin_memory(kvm, inpages, npages); |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| void __user *measure = (void __user *)(uintptr_t)argp->data; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_measure *data; |
| struct kvm_sev_launch_measure params; |
| void __user *p = NULL; |
| void *blob = NULL; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, measure, sizeof(params))) |
| return -EFAULT; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| /* User wants to query the blob length */ |
| if (!params.len) |
| goto cmd; |
| |
| p = (void __user *)(uintptr_t)params.uaddr; |
| if (p) { |
| if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| |
| ret = -ENOMEM; |
| blob = kmalloc(params.len, GFP_KERNEL); |
| if (!blob) |
| goto e_free; |
| |
| data->address = __psp_pa(blob); |
| data->len = params.len; |
| } |
| |
| cmd: |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); |
| |
| /* |
| * If we query the session length, FW responded with expected data. |
| */ |
| if (!params.len) |
| goto done; |
| |
| if (ret) |
| goto e_free_blob; |
| |
| if (blob) { |
| if (copy_to_user(p, blob, params.len)) |
| ret = -EFAULT; |
| } |
| |
| done: |
| params.len = data->len; |
| if (copy_to_user(measure, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free_blob: |
| kfree(blob); |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_finish *data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); |
| |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_guest_status params; |
| struct sev_data_guest_status *data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); |
| if (ret) |
| goto e_free; |
| |
| params.policy = data->policy; |
| params.state = data->state; |
| params.handle = data->handle; |
| |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
| unsigned long dst, int size, |
| int *error, bool enc) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_dbg *data; |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| data->dst_addr = dst; |
| data->src_addr = src; |
| data->len = size; |
| |
| ret = sev_issue_cmd(kvm, |
| enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, |
| data, error); |
| kfree(data); |
| return ret; |
| } |
| |
| static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, |
| unsigned long dst_paddr, int sz, int *err) |
| { |
| int offset; |
| |
| /* |
| * Its safe to read more than we are asked, caller should ensure that |
| * destination has enough space. |
| */ |
| offset = src_paddr & 15; |
| src_paddr = round_down(src_paddr, 16); |
| sz = round_up(sz + offset, 16); |
| |
| return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); |
| } |
| |
| static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, |
| unsigned long __user dst_uaddr, |
| unsigned long dst_paddr, |
| int size, int *err) |
| { |
| struct page *tpage = NULL; |
| int ret, offset; |
| |
| /* if inputs are not 16-byte then use intermediate buffer */ |
| if (!IS_ALIGNED(dst_paddr, 16) || |
| !IS_ALIGNED(paddr, 16) || |
| !IS_ALIGNED(size, 16)) { |
| tpage = (void *)alloc_page(GFP_KERNEL); |
| if (!tpage) |
| return -ENOMEM; |
| |
| dst_paddr = __sme_page_pa(tpage); |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); |
| if (ret) |
| goto e_free; |
| |
| if (tpage) { |
| offset = paddr & 15; |
| if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, |
| page_address(tpage) + offset, size)) |
| ret = -EFAULT; |
| } |
| |
| e_free: |
| if (tpage) |
| __free_page(tpage); |
| |
| return ret; |
| } |
| |
| static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
| unsigned long __user vaddr, |
| unsigned long dst_paddr, |
| unsigned long __user dst_vaddr, |
| int size, int *error) |
| { |
| struct page *src_tpage = NULL; |
| struct page *dst_tpage = NULL; |
| int ret, len = size; |
| |
| /* If source buffer is not aligned then use an intermediate buffer */ |
| if (!IS_ALIGNED(vaddr, 16)) { |
| src_tpage = alloc_page(GFP_KERNEL); |
| if (!src_tpage) |
| return -ENOMEM; |
| |
| if (copy_from_user(page_address(src_tpage), |
| (void __user *)(uintptr_t)vaddr, size)) { |
| __free_page(src_tpage); |
| return -EFAULT; |
| } |
| |
| paddr = __sme_page_pa(src_tpage); |
| } |
| |
| /* |
| * If destination buffer or length is not aligned then do read-modify-write: |
| * - decrypt destination in an intermediate buffer |
| * - copy the source buffer in an intermediate buffer |
| * - use the intermediate buffer as source buffer |
| */ |
| if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { |
| int dst_offset; |
| |
| dst_tpage = alloc_page(GFP_KERNEL); |
| if (!dst_tpage) { |
| ret = -ENOMEM; |
| goto e_free; |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, dst_paddr, |
| __sme_page_pa(dst_tpage), size, error); |
| if (ret) |
| goto e_free; |
| |
| /* |
| * If source is kernel buffer then use memcpy() otherwise |
| * copy_from_user(). |
| */ |
| dst_offset = dst_paddr & 15; |
| |
| if (src_tpage) |
| memcpy(page_address(dst_tpage) + dst_offset, |
| page_address(src_tpage), size); |
| else { |
| if (copy_from_user(page_address(dst_tpage) + dst_offset, |
| (void __user *)(uintptr_t)vaddr, size)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| } |
| |
| paddr = __sme_page_pa(dst_tpage); |
| dst_paddr = round_down(dst_paddr, 16); |
| len = round_up(size, 16); |
| } |
| |
| ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); |
| |
| e_free: |
| if (src_tpage) |
| __free_page(src_tpage); |
| if (dst_tpage) |
| __free_page(dst_tpage); |
| return ret; |
| } |
| |
| static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr; |
| unsigned long dst_vaddr; |
| struct page **src_p, **dst_p; |
| struct kvm_sev_dbg debug; |
| unsigned long n; |
| unsigned int size; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) |
| return -EFAULT; |
| |
| if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) |
| return -EINVAL; |
| if (!debug.dst_uaddr) |
| return -EINVAL; |
| |
| vaddr = debug.src_uaddr; |
| size = debug.len; |
| vaddr_end = vaddr + size; |
| dst_vaddr = debug.dst_uaddr; |
| |
| for (; vaddr < vaddr_end; vaddr = next_vaddr) { |
| int len, s_off, d_off; |
| |
| /* lock userspace source and destination page */ |
| src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); |
| if (IS_ERR(src_p)) |
| return PTR_ERR(src_p); |
| |
| dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); |
| if (IS_ERR(dst_p)) { |
| sev_unpin_memory(kvm, src_p, n); |
| return PTR_ERR(dst_p); |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify |
| * the pages; flush the destination too so that future accesses do not |
| * see stale data. |
| */ |
| sev_clflush_pages(src_p, 1); |
| sev_clflush_pages(dst_p, 1); |
| |
| /* |
| * Since user buffer may not be page aligned, calculate the |
| * offset within the page. |
| */ |
| s_off = vaddr & ~PAGE_MASK; |
| d_off = dst_vaddr & ~PAGE_MASK; |
| len = min_t(size_t, (PAGE_SIZE - s_off), size); |
| |
| if (dec) |
| ret = __sev_dbg_decrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| dst_vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| len, &argp->error); |
| else |
| ret = __sev_dbg_encrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| dst_vaddr, |
| len, &argp->error); |
| |
| sev_unpin_memory(kvm, src_p, n); |
| sev_unpin_memory(kvm, dst_p, n); |
| |
| if (ret) |
| goto err; |
| |
| next_vaddr = vaddr + len; |
| dst_vaddr = dst_vaddr + len; |
| size -= len; |
| } |
| err: |
| return ret; |
| } |
| |
| static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_secret *data; |
| struct kvm_sev_launch_secret params; |
| struct page **pages; |
| void *blob, *hdr; |
| unsigned long n, i; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); |
| if (IS_ERR(pages)) |
| return PTR_ERR(pages); |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(pages, n); |
| |
| /* |
| * The secret must be copied into contiguous memory region, lets verify |
| * that userspace memory pages are contiguous before we issue command. |
| */ |
| if (get_num_contig_pages(0, pages, n) != n) { |
| ret = -EINVAL; |
| goto e_unpin_memory; |
| } |
| |
| ret = -ENOMEM; |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| goto e_unpin_memory; |
| |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| data->guest_address = __sme_page_pa(pages[0]) + offset; |
| data->guest_len = params.guest_len; |
| |
| blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| if (IS_ERR(blob)) { |
| ret = PTR_ERR(blob); |
| goto e_free; |
| } |
| |
| data->trans_address = __psp_pa(blob); |
| data->trans_len = params.trans_len; |
| |
| hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| if (IS_ERR(hdr)) { |
| ret = PTR_ERR(hdr); |
| goto e_free_blob; |
| } |
| data->hdr_address = __psp_pa(hdr); |
| data->hdr_len = params.hdr_len; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); |
| |
| kfree(hdr); |
| |
| e_free_blob: |
| kfree(blob); |
| e_free: |
| kfree(data); |
| e_unpin_memory: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < n; i++) { |
| set_page_dirty_lock(pages[i]); |
| mark_page_accessed(pages[i]); |
| } |
| sev_unpin_memory(kvm, pages, n); |
| return ret; |
| } |
| |
| int svm_mem_enc_op(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_sev_cmd sev_cmd; |
| int r; |
| |
| if (!svm_sev_enabled()) |
| return -ENOTTY; |
| |
| if (!argp) |
| return 0; |
| |
| if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) |
| return -EFAULT; |
| |
| mutex_lock(&kvm->lock); |
| |
| switch (sev_cmd.id) { |
| case KVM_SEV_INIT: |
| r = sev_guest_init(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_START: |
| r = sev_launch_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_UPDATE_DATA: |
| r = sev_launch_update_data(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_MEASURE: |
| r = sev_launch_measure(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_FINISH: |
| r = sev_launch_finish(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_GUEST_STATUS: |
| r = sev_guest_status(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_DBG_DECRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, true); |
| break; |
| case KVM_SEV_DBG_ENCRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, false); |
| break; |
| case KVM_SEV_LAUNCH_SECRET: |
| r = sev_launch_secret(kvm, &sev_cmd); |
| break; |
| default: |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) |
| r = -EFAULT; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int svm_register_enc_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct enc_region *region; |
| int ret = 0; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
| return -EINVAL; |
| |
| region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); |
| if (!region) |
| return -ENOMEM; |
| |
| mutex_lock(&kvm->lock); |
| region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); |
| if (IS_ERR(region->pages)) { |
| ret = PTR_ERR(region->pages); |
| mutex_unlock(&kvm->lock); |
| goto e_free; |
| } |
| |
| region->uaddr = range->addr; |
| region->size = range->size; |
| |
| list_add_tail(®ion->list, &sev->regions_list); |
| mutex_unlock(&kvm->lock); |
| |
| /* |
| * The guest may change the memory encryption attribute from C=0 -> C=1 |
| * or vice versa for this memory range. Lets make sure caches are |
| * flushed to ensure that guest data gets written into memory with |
| * correct C-bit. |
| */ |
| sev_clflush_pages(region->pages, region->npages); |
| |
| return ret; |
| |
| e_free: |
| kfree(region); |
| return ret; |
| } |
| |
| static struct enc_region * |
| find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct enc_region *i; |
| |
| list_for_each_entry(i, head, list) { |
| if (i->uaddr == range->addr && |
| i->size == range->size) |
| return i; |
| } |
| |
| return NULL; |
| } |
| |
| static void __unregister_enc_region_locked(struct kvm *kvm, |
| struct enc_region *region) |
| { |
| sev_unpin_memory(kvm, region->pages, region->npages); |
| list_del(®ion->list); |
| kfree(region); |
| } |
| |
| int svm_unregister_enc_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct enc_region *region; |
| int ret; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (!sev_guest(kvm)) { |
| ret = -ENOTTY; |
| goto failed; |
| } |
| |
| region = find_enc_region(kvm, range); |
| if (!region) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| __unregister_enc_region_locked(kvm, region); |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| |
| failed: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| void sev_vm_destroy(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct list_head *pos, *q; |
| |
| if (!sev_guest(kvm)) |
| return; |
| |
| mutex_lock(&kvm->lock); |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| /* |
| * if userspace was terminated before unregistering the memory regions |
| * then lets unpin all the registered memory. |
| */ |
| if (!list_empty(head)) { |
| list_for_each_safe(pos, q, head) { |
| __unregister_enc_region_locked(kvm, |
| list_entry(pos, struct enc_region, list)); |
| cond_resched(); |
| } |
| } |
| |
| mutex_unlock(&kvm->lock); |
| |
| sev_unbind_asid(kvm, sev->handle); |
| sev_asid_free(sev->asid); |
| } |
| |
| int __init sev_hardware_setup(void) |
| { |
| /* Maximum number of encrypted guests supported simultaneously */ |
| max_sev_asid = cpuid_ecx(0x8000001F); |
| |
| if (!svm_sev_enabled()) |
| return 1; |
| |
| /* Minimum ASID value that should be used for SEV guest */ |
| min_sev_asid = cpuid_edx(0x8000001F); |
| |
| /* Initialize SEV ASID bitmaps */ |
| sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| if (!sev_asid_bitmap) |
| return 1; |
| |
| sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| if (!sev_reclaim_asid_bitmap) |
| return 1; |
| |
| pr_info("SEV supported\n"); |
| |
| return 0; |
| } |
| |
| void sev_hardware_teardown(void) |
| { |
| if (!svm_sev_enabled()) |
| return; |
| |
| bitmap_free(sev_asid_bitmap); |
| bitmap_free(sev_reclaim_asid_bitmap); |
| |
| sev_flush_asids(); |
| } |
| |
| void pre_sev_run(struct vcpu_svm *svm, int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| int asid = sev_get_asid(svm->vcpu.kvm); |
| |
| /* Assign the asid allocated with this SEV guest */ |
| svm->vmcb->control.asid = asid; |
| |
| /* |
| * Flush guest TLB: |
| * |
| * 1) when different VMCB for the same ASID is to be run on the same host CPU. |
| * 2) or this VMCB was executed on different host CPU in previous VMRUNs. |
| */ |
| if (sd->sev_vmcbs[asid] == svm->vmcb && |
| svm->vcpu.arch.last_vmentry_cpu == cpu) |
| return; |
| |
| sd->sev_vmcbs[asid] = svm->vmcb; |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| } |