| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved. |
| * Copyright 2010 Orex Computed Radiography |
| */ |
| |
| /* |
| * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block |
| * to implement a Linux RTC. Times and alarms are truncated to seconds. |
| * Since the RTC framework performs API locking via rtc->ops_lock the |
| * only simultaneous accesses we need to deal with is updating DryIce |
| * registers while servicing an alarm. |
| * |
| * Note that reading the DSR (DryIce Status Register) automatically clears |
| * the WCF (Write Complete Flag). All DryIce writes are synchronized to the |
| * LP (Low Power) domain and set the WCF upon completion. Writes to the |
| * DIER (DryIce Interrupt Enable Register) are the only exception. These |
| * occur at normal bus speeds and do not set WCF. Periodic interrupts are |
| * not supported by the hardware. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/of.h> |
| |
| /* DryIce Register Definitions */ |
| |
| #define DTCMR 0x00 /* Time Counter MSB Reg */ |
| #define DTCLR 0x04 /* Time Counter LSB Reg */ |
| |
| #define DCAMR 0x08 /* Clock Alarm MSB Reg */ |
| #define DCALR 0x0c /* Clock Alarm LSB Reg */ |
| #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */ |
| |
| #define DCR 0x10 /* Control Reg */ |
| #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */ |
| #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */ |
| #define DCR_KSSL (1 << 27) /* Key-select soft lock */ |
| #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */ |
| #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */ |
| #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */ |
| #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */ |
| #define DCR_FSHL (1 << 16) /* Failure state hard lock */ |
| #define DCR_TCE (1 << 3) /* Time Counter Enable */ |
| #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */ |
| |
| #define DSR 0x14 /* Status Reg */ |
| #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */ |
| #define DSR_ETBD (1 << 22) /* External tamper B detected */ |
| #define DSR_ETAD (1 << 21) /* External tamper A detected */ |
| #define DSR_EBD (1 << 20) /* External boot detected */ |
| #define DSR_SAD (1 << 19) /* SCC alarm detected */ |
| #define DSR_TTD (1 << 18) /* Temperature tamper detected */ |
| #define DSR_CTD (1 << 17) /* Clock tamper detected */ |
| #define DSR_VTD (1 << 16) /* Voltage tamper detected */ |
| #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */ |
| #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */ |
| #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/ |
| #define DSR_WEF (1 << 7) /* Write Error Flag */ |
| #define DSR_CAF (1 << 4) /* Clock Alarm Flag */ |
| #define DSR_MCO (1 << 3) /* monotonic counter overflow */ |
| #define DSR_TCO (1 << 2) /* time counter overflow */ |
| #define DSR_NVF (1 << 1) /* Non-Valid Flag */ |
| #define DSR_SVF (1 << 0) /* Security Violation Flag */ |
| |
| #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */ |
| #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */ |
| #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */ |
| #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */ |
| #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */ |
| #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */ |
| |
| #define DMCR 0x1c /* DryIce Monotonic Counter Reg */ |
| |
| #define DTCR 0x28 /* DryIce Tamper Configuration Reg */ |
| #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */ |
| #define DTCR_TOE (1 << 8) /* time overflow enabled */ |
| #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */ |
| #define DTCR_ETBE (1 << 6) /* external B tamper enabled */ |
| #define DTCR_ETAE (1 << 5) /* external A tamper enabled */ |
| #define DTCR_EBE (1 << 4) /* external boot tamper enabled */ |
| #define DTCR_SAIE (1 << 3) /* SCC enabled */ |
| #define DTCR_TTE (1 << 2) /* temperature tamper enabled */ |
| #define DTCR_CTE (1 << 1) /* clock tamper enabled */ |
| #define DTCR_VTE (1 << 0) /* voltage tamper enabled */ |
| |
| #define DGPR 0x3c /* DryIce General Purpose Reg */ |
| |
| /** |
| * struct imxdi_dev - private imxdi rtc data |
| * @pdev: pointer to platform dev |
| * @rtc: pointer to rtc struct |
| * @ioaddr: IO registers pointer |
| * @clk: input reference clock |
| * @dsr: copy of the DSR register |
| * @irq_lock: interrupt enable register (DIER) lock |
| * @write_wait: registers write complete queue |
| * @write_mutex: serialize registers write |
| * @work: schedule alarm work |
| */ |
| struct imxdi_dev { |
| struct platform_device *pdev; |
| struct rtc_device *rtc; |
| void __iomem *ioaddr; |
| struct clk *clk; |
| u32 dsr; |
| spinlock_t irq_lock; |
| wait_queue_head_t write_wait; |
| struct mutex write_mutex; |
| struct work_struct work; |
| }; |
| |
| /* Some background: |
| * |
| * The DryIce unit is a complex security/tamper monitor device. To be able do |
| * its job in a useful manner it runs a bigger statemachine to bring it into |
| * security/tamper failure state and once again to bring it out of this state. |
| * |
| * This unit can be in one of three states: |
| * |
| * - "NON-VALID STATE" |
| * always after the battery power was removed |
| * - "FAILURE STATE" |
| * if one of the enabled security events has happened |
| * - "VALID STATE" |
| * if the unit works as expected |
| * |
| * Everything stops when the unit enters the failure state including the RTC |
| * counter (to be able to detect the time the security event happened). |
| * |
| * The following events (when enabled) let the DryIce unit enter the failure |
| * state: |
| * |
| * - wire-mesh-tamper detect |
| * - external tamper B detect |
| * - external tamper A detect |
| * - temperature tamper detect |
| * - clock tamper detect |
| * - voltage tamper detect |
| * - RTC counter overflow |
| * - monotonic counter overflow |
| * - external boot |
| * |
| * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we |
| * can only detect this state. In this case the unit is completely locked and |
| * must force a second "SYSTEM POR" to bring the DryIce into the |
| * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible. |
| * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case |
| * a battery power cycle is required. |
| * |
| * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE" |
| * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last |
| * task, we bring back this unit into life. |
| */ |
| |
| /* |
| * Do a write into the unit without interrupt support. |
| * We do not need to check the WEF here, because the only reason this kind of |
| * write error can happen is if we write to the unit twice within the 122 us |
| * interval. This cannot happen, since we are using this function only while |
| * setting up the unit. |
| */ |
| static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val, |
| unsigned reg) |
| { |
| /* do the register write */ |
| writel(val, imxdi->ioaddr + reg); |
| |
| /* |
| * now it takes four 32,768 kHz clock cycles to take |
| * the change into effect = 122 us |
| */ |
| usleep_range(130, 200); |
| } |
| |
| static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr) |
| { |
| u32 dtcr; |
| |
| dtcr = readl(imxdi->ioaddr + DTCR); |
| |
| dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n"); |
| /* the following flags force a transition into the "FAILURE STATE" */ |
| if (dsr & DSR_VTD) |
| dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n", |
| dtcr & DTCR_VTE ? "" : "Spurious "); |
| |
| if (dsr & DSR_CTD) |
| dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n", |
| dtcr & DTCR_CTE ? "" : "Spurious "); |
| |
| if (dsr & DSR_TTD) |
| dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n", |
| dtcr & DTCR_TTE ? "" : "Spurious "); |
| |
| if (dsr & DSR_SAD) |
| dev_emerg(&imxdi->pdev->dev, |
| "%sSecure Controller Alarm Event\n", |
| dtcr & DTCR_SAIE ? "" : "Spurious "); |
| |
| if (dsr & DSR_EBD) |
| dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n", |
| dtcr & DTCR_EBE ? "" : "Spurious "); |
| |
| if (dsr & DSR_ETAD) |
| dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n", |
| dtcr & DTCR_ETAE ? "" : "Spurious "); |
| |
| if (dsr & DSR_ETBD) |
| dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n", |
| dtcr & DTCR_ETBE ? "" : "Spurious "); |
| |
| if (dsr & DSR_WTD) |
| dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n", |
| dtcr & DTCR_WTE ? "" : "Spurious "); |
| |
| if (dsr & DSR_MCO) |
| dev_emerg(&imxdi->pdev->dev, |
| "%sMonotonic-counter Overflow Event\n", |
| dtcr & DTCR_MOE ? "" : "Spurious "); |
| |
| if (dsr & DSR_TCO) |
| dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n", |
| dtcr & DTCR_TOE ? "" : "Spurious "); |
| } |
| |
| static void di_what_is_to_be_done(struct imxdi_dev *imxdi, |
| const char *power_supply) |
| { |
| dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n", |
| power_supply); |
| } |
| |
| static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr) |
| { |
| u32 dcr; |
| |
| dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr); |
| |
| /* report the cause */ |
| di_report_tamper_info(imxdi, dsr); |
| |
| dcr = readl(imxdi->ioaddr + DCR); |
| |
| if (dcr & DCR_FSHL) { |
| /* we are out of luck */ |
| di_what_is_to_be_done(imxdi, "battery"); |
| return -ENODEV; |
| } |
| /* |
| * with the next SYSTEM POR we will transit from the "FAILURE STATE" |
| * into the "NON-VALID STATE" + "FAILURE STATE" |
| */ |
| di_what_is_to_be_done(imxdi, "main"); |
| |
| return -ENODEV; |
| } |
| |
| static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr) |
| { |
| /* initialize alarm */ |
| di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR); |
| di_write_busy_wait(imxdi, 0, DCALR); |
| |
| /* clear alarm flag */ |
| if (dsr & DSR_CAF) |
| di_write_busy_wait(imxdi, DSR_CAF, DSR); |
| |
| return 0; |
| } |
| |
| static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr) |
| { |
| u32 dcr, sec; |
| |
| /* |
| * lets disable all sources which can force the DryIce unit into |
| * the "FAILURE STATE" for now |
| */ |
| di_write_busy_wait(imxdi, 0x00000000, DTCR); |
| /* and lets protect them at runtime from any change */ |
| di_write_busy_wait(imxdi, DCR_TDCSL, DCR); |
| |
| sec = readl(imxdi->ioaddr + DTCMR); |
| if (sec != 0) |
| dev_warn(&imxdi->pdev->dev, |
| "The security violation has happened at %u seconds\n", |
| sec); |
| /* |
| * the timer cannot be set/modified if |
| * - the TCHL or TCSL bit is set in DCR |
| */ |
| dcr = readl(imxdi->ioaddr + DCR); |
| if (!(dcr & DCR_TCE)) { |
| if (dcr & DCR_TCHL) { |
| /* we are out of luck */ |
| di_what_is_to_be_done(imxdi, "battery"); |
| return -ENODEV; |
| } |
| if (dcr & DCR_TCSL) { |
| di_what_is_to_be_done(imxdi, "main"); |
| return -ENODEV; |
| } |
| } |
| /* |
| * - the timer counter stops/is stopped if |
| * - its overflow flag is set (TCO in DSR) |
| * -> clear overflow bit to make it count again |
| * - NVF is set in DSR |
| * -> clear non-valid bit to make it count again |
| * - its TCE (DCR) is cleared |
| * -> set TCE to make it count |
| * - it was never set before |
| * -> write a time into it (required again if the NVF was set) |
| */ |
| /* state handled */ |
| di_write_busy_wait(imxdi, DSR_NVF, DSR); |
| /* clear overflow flag */ |
| di_write_busy_wait(imxdi, DSR_TCO, DSR); |
| /* enable the counter */ |
| di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR); |
| /* set and trigger it to make it count */ |
| di_write_busy_wait(imxdi, sec, DTCMR); |
| |
| /* now prepare for the valid state */ |
| return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR)); |
| } |
| |
| static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr) |
| { |
| u32 dcr; |
| |
| /* |
| * now we must first remove the tamper sources in order to get the |
| * device out of the "FAILURE STATE" |
| * To disable any of the following sources we need to modify the DTCR |
| */ |
| if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD | |
| DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) { |
| dcr = __raw_readl(imxdi->ioaddr + DCR); |
| if (dcr & DCR_TDCHL) { |
| /* |
| * the tamper register is locked. We cannot disable the |
| * tamper detection. The TDCHL can only be reset by a |
| * DRYICE POR, but we cannot force a DRYICE POR in |
| * software because we are still in "FAILURE STATE". |
| * We need a DRYICE POR via battery power cycling.... |
| */ |
| /* |
| * out of luck! |
| * we cannot disable them without a DRYICE POR |
| */ |
| di_what_is_to_be_done(imxdi, "battery"); |
| return -ENODEV; |
| } |
| if (dcr & DCR_TDCSL) { |
| /* a soft lock can be removed by a SYSTEM POR */ |
| di_what_is_to_be_done(imxdi, "main"); |
| return -ENODEV; |
| } |
| } |
| |
| /* disable all sources */ |
| di_write_busy_wait(imxdi, 0x00000000, DTCR); |
| |
| /* clear the status bits now */ |
| di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | |
| DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD | |
| DSR_MCO | DSR_TCO), DSR); |
| |
| dsr = readl(imxdi->ioaddr + DSR); |
| if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF | |
| DSR_WCF | DSR_WEF)) != 0) |
| dev_warn(&imxdi->pdev->dev, |
| "There are still some sources of pain in DSR: %08x!\n", |
| dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF | |
| DSR_WCF | DSR_WEF)); |
| |
| /* |
| * now we are trying to clear the "Security-violation flag" to |
| * get the DryIce out of this state |
| */ |
| di_write_busy_wait(imxdi, DSR_SVF, DSR); |
| |
| /* success? */ |
| dsr = readl(imxdi->ioaddr + DSR); |
| if (dsr & DSR_SVF) { |
| dev_crit(&imxdi->pdev->dev, |
| "Cannot clear the security violation flag. We are ending up in an endless loop!\n"); |
| /* last resort */ |
| di_what_is_to_be_done(imxdi, "battery"); |
| return -ENODEV; |
| } |
| |
| /* |
| * now we have left the "FAILURE STATE" and ending up in the |
| * "NON-VALID STATE" time to recover everything |
| */ |
| return di_handle_invalid_state(imxdi, dsr); |
| } |
| |
| static int di_handle_state(struct imxdi_dev *imxdi) |
| { |
| int rc; |
| u32 dsr; |
| |
| dsr = readl(imxdi->ioaddr + DSR); |
| |
| switch (dsr & (DSR_NVF | DSR_SVF)) { |
| case DSR_NVF: |
| dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n"); |
| rc = di_handle_invalid_state(imxdi, dsr); |
| break; |
| case DSR_SVF: |
| dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n"); |
| rc = di_handle_failure_state(imxdi, dsr); |
| break; |
| case DSR_NVF | DSR_SVF: |
| dev_warn(&imxdi->pdev->dev, |
| "Failure+Invalid stated unit detected\n"); |
| rc = di_handle_invalid_and_failure_state(imxdi, dsr); |
| break; |
| default: |
| dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n"); |
| rc = di_handle_valid_state(imxdi, dsr); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * enable a dryice interrupt |
| */ |
| static void di_int_enable(struct imxdi_dev *imxdi, u32 intr) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&imxdi->irq_lock, flags); |
| writel(readl(imxdi->ioaddr + DIER) | intr, |
| imxdi->ioaddr + DIER); |
| spin_unlock_irqrestore(&imxdi->irq_lock, flags); |
| } |
| |
| /* |
| * disable a dryice interrupt |
| */ |
| static void di_int_disable(struct imxdi_dev *imxdi, u32 intr) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&imxdi->irq_lock, flags); |
| writel(readl(imxdi->ioaddr + DIER) & ~intr, |
| imxdi->ioaddr + DIER); |
| spin_unlock_irqrestore(&imxdi->irq_lock, flags); |
| } |
| |
| /* |
| * This function attempts to clear the dryice write-error flag. |
| * |
| * A dryice write error is similar to a bus fault and should not occur in |
| * normal operation. Clearing the flag requires another write, so the root |
| * cause of the problem may need to be fixed before the flag can be cleared. |
| */ |
| static void clear_write_error(struct imxdi_dev *imxdi) |
| { |
| int cnt; |
| |
| dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n"); |
| |
| /* clear the write error flag */ |
| writel(DSR_WEF, imxdi->ioaddr + DSR); |
| |
| /* wait for it to take effect */ |
| for (cnt = 0; cnt < 1000; cnt++) { |
| if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0) |
| return; |
| udelay(10); |
| } |
| dev_err(&imxdi->pdev->dev, |
| "ERROR: Cannot clear write-error flag!\n"); |
| } |
| |
| /* |
| * Write a dryice register and wait until it completes. |
| * |
| * This function uses interrupts to determine when the |
| * write has completed. |
| */ |
| static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg) |
| { |
| int ret; |
| int rc = 0; |
| |
| /* serialize register writes */ |
| mutex_lock(&imxdi->write_mutex); |
| |
| /* enable the write-complete interrupt */ |
| di_int_enable(imxdi, DIER_WCIE); |
| |
| imxdi->dsr = 0; |
| |
| /* do the register write */ |
| writel(val, imxdi->ioaddr + reg); |
| |
| /* wait for the write to finish */ |
| ret = wait_event_interruptible_timeout(imxdi->write_wait, |
| imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1)); |
| if (ret < 0) { |
| rc = ret; |
| goto out; |
| } else if (ret == 0) { |
| dev_warn(&imxdi->pdev->dev, |
| "Write-wait timeout " |
| "val = 0x%08x reg = 0x%08x\n", val, reg); |
| } |
| |
| /* check for write error */ |
| if (imxdi->dsr & DSR_WEF) { |
| clear_write_error(imxdi); |
| rc = -EIO; |
| } |
| |
| out: |
| mutex_unlock(&imxdi->write_mutex); |
| |
| return rc; |
| } |
| |
| /* |
| * read the seconds portion of the current time from the dryice time counter |
| */ |
| static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct imxdi_dev *imxdi = dev_get_drvdata(dev); |
| unsigned long now; |
| |
| now = readl(imxdi->ioaddr + DTCMR); |
| rtc_time64_to_tm(now, tm); |
| |
| return 0; |
| } |
| |
| /* |
| * set the seconds portion of dryice time counter and clear the |
| * fractional part. |
| */ |
| static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct imxdi_dev *imxdi = dev_get_drvdata(dev); |
| u32 dcr, dsr; |
| int rc; |
| |
| dcr = readl(imxdi->ioaddr + DCR); |
| dsr = readl(imxdi->ioaddr + DSR); |
| |
| if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) { |
| if (dcr & DCR_TCHL) { |
| /* we are even more out of luck */ |
| di_what_is_to_be_done(imxdi, "battery"); |
| return -EPERM; |
| } |
| if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) { |
| /* we are out of luck for now */ |
| di_what_is_to_be_done(imxdi, "main"); |
| return -EPERM; |
| } |
| } |
| |
| /* zero the fractional part first */ |
| rc = di_write_wait(imxdi, 0, DTCLR); |
| if (rc != 0) |
| return rc; |
| |
| rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR); |
| if (rc != 0) |
| return rc; |
| |
| return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR); |
| } |
| |
| static int dryice_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enabled) |
| { |
| struct imxdi_dev *imxdi = dev_get_drvdata(dev); |
| |
| if (enabled) |
| di_int_enable(imxdi, DIER_CAIE); |
| else |
| di_int_disable(imxdi, DIER_CAIE); |
| |
| return 0; |
| } |
| |
| /* |
| * read the seconds portion of the alarm register. |
| * the fractional part of the alarm register is always zero. |
| */ |
| static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct imxdi_dev *imxdi = dev_get_drvdata(dev); |
| u32 dcamr; |
| |
| dcamr = readl(imxdi->ioaddr + DCAMR); |
| rtc_time64_to_tm(dcamr, &alarm->time); |
| |
| /* alarm is enabled if the interrupt is enabled */ |
| alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0; |
| |
| /* don't allow the DSR read to mess up DSR_WCF */ |
| mutex_lock(&imxdi->write_mutex); |
| |
| /* alarm is pending if the alarm flag is set */ |
| alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0; |
| |
| mutex_unlock(&imxdi->write_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * set the seconds portion of dryice alarm register |
| */ |
| static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct imxdi_dev *imxdi = dev_get_drvdata(dev); |
| int rc; |
| |
| /* write the new alarm time */ |
| rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR); |
| if (rc) |
| return rc; |
| |
| if (alarm->enabled) |
| di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */ |
| else |
| di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */ |
| |
| return 0; |
| } |
| |
| static const struct rtc_class_ops dryice_rtc_ops = { |
| .read_time = dryice_rtc_read_time, |
| .set_time = dryice_rtc_set_time, |
| .alarm_irq_enable = dryice_rtc_alarm_irq_enable, |
| .read_alarm = dryice_rtc_read_alarm, |
| .set_alarm = dryice_rtc_set_alarm, |
| }; |
| |
| /* |
| * interrupt handler for dryice "normal" and security violation interrupt |
| */ |
| static irqreturn_t dryice_irq(int irq, void *dev_id) |
| { |
| struct imxdi_dev *imxdi = dev_id; |
| u32 dsr, dier; |
| irqreturn_t rc = IRQ_NONE; |
| |
| dier = readl(imxdi->ioaddr + DIER); |
| dsr = readl(imxdi->ioaddr + DSR); |
| |
| /* handle the security violation event */ |
| if (dier & DIER_SVIE) { |
| if (dsr & DSR_SVF) { |
| /* |
| * Disable the interrupt when this kind of event has |
| * happened. |
| * There cannot be more than one event of this type, |
| * because it needs a complex state change |
| * including a main power cycle to get again out of |
| * this state. |
| */ |
| di_int_disable(imxdi, DIER_SVIE); |
| /* report the violation */ |
| di_report_tamper_info(imxdi, dsr); |
| rc = IRQ_HANDLED; |
| } |
| } |
| |
| /* handle write complete and write error cases */ |
| if (dier & DIER_WCIE) { |
| /*If the write wait queue is empty then there is no pending |
| operations. It means the interrupt is for DryIce -Security. |
| IRQ must be returned as none.*/ |
| if (list_empty_careful(&imxdi->write_wait.head)) |
| return rc; |
| |
| /* DSR_WCF clears itself on DSR read */ |
| if (dsr & (DSR_WCF | DSR_WEF)) { |
| /* mask the interrupt */ |
| di_int_disable(imxdi, DIER_WCIE); |
| |
| /* save the dsr value for the wait queue */ |
| imxdi->dsr |= dsr; |
| |
| wake_up_interruptible(&imxdi->write_wait); |
| rc = IRQ_HANDLED; |
| } |
| } |
| |
| /* handle the alarm case */ |
| if (dier & DIER_CAIE) { |
| /* DSR_WCF clears itself on DSR read */ |
| if (dsr & DSR_CAF) { |
| /* mask the interrupt */ |
| di_int_disable(imxdi, DIER_CAIE); |
| |
| /* finish alarm in user context */ |
| schedule_work(&imxdi->work); |
| rc = IRQ_HANDLED; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| * post the alarm event from user context so it can sleep |
| * on the write completion. |
| */ |
| static void dryice_work(struct work_struct *work) |
| { |
| struct imxdi_dev *imxdi = container_of(work, |
| struct imxdi_dev, work); |
| |
| /* dismiss the interrupt (ignore error) */ |
| di_write_wait(imxdi, DSR_CAF, DSR); |
| |
| /* pass the alarm event to the rtc framework. */ |
| rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF); |
| } |
| |
| /* |
| * probe for dryice rtc device |
| */ |
| static int __init dryice_rtc_probe(struct platform_device *pdev) |
| { |
| struct imxdi_dev *imxdi; |
| int norm_irq, sec_irq; |
| int rc; |
| |
| imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL); |
| if (!imxdi) |
| return -ENOMEM; |
| |
| imxdi->pdev = pdev; |
| |
| imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(imxdi->ioaddr)) |
| return PTR_ERR(imxdi->ioaddr); |
| |
| spin_lock_init(&imxdi->irq_lock); |
| |
| norm_irq = platform_get_irq(pdev, 0); |
| if (norm_irq < 0) |
| return norm_irq; |
| |
| /* the 2nd irq is the security violation irq |
| * make this optional, don't break the device tree ABI |
| */ |
| sec_irq = platform_get_irq(pdev, 1); |
| if (sec_irq <= 0) |
| sec_irq = IRQ_NOTCONNECTED; |
| |
| init_waitqueue_head(&imxdi->write_wait); |
| |
| INIT_WORK(&imxdi->work, dryice_work); |
| |
| mutex_init(&imxdi->write_mutex); |
| |
| imxdi->rtc = devm_rtc_allocate_device(&pdev->dev); |
| if (IS_ERR(imxdi->rtc)) |
| return PTR_ERR(imxdi->rtc); |
| |
| imxdi->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(imxdi->clk)) |
| return PTR_ERR(imxdi->clk); |
| rc = clk_prepare_enable(imxdi->clk); |
| if (rc) |
| return rc; |
| |
| /* |
| * Initialize dryice hardware |
| */ |
| |
| /* mask all interrupts */ |
| writel(0, imxdi->ioaddr + DIER); |
| |
| rc = di_handle_state(imxdi); |
| if (rc != 0) |
| goto err; |
| |
| rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq, |
| IRQF_SHARED, pdev->name, imxdi); |
| if (rc) { |
| dev_warn(&pdev->dev, "interrupt not available.\n"); |
| goto err; |
| } |
| |
| rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq, |
| IRQF_SHARED, pdev->name, imxdi); |
| if (rc) { |
| dev_warn(&pdev->dev, "security violation interrupt not available.\n"); |
| /* this is not an error, see above */ |
| } |
| |
| platform_set_drvdata(pdev, imxdi); |
| |
| imxdi->rtc->ops = &dryice_rtc_ops; |
| imxdi->rtc->range_max = U32_MAX; |
| |
| rc = devm_rtc_register_device(imxdi->rtc); |
| if (rc) |
| goto err; |
| |
| return 0; |
| |
| err: |
| clk_disable_unprepare(imxdi->clk); |
| |
| return rc; |
| } |
| |
| static int __exit dryice_rtc_remove(struct platform_device *pdev) |
| { |
| struct imxdi_dev *imxdi = platform_get_drvdata(pdev); |
| |
| flush_work(&imxdi->work); |
| |
| /* mask all interrupts */ |
| writel(0, imxdi->ioaddr + DIER); |
| |
| clk_disable_unprepare(imxdi->clk); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id dryice_dt_ids[] = { |
| { .compatible = "fsl,imx25-rtc" }, |
| { /* sentinel */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, dryice_dt_ids); |
| |
| static struct platform_driver dryice_rtc_driver = { |
| .driver = { |
| .name = "imxdi_rtc", |
| .of_match_table = dryice_dt_ids, |
| }, |
| .remove = __exit_p(dryice_rtc_remove), |
| }; |
| |
| module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>"); |
| MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)"); |
| MODULE_LICENSE("GPL"); |