| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Broadcom |
| * Copyright (c) 2014 The Linux Foundation. All rights reserved. |
| * Copyright (C) 2013 Red Hat |
| * Author: Rob Clark <robdclark@gmail.com> |
| */ |
| |
| /** |
| * DOC: VC4 Falcon HDMI module |
| * |
| * The HDMI core has a state machine and a PHY. On BCM2835, most of |
| * the unit operates off of the HSM clock from CPRMAN. It also |
| * internally uses the PLLH_PIX clock for the PHY. |
| * |
| * HDMI infoframes are kept within a small packet ram, where each |
| * packet can be individually enabled for including in a frame. |
| * |
| * HDMI audio is implemented entirely within the HDMI IP block. A |
| * register in the HDMI encoder takes SPDIF frames from the DMA engine |
| * and transfers them over an internal MAI (multi-channel audio |
| * interconnect) bus to the encoder side for insertion into the video |
| * blank regions. |
| * |
| * The driver's HDMI encoder does not yet support power management. |
| * The HDMI encoder's power domain and the HSM/pixel clocks are kept |
| * continuously running, and only the HDMI logic and packet ram are |
| * powered off/on at disable/enable time. |
| * |
| * The driver does not yet support CEC control, though the HDMI |
| * encoder block has CEC support. |
| */ |
| |
| #include <drm/display/drm_hdmi_helper.h> |
| #include <drm/display/drm_hdmi_state_helper.h> |
| #include <drm/display/drm_scdc_helper.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_drv.h> |
| #include <drm/drm_edid.h> |
| #include <drm/drm_probe_helper.h> |
| #include <drm/drm_simple_kms_helper.h> |
| #include <linux/clk.h> |
| #include <linux/component.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/i2c.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/rational.h> |
| #include <linux/reset.h> |
| #include <sound/dmaengine_pcm.h> |
| #include <sound/hdmi-codec.h> |
| #include <sound/pcm_drm_eld.h> |
| #include <sound/pcm_params.h> |
| #include <sound/soc.h> |
| #include "media/cec.h" |
| #include "vc4_drv.h" |
| #include "vc4_hdmi.h" |
| #include "vc4_hdmi_regs.h" |
| #include "vc4_regs.h" |
| |
| #define VC5_HDMI_HORZA_HFP_SHIFT 16 |
| #define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16) |
| #define VC5_HDMI_HORZA_VPOS BIT(15) |
| #define VC5_HDMI_HORZA_HPOS BIT(14) |
| #define VC5_HDMI_HORZA_HAP_SHIFT 0 |
| #define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0) |
| |
| #define VC5_HDMI_HORZB_HBP_SHIFT 16 |
| #define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16) |
| #define VC5_HDMI_HORZB_HSP_SHIFT 0 |
| #define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0) |
| |
| #define VC5_HDMI_VERTA_VSP_SHIFT 24 |
| #define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24) |
| #define VC5_HDMI_VERTA_VFP_SHIFT 16 |
| #define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16) |
| #define VC5_HDMI_VERTA_VAL_SHIFT 0 |
| #define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0) |
| |
| #define VC5_HDMI_VERTB_VSPO_SHIFT 16 |
| #define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16) |
| |
| #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 |
| #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) |
| #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 |
| #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) |
| |
| #define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0) |
| |
| #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8 |
| #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8) |
| |
| #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0 |
| #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0) |
| |
| #define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31) |
| |
| #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8 |
| #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8) |
| |
| #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK VC4_MASK(7, 0) |
| #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE BIT(0) |
| #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE BIT(4) |
| |
| # define VC4_HD_M_SW_RST BIT(2) |
| # define VC4_HD_M_ENABLE BIT(0) |
| |
| #define HSM_MIN_CLOCK_FREQ 120000000 |
| #define CEC_CLOCK_FREQ 40000 |
| |
| #define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000) |
| |
| static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_display_info *display = &vc4_hdmi->connector.display_info; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| |
| if (!display->is_hdmi) |
| return false; |
| |
| if (!display->hdmi.scdc.supported || |
| !display->hdmi.scdc.scrambling.supported) |
| return false; |
| |
| return true; |
| } |
| |
| static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode, |
| unsigned int bpc, |
| enum hdmi_colorspace fmt) |
| { |
| unsigned long long clock = drm_hdmi_compute_mode_clock(mode, bpc, fmt); |
| |
| return clock > HDMI_14_MAX_TMDS_CLK; |
| } |
| |
| static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused) |
| { |
| struct drm_debugfs_entry *entry = m->private; |
| struct vc4_hdmi *vc4_hdmi = entry->file.data; |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| struct drm_printer p = drm_seq_file_printer(m); |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return -ENODEV; |
| |
| drm_print_regset32(&p, &vc4_hdmi->hdmi_regset); |
| drm_print_regset32(&p, &vc4_hdmi->hd_regset); |
| drm_print_regset32(&p, &vc4_hdmi->cec_regset); |
| drm_print_regset32(&p, &vc4_hdmi->csc_regset); |
| drm_print_regset32(&p, &vc4_hdmi->dvp_regset); |
| drm_print_regset32(&p, &vc4_hdmi->phy_regset); |
| drm_print_regset32(&p, &vc4_hdmi->ram_regset); |
| drm_print_regset32(&p, &vc4_hdmi->rm_regset); |
| |
| drm_dev_exit(idx); |
| |
| return 0; |
| } |
| |
| static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| /* |
| * We can be called by our bind callback, when the |
| * connector->dev pointer might not be initialised yet. |
| */ |
| if (drm && !drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST); |
| udelay(1); |
| HDMI_WRITE(HDMI_M_CTL, 0); |
| |
| HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE); |
| |
| HDMI_WRITE(HDMI_SW_RESET_CONTROL, |
| VC4_HDMI_SW_RESET_HDMI | |
| VC4_HDMI_SW_RESET_FORMAT_DETECT); |
| |
| HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (drm) |
| drm_dev_exit(idx); |
| } |
| |
| static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| /* |
| * We can be called by our bind callback, when the |
| * connector->dev pointer might not be initialised yet. |
| */ |
| if (drm && !drm_dev_enter(drm, &idx)) |
| return; |
| |
| reset_control_reset(vc4_hdmi->reset); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_DVP_CTL, 0); |
| |
| HDMI_WRITE(HDMI_CLOCK_STOP, |
| HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (drm) |
| drm_dev_exit(idx); |
| } |
| |
| #ifdef CONFIG_DRM_VC4_HDMI_CEC |
| static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long cec_rate; |
| unsigned long flags; |
| u16 clk_cnt; |
| u32 value; |
| int idx; |
| |
| /* |
| * This function is called by our runtime_resume implementation |
| * and thus at bind time, when we haven't registered our |
| * connector yet and thus don't have a pointer to the DRM |
| * device. |
| */ |
| if (drm && !drm_dev_enter(drm, &idx)) |
| return; |
| |
| cec_rate = clk_get_rate(vc4_hdmi->cec_clock); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| value = HDMI_READ(HDMI_CEC_CNTRL_1); |
| value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK; |
| |
| /* |
| * Set the clock divider: the hsm_clock rate and this divider |
| * setting will give a 40 kHz CEC clock. |
| */ |
| clk_cnt = cec_rate / CEC_CLOCK_FREQ; |
| value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT; |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, value); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (drm) |
| drm_dev_exit(idx); |
| } |
| #else |
| static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {} |
| #endif |
| |
| static int reset_pipe(struct drm_crtc *crtc, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct drm_atomic_state *state; |
| struct drm_crtc_state *crtc_state; |
| int ret; |
| |
| state = drm_atomic_state_alloc(crtc->dev); |
| if (!state) |
| return -ENOMEM; |
| |
| state->acquire_ctx = ctx; |
| |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (IS_ERR(crtc_state)) { |
| ret = PTR_ERR(crtc_state); |
| goto out; |
| } |
| |
| crtc_state->connectors_changed = true; |
| |
| ret = drm_atomic_commit(state); |
| out: |
| drm_atomic_state_put(state); |
| |
| return ret; |
| } |
| |
| static int vc4_hdmi_reset_link(struct drm_connector *connector, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct drm_device *drm; |
| struct vc4_hdmi *vc4_hdmi; |
| struct drm_connector_state *conn_state; |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| bool scrambling_needed; |
| u8 config; |
| int ret; |
| |
| if (!connector) |
| return 0; |
| |
| drm = connector->dev; |
| ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx); |
| if (ret) |
| return ret; |
| |
| conn_state = connector->state; |
| crtc = conn_state->crtc; |
| if (!crtc) |
| return 0; |
| |
| ret = drm_modeset_lock(&crtc->mutex, ctx); |
| if (ret) |
| return ret; |
| |
| crtc_state = crtc->state; |
| if (!crtc_state->active) |
| return 0; |
| |
| vc4_hdmi = connector_to_vc4_hdmi(connector); |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) { |
| mutex_unlock(&vc4_hdmi->mutex); |
| return 0; |
| } |
| |
| scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode, |
| vc4_hdmi->output_bpc, |
| vc4_hdmi->output_format); |
| if (!scrambling_needed) { |
| mutex_unlock(&vc4_hdmi->mutex); |
| return 0; |
| } |
| |
| if (conn_state->commit && |
| !try_wait_for_completion(&conn_state->commit->hw_done)) { |
| mutex_unlock(&vc4_hdmi->mutex); |
| return 0; |
| } |
| |
| ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config); |
| if (ret < 0) { |
| drm_err(drm, "Failed to read TMDS config: %d\n", ret); |
| mutex_unlock(&vc4_hdmi->mutex); |
| return 0; |
| } |
| |
| if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) { |
| mutex_unlock(&vc4_hdmi->mutex); |
| return 0; |
| } |
| |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| /* |
| * HDMI 2.0 says that one should not send scrambled data |
| * prior to configuring the sink scrambling, and that |
| * TMDS clock/data transmission should be suspended when |
| * changing the TMDS clock rate in the sink. So let's |
| * just do a full modeset here, even though some sinks |
| * would be perfectly happy if were to just reconfigure |
| * the SCDC settings on the fly. |
| */ |
| return reset_pipe(crtc, ctx); |
| } |
| |
| static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi, |
| struct drm_modeset_acquire_ctx *ctx, |
| enum drm_connector_status status) |
| { |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| const struct drm_edid *drm_edid; |
| int ret; |
| |
| /* |
| * NOTE: This function should really be called with vc4_hdmi->mutex |
| * held, but doing so results in reentrancy issues since |
| * cec_s_phys_addr() might call .adap_enable, which leads to that |
| * funtion being called with our mutex held. |
| * |
| * A similar situation occurs with vc4_hdmi_reset_link() that |
| * will call into our KMS hooks if the scrambling was enabled. |
| * |
| * Concurrency isn't an issue at the moment since we don't share |
| * any state with any of the other frameworks so we can ignore |
| * the lock for now. |
| */ |
| |
| if (status == connector_status_disconnected) { |
| cec_phys_addr_invalidate(vc4_hdmi->cec_adap); |
| return; |
| } |
| |
| drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc); |
| |
| drm_edid_connector_update(connector, drm_edid); |
| cec_s_phys_addr(vc4_hdmi->cec_adap, |
| connector->display_info.source_physical_address, false); |
| |
| if (!drm_edid) |
| return; |
| |
| drm_edid_free(drm_edid); |
| |
| for (;;) { |
| ret = vc4_hdmi_reset_link(connector, ctx); |
| if (ret == -EDEADLK) { |
| drm_modeset_backoff(ctx); |
| continue; |
| } |
| |
| break; |
| } |
| } |
| |
| static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector, |
| struct drm_modeset_acquire_ctx *ctx, |
| bool force) |
| { |
| struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); |
| enum drm_connector_status status = connector_status_disconnected; |
| int ret; |
| |
| /* |
| * NOTE: This function should really take vc4_hdmi->mutex, but |
| * doing so results in reentrancy issues since |
| * vc4_hdmi_handle_hotplug() can call into other functions that |
| * would take the mutex while it's held here. |
| * |
| * Concurrency isn't an issue at the moment since we don't share |
| * any state with any of the other frameworks so we can ignore |
| * the lock for now. |
| */ |
| |
| ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); |
| if (ret) { |
| drm_err_once(connector->dev, "Failed to retain HDMI power domain: %d\n", |
| ret); |
| return connector_status_unknown; |
| } |
| |
| if (vc4_hdmi->hpd_gpio) { |
| if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio)) |
| status = connector_status_connected; |
| } else { |
| if (vc4_hdmi->variant->hp_detect && |
| vc4_hdmi->variant->hp_detect(vc4_hdmi)) |
| status = connector_status_connected; |
| } |
| |
| vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status); |
| pm_runtime_put(&vc4_hdmi->pdev->dev); |
| |
| return status; |
| } |
| |
| static int vc4_hdmi_connector_get_modes(struct drm_connector *connector) |
| { |
| struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); |
| struct vc4_dev *vc4 = to_vc4_dev(connector->dev); |
| const struct drm_edid *drm_edid; |
| int ret = 0; |
| |
| /* |
| * NOTE: This function should really take vc4_hdmi->mutex, but doing so |
| * results in reentrancy issues since cec_s_phys_addr() might call |
| * .adap_enable, which leads to that funtion being called with our mutex |
| * held. |
| * |
| * Concurrency isn't an issue at the moment since we don't share |
| * any state with any of the other frameworks so we can ignore |
| * the lock for now. |
| */ |
| |
| drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc); |
| drm_edid_connector_update(connector, drm_edid); |
| cec_s_phys_addr(vc4_hdmi->cec_adap, |
| connector->display_info.source_physical_address, false); |
| if (!drm_edid) |
| return 0; |
| |
| ret = drm_edid_connector_add_modes(connector); |
| drm_edid_free(drm_edid); |
| |
| if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) { |
| struct drm_device *drm = connector->dev; |
| const struct drm_display_mode *mode; |
| |
| list_for_each_entry(mode, &connector->probed_modes, head) { |
| if (vc4_hdmi_mode_needs_scrambling(mode, 8, HDMI_COLORSPACE_RGB)) { |
| drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz."); |
| drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60."); |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector, |
| struct drm_atomic_state *state) |
| { |
| struct drm_connector_state *old_state = |
| drm_atomic_get_old_connector_state(state, connector); |
| struct drm_connector_state *new_state = |
| drm_atomic_get_new_connector_state(state, connector); |
| struct drm_crtc *crtc = new_state->crtc; |
| |
| if (!crtc) |
| return 0; |
| |
| if (old_state->tv.margins.left != new_state->tv.margins.left || |
| old_state->tv.margins.right != new_state->tv.margins.right || |
| old_state->tv.margins.top != new_state->tv.margins.top || |
| old_state->tv.margins.bottom != new_state->tv.margins.bottom) { |
| struct drm_crtc_state *crtc_state; |
| int ret; |
| |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (IS_ERR(crtc_state)) |
| return PTR_ERR(crtc_state); |
| |
| /* |
| * Strictly speaking, we should be calling |
| * drm_atomic_helper_check_planes() after our call to |
| * drm_atomic_add_affected_planes(). However, the |
| * connector atomic_check is called as part of |
| * drm_atomic_helper_check_modeset() that already |
| * happens before a call to |
| * drm_atomic_helper_check_planes() in |
| * drm_atomic_helper_check(). |
| */ |
| ret = drm_atomic_add_affected_planes(state, crtc); |
| if (ret) |
| return ret; |
| } |
| |
| if (old_state->colorspace != new_state->colorspace) { |
| struct drm_crtc_state *crtc_state; |
| |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (IS_ERR(crtc_state)) |
| return PTR_ERR(crtc_state); |
| |
| crtc_state->mode_changed = true; |
| } |
| |
| return drm_atomic_helper_connector_hdmi_check(connector, state); |
| } |
| |
| static void vc4_hdmi_connector_reset(struct drm_connector *connector) |
| { |
| drm_atomic_helper_connector_reset(connector); |
| __drm_atomic_helper_connector_hdmi_reset(connector, connector->state); |
| drm_atomic_helper_connector_tv_margins_reset(connector); |
| } |
| |
| static const struct drm_connector_funcs vc4_hdmi_connector_funcs = { |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .reset = vc4_hdmi_connector_reset, |
| .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, |
| .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, |
| }; |
| |
| static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = { |
| .detect_ctx = vc4_hdmi_connector_detect_ctx, |
| .get_modes = vc4_hdmi_connector_get_modes, |
| .atomic_check = vc4_hdmi_connector_atomic_check, |
| }; |
| |
| static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs; |
| |
| static int vc4_hdmi_connector_init(struct drm_device *dev, |
| struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_encoder *encoder = &vc4_hdmi->encoder.base; |
| unsigned int max_bpc = 8; |
| int ret; |
| |
| if (vc4_hdmi->variant->supports_hdr) |
| max_bpc = 12; |
| |
| ret = drmm_connector_hdmi_init(dev, connector, |
| "Broadcom", "Videocore", |
| &vc4_hdmi_connector_funcs, |
| &vc4_hdmi_hdmi_connector_funcs, |
| DRM_MODE_CONNECTOR_HDMIA, |
| vc4_hdmi->ddc, |
| BIT(HDMI_COLORSPACE_RGB) | |
| BIT(HDMI_COLORSPACE_YUV422) | |
| BIT(HDMI_COLORSPACE_YUV444), |
| max_bpc); |
| if (ret) |
| return ret; |
| |
| drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs); |
| |
| /* |
| * Some of the properties below require access to state, like bpc. |
| * Allocate some default initial connector state with our reset helper. |
| */ |
| if (connector->funcs->reset) |
| connector->funcs->reset(connector); |
| |
| /* Create and attach TV margin props to this connector. */ |
| ret = drm_mode_create_tv_margin_properties(dev); |
| if (ret) |
| return ret; |
| |
| ret = drm_mode_create_hdmi_colorspace_property(connector, 0); |
| if (ret) |
| return ret; |
| |
| drm_connector_attach_colorspace_property(connector); |
| drm_connector_attach_tv_margin_properties(connector); |
| |
| connector->polled = (DRM_CONNECTOR_POLL_CONNECT | |
| DRM_CONNECTOR_POLL_DISCONNECT); |
| |
| connector->interlace_allowed = 1; |
| connector->doublescan_allowed = 0; |
| connector->stereo_allowed = 1; |
| |
| ret = drm_connector_attach_broadcast_rgb_property(connector); |
| if (ret) |
| return ret; |
| |
| drm_connector_attach_encoder(connector, encoder); |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_stop_packet(struct vc4_hdmi *vc4_hdmi, |
| enum hdmi_infoframe_type type, |
| bool poll) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| u32 packet_id = type - 0x80; |
| unsigned long flags; |
| int ret = 0; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, |
| HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id)); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (poll) { |
| ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) & |
| BIT(packet_id)), 100); |
| } |
| |
| drm_dev_exit(idx); |
| return ret; |
| } |
| |
| static int vc4_hdmi_write_infoframe(struct drm_connector *connector, |
| enum hdmi_infoframe_type type, |
| const u8 *infoframe, size_t len) |
| { |
| struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); |
| struct drm_device *drm = connector->dev; |
| u32 packet_id = type - 0x80; |
| const struct vc4_hdmi_register *ram_packet_start = |
| &vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START]; |
| u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id; |
| u32 packet_reg_next = ram_packet_start->offset + |
| VC4_HDMI_PACKET_STRIDE * (packet_id + 1); |
| void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi, |
| ram_packet_start->reg); |
| uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {}; |
| unsigned long flags; |
| ssize_t i; |
| int ret; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return 0; |
| |
| if (len > sizeof(buffer)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| memcpy(buffer, infoframe, len); |
| |
| WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) & |
| VC4_HDMI_RAM_PACKET_ENABLE), |
| "Packet RAM has to be on to store the packet."); |
| |
| ret = vc4_hdmi_stop_packet(vc4_hdmi, type, true); |
| if (ret) { |
| drm_err(drm, "Failed to wait for infoframe to go idle: %d\n", ret); |
| goto out; |
| } |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| for (i = 0; i < len; i += 7) { |
| writel(buffer[i + 0] << 0 | |
| buffer[i + 1] << 8 | |
| buffer[i + 2] << 16, |
| base + packet_reg); |
| packet_reg += 4; |
| |
| writel(buffer[i + 3] << 0 | |
| buffer[i + 4] << 8 | |
| buffer[i + 5] << 16 | |
| buffer[i + 6] << 24, |
| base + packet_reg); |
| packet_reg += 4; |
| } |
| |
| /* |
| * clear remainder of packet ram as it's included in the |
| * infoframe and triggers a checksum error on hdmi analyser |
| */ |
| for (; packet_reg < packet_reg_next; packet_reg += 4) |
| writel(0, base + packet_reg); |
| |
| HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, |
| HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id)); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) & |
| BIT(packet_id)), 100); |
| if (ret) |
| drm_err(drm, "Failed to wait for infoframe to start: %d\n", ret); |
| |
| out: |
| drm_dev_exit(idx); |
| return ret; |
| } |
| |
| #define SCRAMBLING_POLLING_DELAY_MS 1000 |
| |
| static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_device *drm = connector->dev; |
| const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; |
| unsigned long flags; |
| int idx; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| |
| if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) |
| return; |
| |
| if (!vc4_hdmi_mode_needs_scrambling(mode, |
| vc4_hdmi->output_bpc, |
| vc4_hdmi->output_format)) |
| return; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| drm_scdc_set_high_tmds_clock_ratio(connector, true); |
| drm_scdc_set_scrambling(connector, true); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) | |
| VC5_HDMI_SCRAMBLER_CTL_ENABLE); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| |
| vc4_hdmi->scdc_enabled = true; |
| |
| queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, |
| msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); |
| } |
| |
| static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_device *drm = connector->dev; |
| unsigned long flags; |
| int idx; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| |
| if (!vc4_hdmi->scdc_enabled) |
| return; |
| |
| vc4_hdmi->scdc_enabled = false; |
| |
| if (delayed_work_pending(&vc4_hdmi->scrambling_work)) |
| cancel_delayed_work_sync(&vc4_hdmi->scrambling_work); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) & |
| ~VC5_HDMI_SCRAMBLER_CTL_ENABLE); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_scdc_set_scrambling(connector, false); |
| drm_scdc_set_high_tmds_clock_ratio(connector, false); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc4_hdmi_scrambling_wq(struct work_struct *work) |
| { |
| struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work), |
| struct vc4_hdmi, |
| scrambling_work); |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| |
| if (drm_scdc_get_scrambling_status(connector)) |
| return; |
| |
| drm_scdc_set_high_tmds_clock_ratio(connector, true); |
| drm_scdc_set_scrambling(connector, true); |
| |
| queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, |
| msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); |
| } |
| |
| static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| vc4_hdmi->packet_ram_enabled = false; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0); |
| |
| HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| mdelay(1); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_VID_CTL, |
| HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| vc4_hdmi_disable_scrambling(encoder); |
| |
| drm_dev_exit(idx); |
| |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int ret; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_VID_CTL, |
| HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (vc4_hdmi->variant->phy_disable) |
| vc4_hdmi->variant->phy_disable(vc4_hdmi); |
| |
| clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock); |
| clk_disable_unprepare(vc4_hdmi->pixel_clock); |
| |
| ret = pm_runtime_put(&vc4_hdmi->pdev->dev); |
| if (ret < 0) |
| drm_err(drm, "Failed to release power domain: %d\n", ret); |
| |
| drm_dev_exit(idx); |
| |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, |
| struct drm_connector_state *state, |
| const struct drm_display_mode *mode) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| u32 csc_ctl; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR, |
| VC4_HD_CSC_CTL_ORDER); |
| |
| if (state->hdmi.is_limited_range) { |
| /* CEA VICs other than #1 requre limited range RGB |
| * output unless overridden by an AVI infoframe. |
| * Apply a colorspace conversion to squash 0-255 down |
| * to 16-235. The matrix here is: |
| * |
| * [ 0 0 0.8594 16] |
| * [ 0 0.8594 0 16] |
| * [ 0.8594 0 0 16] |
| * [ 0 0 0 1] |
| */ |
| csc_ctl |= VC4_HD_CSC_CTL_ENABLE; |
| csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC; |
| csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, |
| VC4_HD_CSC_CTL_MODE); |
| |
| HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000); |
| HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0); |
| HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000); |
| HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000); |
| HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0); |
| HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000); |
| } |
| |
| /* The RGB order applies even when CSC is disabled. */ |
| HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| } |
| |
| /* |
| * Matrices for (internal) RGB to RGB output. |
| * |
| * Matrices are signed 2p13 fixed point, with signed 9p6 offsets |
| */ |
| static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = { |
| { |
| /* |
| * Full range - unity |
| * |
| * [ 1 0 0 0] |
| * [ 0 1 0 0] |
| * [ 0 0 1 0] |
| */ |
| { 0x2000, 0x0000, 0x0000, 0x0000 }, |
| { 0x0000, 0x2000, 0x0000, 0x0000 }, |
| { 0x0000, 0x0000, 0x2000, 0x0000 }, |
| }, |
| { |
| /* |
| * Limited range |
| * |
| * CEA VICs other than #1 require limited range RGB |
| * output unless overridden by an AVI infoframe. Apply a |
| * colorspace conversion to squash 0-255 down to 16-235. |
| * The matrix here is: |
| * |
| * [ 0.8594 0 0 16] |
| * [ 0 0.8594 0 16] |
| * [ 0 0 0.8594 16] |
| */ |
| { 0x1b80, 0x0000, 0x0000, 0x0400 }, |
| { 0x0000, 0x1b80, 0x0000, 0x0400 }, |
| { 0x0000, 0x0000, 0x1b80, 0x0400 }, |
| }, |
| }; |
| |
| /* |
| * Conversion between Full Range RGB and YUV using the BT.601 Colorspace |
| * |
| * Matrices are signed 2p13 fixed point, with signed 9p6 offsets |
| */ |
| static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = { |
| { |
| /* |
| * Full Range |
| * |
| * [ 0.299000 0.587000 0.114000 0 ] |
| * [ -0.168736 -0.331264 0.500000 128 ] |
| * [ 0.500000 -0.418688 -0.081312 128 ] |
| */ |
| { 0x0991, 0x12c9, 0x03a6, 0x0000 }, |
| { 0xfa9b, 0xf567, 0x1000, 0x2000 }, |
| { 0x1000, 0xf29b, 0xfd67, 0x2000 }, |
| }, |
| { |
| /* Limited Range |
| * |
| * [ 0.255785 0.502160 0.097523 16 ] |
| * [ -0.147644 -0.289856 0.437500 128 ] |
| * [ 0.437500 -0.366352 -0.071148 128 ] |
| */ |
| { 0x082f, 0x1012, 0x031f, 0x0400 }, |
| { 0xfb48, 0xf6ba, 0x0e00, 0x2000 }, |
| { 0x0e00, 0xf448, 0xfdba, 0x2000 }, |
| }, |
| }; |
| |
| /* |
| * Conversion between Full Range RGB and YUV using the BT.709 Colorspace |
| * |
| * Matrices are signed 2p13 fixed point, with signed 9p6 offsets |
| */ |
| static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = { |
| { |
| /* |
| * Full Range |
| * |
| * [ 0.212600 0.715200 0.072200 0 ] |
| * [ -0.114572 -0.385428 0.500000 128 ] |
| * [ 0.500000 -0.454153 -0.045847 128 ] |
| */ |
| { 0x06ce, 0x16e3, 0x024f, 0x0000 }, |
| { 0xfc56, 0xf3ac, 0x1000, 0x2000 }, |
| { 0x1000, 0xf179, 0xfe89, 0x2000 }, |
| }, |
| { |
| /* |
| * Limited Range |
| * |
| * [ 0.181906 0.611804 0.061758 16 ] |
| * [ -0.100268 -0.337232 0.437500 128 ] |
| * [ 0.437500 -0.397386 -0.040114 128 ] |
| */ |
| { 0x05d2, 0x1394, 0x01fa, 0x0400 }, |
| { 0xfccc, 0xf536, 0x0e00, 0x2000 }, |
| { 0x0e00, 0xf34a, 0xfeb8, 0x2000 }, |
| }, |
| }; |
| |
| /* |
| * Conversion between Full Range RGB and YUV using the BT.2020 Colorspace |
| * |
| * Matrices are signed 2p13 fixed point, with signed 9p6 offsets |
| */ |
| static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = { |
| { |
| /* |
| * Full Range |
| * |
| * [ 0.262700 0.678000 0.059300 0 ] |
| * [ -0.139630 -0.360370 0.500000 128 ] |
| * [ 0.500000 -0.459786 -0.040214 128 ] |
| */ |
| { 0x0868, 0x15b2, 0x01e6, 0x0000 }, |
| { 0xfb89, 0xf479, 0x1000, 0x2000 }, |
| { 0x1000, 0xf14a, 0xfeb8, 0x2000 }, |
| }, |
| { |
| /* Limited Range |
| * |
| * [ 0.224732 0.580008 0.050729 16 ] |
| * [ -0.122176 -0.315324 0.437500 128 ] |
| * [ 0.437500 -0.402312 -0.035188 128 ] |
| */ |
| { 0x082f, 0x1012, 0x031f, 0x0400 }, |
| { 0xfb48, 0xf6ba, 0x0e00, 0x2000 }, |
| { 0x0e00, 0xf448, 0xfdba, 0x2000 }, |
| }, |
| }; |
| |
| static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi, |
| const u16 coeffs[3][4]) |
| { |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]); |
| HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]); |
| HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]); |
| HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]); |
| HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]); |
| HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]); |
| } |
| |
| static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi, |
| const u16 coeffs[3][4]) |
| { |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| /* YUV444 needs the CSC matrices using the channels in a different order */ |
| HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]); |
| HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]); |
| HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]); |
| HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]); |
| HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]); |
| HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]); |
| } |
| |
| static const u16 |
| (*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4] |
| { |
| switch (colorspace) { |
| case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC: |
| case DRM_MODE_COLORIMETRY_XVYCC_601: |
| case DRM_MODE_COLORIMETRY_SYCC_601: |
| case DRM_MODE_COLORIMETRY_OPYCC_601: |
| case DRM_MODE_COLORIMETRY_BT601_YCC: |
| return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited]; |
| |
| default: |
| case DRM_MODE_COLORIMETRY_NO_DATA: |
| case DRM_MODE_COLORIMETRY_BT709_YCC: |
| case DRM_MODE_COLORIMETRY_XVYCC_709: |
| case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED: |
| case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT: |
| return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited]; |
| |
| case DRM_MODE_COLORIMETRY_BT2020_CYCC: |
| case DRM_MODE_COLORIMETRY_BT2020_YCC: |
| case DRM_MODE_COLORIMETRY_BT2020_RGB: |
| case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: |
| case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: |
| return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited]; |
| } |
| } |
| |
| static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, |
| struct drm_connector_state *state, |
| const struct drm_display_mode *mode) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned int lim_range = state->hdmi.is_limited_range ? 1 : 0; |
| unsigned long flags; |
| const u16 (*csc)[4]; |
| u32 if_cfg = 0; |
| u32 if_xbar = 0x543210; |
| u32 csc_chan_ctl = 0; |
| u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, |
| VC5_MT_CP_CSC_CTL_MODE); |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| switch (state->hdmi.output_format) { |
| case HDMI_COLORSPACE_YUV444: |
| csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range); |
| |
| vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc); |
| break; |
| |
| case HDMI_COLORSPACE_YUV422: |
| csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range); |
| |
| csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD, |
| VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) | |
| VC5_MT_CP_CSC_CTL_USE_444_TO_422 | |
| VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION; |
| |
| csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE, |
| VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP); |
| |
| if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY, |
| VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422); |
| |
| vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc); |
| break; |
| |
| case HDMI_COLORSPACE_RGB: |
| if_xbar = 0x354021; |
| |
| vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]); |
| break; |
| |
| default: |
| break; |
| } |
| |
| HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg); |
| HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar); |
| HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl); |
| HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, |
| struct drm_connector_state *state, |
| const struct drm_display_mode *mode) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; |
| bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; |
| bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; |
| u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, |
| VC4_HDMI_VERTA_VSP) | |
| VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, |
| VC4_HDMI_VERTA_VFP) | |
| VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL)); |
| u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | |
| VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + |
| interlaced, |
| VC4_HDMI_VERTB_VBP)); |
| u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | |
| VC4_SET_FIELD(mode->crtc_vtotal - |
| mode->crtc_vsync_end, |
| VC4_HDMI_VERTB_VBP)); |
| unsigned long flags; |
| u32 reg; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_HORZA, |
| (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) | |
| (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) | |
| VC4_SET_FIELD(mode->hdisplay * pixel_rep, |
| VC4_HDMI_HORZA_HAP)); |
| |
| HDMI_WRITE(HDMI_HORZB, |
| VC4_SET_FIELD((mode->htotal - |
| mode->hsync_end) * pixel_rep, |
| VC4_HDMI_HORZB_HBP) | |
| VC4_SET_FIELD((mode->hsync_end - |
| mode->hsync_start) * pixel_rep, |
| VC4_HDMI_HORZB_HSP) | |
| VC4_SET_FIELD((mode->hsync_start - |
| mode->hdisplay) * pixel_rep, |
| VC4_HDMI_HORZB_HFP)); |
| |
| HDMI_WRITE(HDMI_VERTA0, verta); |
| HDMI_WRITE(HDMI_VERTA1, verta); |
| |
| HDMI_WRITE(HDMI_VERTB0, vertb_even); |
| HDMI_WRITE(HDMI_VERTB1, vertb); |
| |
| reg = HDMI_READ(HDMI_MISC_CONTROL); |
| reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK; |
| reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP); |
| HDMI_WRITE(HDMI_MISC_CONTROL, reg); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, |
| struct drm_connector_state *state, |
| const struct drm_display_mode *mode) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; |
| bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; |
| bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; |
| u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, |
| VC5_HDMI_VERTA_VSP) | |
| VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, |
| VC5_HDMI_VERTA_VFP) | |
| VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL)); |
| u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep), |
| VC5_HDMI_VERTB_VSPO) | |
| VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + |
| interlaced, |
| VC4_HDMI_VERTB_VBP)); |
| u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) | |
| VC4_SET_FIELD(mode->crtc_vtotal - |
| mode->crtc_vsync_end, |
| VC4_HDMI_VERTB_VBP)); |
| unsigned long flags; |
| unsigned char gcp; |
| u32 reg; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_HORZA, |
| (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) | |
| (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) | |
| VC4_SET_FIELD(mode->hdisplay * pixel_rep, |
| VC5_HDMI_HORZA_HAP) | |
| VC4_SET_FIELD((mode->hsync_start - |
| mode->hdisplay) * pixel_rep, |
| VC5_HDMI_HORZA_HFP)); |
| |
| HDMI_WRITE(HDMI_HORZB, |
| VC4_SET_FIELD((mode->htotal - |
| mode->hsync_end) * pixel_rep, |
| VC5_HDMI_HORZB_HBP) | |
| VC4_SET_FIELD((mode->hsync_end - |
| mode->hsync_start) * pixel_rep, |
| VC5_HDMI_HORZB_HSP)); |
| |
| HDMI_WRITE(HDMI_VERTA0, verta); |
| HDMI_WRITE(HDMI_VERTA1, verta); |
| |
| HDMI_WRITE(HDMI_VERTB0, vertb_even); |
| HDMI_WRITE(HDMI_VERTB1, vertb); |
| |
| switch (state->hdmi.output_bpc) { |
| case 12: |
| gcp = 6; |
| break; |
| case 10: |
| gcp = 5; |
| break; |
| case 8: |
| default: |
| gcp = 0; |
| break; |
| } |
| |
| /* |
| * YCC422 is always 36-bit and not considered deep colour so |
| * doesn't signal in GCP. |
| */ |
| if (state->hdmi.output_format == HDMI_COLORSPACE_YUV422) { |
| gcp = 0; |
| } |
| |
| reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1); |
| reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK | |
| VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK); |
| reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) | |
| VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH); |
| HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg); |
| |
| reg = HDMI_READ(HDMI_GCP_WORD_1); |
| reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK; |
| reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1); |
| reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK; |
| reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE; |
| HDMI_WRITE(HDMI_GCP_WORD_1, reg); |
| |
| reg = HDMI_READ(HDMI_GCP_CONFIG); |
| reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE; |
| HDMI_WRITE(HDMI_GCP_CONFIG, reg); |
| |
| reg = HDMI_READ(HDMI_MISC_CONTROL); |
| reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK; |
| reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP); |
| HDMI_WRITE(HDMI_MISC_CONTROL, reg); |
| |
| HDMI_WRITE(HDMI_CLOCK_STOP, 0); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| u32 drift; |
| int ret; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| drift = HDMI_READ(HDMI_FIFO_CTL); |
| drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK; |
| |
| HDMI_WRITE(HDMI_FIFO_CTL, |
| drift & ~VC4_HDMI_FIFO_CTL_RECENTER); |
| HDMI_WRITE(HDMI_FIFO_CTL, |
| drift | VC4_HDMI_FIFO_CTL_RECENTER); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| usleep_range(1000, 1100); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_FIFO_CTL, |
| drift & ~VC4_HDMI_FIFO_CTL_RECENTER); |
| HDMI_WRITE(HDMI_FIFO_CTL, |
| drift | VC4_HDMI_FIFO_CTL_RECENTER); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) & |
| VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1); |
| WARN_ONCE(ret, "Timeout waiting for " |
| "VC4_HDMI_FIFO_CTL_RECENTER_DONE"); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_connector_state *conn_state = |
| drm_atomic_get_new_connector_state(state, connector); |
| const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; |
| unsigned long long tmds_char_rate = conn_state->hdmi.tmds_char_rate; |
| unsigned long bvb_rate, hsm_rate; |
| unsigned long flags; |
| int ret; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); |
| if (ret < 0) { |
| drm_err(drm, "Failed to retain power domain: %d\n", ret); |
| goto err_dev_exit; |
| } |
| |
| /* |
| * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must |
| * be faster than pixel clock, infinitesimally faster, tested in |
| * simulation. Otherwise, exact value is unimportant for HDMI |
| * operation." This conflicts with bcm2835's vc4 documentation, which |
| * states HSM's clock has to be at least 108% of the pixel clock. |
| * |
| * Real life tests reveal that vc4's firmware statement holds up, and |
| * users are able to use pixel clocks closer to HSM's, namely for |
| * 1920x1200@60Hz. So it was decided to have leave a 1% margin between |
| * both clocks. Which, for RPi0-3 implies a maximum pixel clock of |
| * 162MHz. |
| * |
| * Additionally, the AXI clock needs to be at least 25% of |
| * pixel clock, but HSM ends up being the limiting factor. |
| */ |
| hsm_rate = max_t(unsigned long, |
| HSM_MIN_CLOCK_FREQ, |
| div_u64(tmds_char_rate, 100) * 101); |
| ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate); |
| if (ret) { |
| drm_err(drm, "Failed to set HSM clock rate: %d\n", ret); |
| goto err_put_runtime_pm; |
| } |
| |
| ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate); |
| if (ret) { |
| drm_err(drm, "Failed to set pixel clock rate: %d\n", ret); |
| goto err_put_runtime_pm; |
| } |
| |
| ret = clk_prepare_enable(vc4_hdmi->pixel_clock); |
| if (ret) { |
| drm_err(drm, "Failed to turn on pixel clock: %d\n", ret); |
| goto err_put_runtime_pm; |
| } |
| |
| |
| vc4_hdmi_cec_update_clk_div(vc4_hdmi); |
| |
| if (tmds_char_rate > 297000000) |
| bvb_rate = 300000000; |
| else if (tmds_char_rate > 148500000) |
| bvb_rate = 150000000; |
| else |
| bvb_rate = 75000000; |
| |
| ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate); |
| if (ret) { |
| drm_err(drm, "Failed to set pixel bvb clock rate: %d\n", ret); |
| goto err_disable_pixel_clock; |
| } |
| |
| ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); |
| if (ret) { |
| drm_err(drm, "Failed to turn on pixel bvb clock: %d\n", ret); |
| goto err_disable_pixel_clock; |
| } |
| |
| if (vc4_hdmi->variant->phy_init) |
| vc4_hdmi->variant->phy_init(vc4_hdmi, conn_state); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_SCHEDULER_CONTROL, |
| HDMI_READ(HDMI_SCHEDULER_CONTROL) | |
| VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT | |
| VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (vc4_hdmi->variant->set_timings) |
| vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode); |
| |
| drm_dev_exit(idx); |
| |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| return; |
| |
| err_disable_pixel_clock: |
| clk_disable_unprepare(vc4_hdmi->pixel_clock); |
| err_put_runtime_pm: |
| pm_runtime_put(&vc4_hdmi->pdev->dev); |
| err_dev_exit: |
| drm_dev_exit(idx); |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| return; |
| } |
| |
| static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; |
| struct drm_connector_state *conn_state = |
| drm_atomic_get_new_connector_state(state, connector); |
| unsigned long flags; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| if (vc4_hdmi->variant->csc_setup) |
| vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder, |
| struct drm_atomic_state *state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_device *drm = connector->dev; |
| const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; |
| struct drm_display_info *display = &vc4_hdmi->connector.display_info; |
| bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; |
| bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; |
| unsigned long flags; |
| int ret; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_VID_CTL, |
| VC4_HD_VID_CTL_ENABLE | |
| VC4_HD_VID_CTL_CLRRGB | |
| VC4_HD_VID_CTL_UNDERFLOW_ENABLE | |
| VC4_HD_VID_CTL_FRAME_COUNTER_RESET | |
| (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) | |
| (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW)); |
| |
| HDMI_WRITE(HDMI_VID_CTL, |
| HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX); |
| |
| if (display->is_hdmi) { |
| HDMI_WRITE(HDMI_SCHEDULER_CONTROL, |
| HDMI_READ(HDMI_SCHEDULER_CONTROL) | |
| VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) & |
| VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000); |
| WARN_ONCE(ret, "Timeout waiting for " |
| "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); |
| } else { |
| HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, |
| HDMI_READ(HDMI_RAM_PACKET_CONFIG) & |
| ~(VC4_HDMI_RAM_PACKET_ENABLE)); |
| HDMI_WRITE(HDMI_SCHEDULER_CONTROL, |
| HDMI_READ(HDMI_SCHEDULER_CONTROL) & |
| ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & |
| VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000); |
| WARN_ONCE(ret, "Timeout waiting for " |
| "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); |
| } |
| |
| if (display->is_hdmi) { |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & |
| VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE)); |
| |
| HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, |
| VC4_HDMI_RAM_PACKET_ENABLE); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| vc4_hdmi->packet_ram_enabled = true; |
| |
| drm_atomic_helper_connector_hdmi_update_infoframes(connector, state); |
| } |
| |
| vc4_hdmi_recenter_fifo(vc4_hdmi); |
| vc4_hdmi_enable_scrambling(encoder); |
| |
| drm_dev_exit(idx); |
| |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder, |
| struct drm_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| drm_mode_copy(&vc4_hdmi->saved_adjusted_mode, |
| &crtc_state->adjusted_mode); |
| vc4_hdmi->output_bpc = conn_state->hdmi.output_bpc; |
| vc4_hdmi->output_format = conn_state->hdmi.output_format; |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static enum drm_mode_status |
| vc4_hdmi_connector_clock_valid(const struct drm_connector *connector, |
| const struct drm_display_mode *mode, |
| unsigned long long clock) |
| { |
| const struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); |
| struct vc4_dev *vc4 = to_vc4_dev(connector->dev); |
| |
| if (clock > vc4_hdmi->variant->max_pixel_clock) |
| return MODE_CLOCK_HIGH; |
| |
| if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK) |
| return MODE_CLOCK_HIGH; |
| |
| /* 4096x2160@60 is not reliable without overclocking core */ |
| if (!vc4->hvs->vc5_hdmi_enable_4096by2160 && |
| mode->hdisplay > 3840 && mode->vdisplay >= 2160 && |
| drm_mode_vrefresh(mode) >= 50) |
| return MODE_CLOCK_HIGH; |
| |
| return MODE_OK; |
| } |
| |
| static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs = { |
| .tmds_char_rate_valid = vc4_hdmi_connector_clock_valid, |
| .write_infoframe = vc4_hdmi_write_infoframe, |
| }; |
| |
| #define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL |
| #define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL |
| |
| static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder, |
| struct drm_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| struct drm_display_mode *mode = &crtc_state->adjusted_mode; |
| unsigned long long tmds_char_rate = mode->clock * 1000; |
| unsigned long long tmds_bit_rate; |
| |
| if (vc4_hdmi->variant->unsupported_odd_h_timings) { |
| if (mode->flags & DRM_MODE_FLAG_DBLCLK) { |
| /* Only try to fixup DBLCLK modes to get 480i and 576i |
| * working. |
| * A generic solution for all modes with odd horizontal |
| * timing values seems impossible based on trying to |
| * solve it for 1366x768 monitors. |
| */ |
| if ((mode->hsync_start - mode->hdisplay) & 1) |
| mode->hsync_start--; |
| if ((mode->hsync_end - mode->hsync_start) & 1) |
| mode->hsync_end--; |
| } |
| |
| /* Now check whether we still have odd values remaining */ |
| if ((mode->hdisplay % 2) || (mode->hsync_start % 2) || |
| (mode->hsync_end % 2) || (mode->htotal % 2)) |
| return -EINVAL; |
| } |
| |
| /* |
| * The 1440p@60 pixel rate is in the same range than the first |
| * WiFi channel (between 2.4GHz and 2.422GHz with 22MHz |
| * bandwidth). Slightly lower the frequency to bring it out of |
| * the WiFi range. |
| */ |
| tmds_bit_rate = tmds_char_rate * 10; |
| if (vc4_hdmi->disable_wifi_frequencies && |
| (tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ && |
| tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) { |
| mode->clock = 238560; |
| tmds_char_rate = mode->clock * 1000; |
| } |
| |
| return 0; |
| } |
| |
| static enum drm_mode_status |
| vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder, |
| const struct drm_display_mode *mode) |
| { |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| unsigned long long rate; |
| |
| if (vc4_hdmi->variant->unsupported_odd_h_timings && |
| !(mode->flags & DRM_MODE_FLAG_DBLCLK) && |
| ((mode->hdisplay % 2) || (mode->hsync_start % 2) || |
| (mode->hsync_end % 2) || (mode->htotal % 2))) |
| return MODE_H_ILLEGAL; |
| |
| rate = drm_hdmi_compute_mode_clock(mode, 8, HDMI_COLORSPACE_RGB); |
| return vc4_hdmi_connector_clock_valid(&vc4_hdmi->connector, mode, rate); |
| } |
| |
| static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = { |
| .atomic_check = vc4_hdmi_encoder_atomic_check, |
| .atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set, |
| .mode_valid = vc4_hdmi_encoder_mode_valid, |
| }; |
| |
| static int vc4_hdmi_late_register(struct drm_encoder *encoder) |
| { |
| struct drm_device *drm = encoder->dev; |
| struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); |
| const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; |
| |
| drm_debugfs_add_file(drm, variant->debugfs_name, |
| vc4_hdmi_debugfs_regs, vc4_hdmi); |
| |
| return 0; |
| } |
| |
| static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = { |
| .late_register = vc4_hdmi_late_register, |
| }; |
| |
| static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) |
| { |
| int i; |
| u32 channel_map = 0; |
| |
| for (i = 0; i < 8; i++) { |
| if (channel_mask & BIT(i)) |
| channel_map |= i << (3 * i); |
| } |
| return channel_map; |
| } |
| |
| static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) |
| { |
| int i; |
| u32 channel_map = 0; |
| |
| for (i = 0; i < 8; i++) { |
| if (channel_mask & BIT(i)) |
| channel_map |= i << (4 * i); |
| } |
| return channel_map; |
| } |
| |
| static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| u32 hotplug; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return false; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| hotplug = HDMI_READ(HDMI_HOTPLUG); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| |
| return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED); |
| } |
| |
| /* HDMI audio codec callbacks */ |
| static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi, |
| unsigned int samplerate) |
| { |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| u32 hsm_clock; |
| unsigned long flags; |
| unsigned long n, m; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| return; |
| |
| hsm_clock = clk_get_rate(vc4_hdmi->audio_clock); |
| rational_best_approximation(hsm_clock, samplerate, |
| VC4_HD_MAI_SMP_N_MASK >> |
| VC4_HD_MAI_SMP_N_SHIFT, |
| (VC4_HD_MAI_SMP_M_MASK >> |
| VC4_HD_MAI_SMP_M_SHIFT) + 1, |
| &n, &m); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_MAI_SMP, |
| VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) | |
| VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M)); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| drm_dev_exit(idx); |
| } |
| |
| static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate) |
| { |
| const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; |
| u32 n, cts; |
| u64 tmp; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| n = 128 * samplerate / 1000; |
| tmp = (u64)(mode->clock * 1000) * n; |
| do_div(tmp, 128 * samplerate); |
| cts = tmp; |
| |
| HDMI_WRITE(HDMI_CRP_CFG, |
| VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN | |
| VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N)); |
| |
| /* |
| * We could get slightly more accurate clocks in some cases by |
| * providing a CTS_1 value. The two CTS values are alternated |
| * between based on the period fields |
| */ |
| HDMI_WRITE(HDMI_CTS_0, cts); |
| HDMI_WRITE(HDMI_CTS_1, cts); |
| } |
| |
| static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai) |
| { |
| struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai); |
| |
| return snd_soc_card_get_drvdata(card); |
| } |
| |
| static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_display_info *display = &vc4_hdmi->connector.display_info; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| |
| /* |
| * If the encoder is currently in DVI mode, treat the codec DAI |
| * as missing. |
| */ |
| if (!display->is_hdmi) |
| return false; |
| |
| return true; |
| } |
| |
| static int vc4_hdmi_audio_startup(struct device *dev, void *data) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int ret = 0; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { |
| ret = -ENODEV; |
| goto out_dev_exit; |
| } |
| |
| vc4_hdmi->audio.streaming = true; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_MAI_CTL, |
| VC4_HD_MAI_CTL_RESET | |
| VC4_HD_MAI_CTL_FLUSH | |
| VC4_HD_MAI_CTL_DLATE | |
| VC4_HD_MAI_CTL_ERRORE | |
| VC4_HD_MAI_CTL_ERRORF); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (vc4_hdmi->variant->phy_rng_enable) |
| vc4_hdmi->variant->phy_rng_enable(vc4_hdmi); |
| |
| out_dev_exit: |
| drm_dev_exit(idx); |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| return ret; |
| } |
| |
| static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct device *dev = &vc4_hdmi->pdev->dev; |
| unsigned long flags; |
| int ret; |
| |
| lockdep_assert_held(&vc4_hdmi->mutex); |
| |
| vc4_hdmi->audio.streaming = false; |
| ret = vc4_hdmi_stop_packet(vc4_hdmi, HDMI_INFOFRAME_TYPE_AUDIO, false); |
| if (ret) |
| dev_err(dev, "Failed to stop audio infoframe: %d\n", ret); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET); |
| HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF); |
| HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| } |
| |
| static void vc4_hdmi_audio_shutdown(struct device *dev, void *data) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) |
| goto out; |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| HDMI_WRITE(HDMI_MAI_CTL, |
| VC4_HD_MAI_CTL_DLATE | |
| VC4_HD_MAI_CTL_ERRORE | |
| VC4_HD_MAI_CTL_ERRORF); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| if (vc4_hdmi->variant->phy_rng_disable) |
| vc4_hdmi->variant->phy_rng_disable(vc4_hdmi); |
| |
| vc4_hdmi->audio.streaming = false; |
| vc4_hdmi_audio_reset(vc4_hdmi); |
| |
| drm_dev_exit(idx); |
| |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| } |
| |
| static int sample_rate_to_mai_fmt(int samplerate) |
| { |
| switch (samplerate) { |
| case 8000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_8000; |
| case 11025: |
| return VC4_HDMI_MAI_SAMPLE_RATE_11025; |
| case 12000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_12000; |
| case 16000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_16000; |
| case 22050: |
| return VC4_HDMI_MAI_SAMPLE_RATE_22050; |
| case 24000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_24000; |
| case 32000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_32000; |
| case 44100: |
| return VC4_HDMI_MAI_SAMPLE_RATE_44100; |
| case 48000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_48000; |
| case 64000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_64000; |
| case 88200: |
| return VC4_HDMI_MAI_SAMPLE_RATE_88200; |
| case 96000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_96000; |
| case 128000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_128000; |
| case 176400: |
| return VC4_HDMI_MAI_SAMPLE_RATE_176400; |
| case 192000: |
| return VC4_HDMI_MAI_SAMPLE_RATE_192000; |
| default: |
| return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED; |
| } |
| } |
| |
| /* HDMI audio codec callbacks */ |
| static int vc4_hdmi_audio_prepare(struct device *dev, void *data, |
| struct hdmi_codec_daifmt *daifmt, |
| struct hdmi_codec_params *params) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| unsigned int sample_rate = params->sample_rate; |
| unsigned int channels = params->channels; |
| unsigned long flags; |
| u32 audio_packet_config, channel_mask; |
| u32 channel_map; |
| u32 mai_audio_format; |
| u32 mai_sample_rate; |
| int ret = 0; |
| int idx; |
| |
| dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__, |
| sample_rate, params->sample_width, channels); |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| if (!drm_dev_enter(drm, &idx)) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { |
| ret = -EINVAL; |
| goto out_dev_exit; |
| } |
| |
| vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_MAI_CTL, |
| VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) | |
| VC4_HD_MAI_CTL_WHOLSMP | |
| VC4_HD_MAI_CTL_CHALIGN | |
| VC4_HD_MAI_CTL_ENABLE); |
| |
| mai_sample_rate = sample_rate_to_mai_fmt(sample_rate); |
| if (params->iec.status[0] & IEC958_AES0_NONAUDIO && |
| params->channels == 8) |
| mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR; |
| else |
| mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM; |
| HDMI_WRITE(HDMI_MAI_FMT, |
| VC4_SET_FIELD(mai_sample_rate, |
| VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) | |
| VC4_SET_FIELD(mai_audio_format, |
| VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT)); |
| |
| /* The B frame identifier should match the value used by alsa-lib (8) */ |
| audio_packet_config = |
| VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT | |
| VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS | |
| VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER); |
| |
| channel_mask = GENMASK(channels - 1, 0); |
| audio_packet_config |= VC4_SET_FIELD(channel_mask, |
| VC4_HDMI_AUDIO_PACKET_CEA_MASK); |
| |
| /* Set the MAI threshold */ |
| HDMI_WRITE(HDMI_MAI_THR, |
| VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICHIGH) | |
| VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICLOW) | |
| VC4_SET_FIELD(0x06, VC4_HD_MAI_THR_DREQHIGH) | |
| VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_DREQLOW)); |
| |
| HDMI_WRITE(HDMI_MAI_CONFIG, |
| VC4_HDMI_MAI_CONFIG_BIT_REVERSE | |
| VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE | |
| VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK)); |
| |
| channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask); |
| HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map); |
| HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config); |
| |
| vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| ret = drm_atomic_helper_connector_hdmi_update_audio_infoframe(connector, |
| ¶ms->cea); |
| if (ret) |
| goto out_dev_exit; |
| |
| out_dev_exit: |
| drm_dev_exit(idx); |
| out: |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| return ret; |
| } |
| |
| static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = { |
| .name = "vc4-hdmi-cpu-dai-component", |
| .legacy_dai_naming = 1, |
| }; |
| |
| static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai) |
| { |
| struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); |
| |
| snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL); |
| |
| return 0; |
| } |
| |
| static const struct snd_soc_dai_ops vc4_snd_dai_ops = { |
| .probe = vc4_hdmi_audio_cpu_dai_probe, |
| }; |
| |
| static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = { |
| .name = "vc4-hdmi-cpu-dai", |
| .ops = &vc4_snd_dai_ops, |
| .playback = { |
| .stream_name = "Playback", |
| .channels_min = 1, |
| .channels_max = 8, |
| .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | |
| SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | |
| SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | |
| SNDRV_PCM_RATE_192000, |
| .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, |
| }, |
| }; |
| |
| static const struct snd_dmaengine_pcm_config pcm_conf = { |
| .chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx", |
| .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, |
| }; |
| |
| static int vc4_hdmi_audio_get_eld(struct device *dev, void *data, |
| uint8_t *buf, size_t len) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| memcpy(buf, connector->eld, min(sizeof(connector->eld), len)); |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| return 0; |
| } |
| |
| static const struct hdmi_codec_ops vc4_hdmi_codec_ops = { |
| .get_eld = vc4_hdmi_audio_get_eld, |
| .prepare = vc4_hdmi_audio_prepare, |
| .audio_shutdown = vc4_hdmi_audio_shutdown, |
| .audio_startup = vc4_hdmi_audio_startup, |
| }; |
| |
| static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = { |
| .ops = &vc4_hdmi_codec_ops, |
| .max_i2s_channels = 8, |
| .i2s = 1, |
| }; |
| |
| static void vc4_hdmi_audio_codec_release(void *ptr) |
| { |
| struct vc4_hdmi *vc4_hdmi = ptr; |
| |
| platform_device_unregister(vc4_hdmi->audio.codec_pdev); |
| vc4_hdmi->audio.codec_pdev = NULL; |
| } |
| |
| static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi) |
| { |
| const struct vc4_hdmi_register *mai_data = |
| &vc4_hdmi->variant->registers[HDMI_MAI_DATA]; |
| struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link; |
| struct snd_soc_card *card = &vc4_hdmi->audio.card; |
| struct device *dev = &vc4_hdmi->pdev->dev; |
| struct platform_device *codec_pdev; |
| const __be32 *addr; |
| int index, len; |
| int ret; |
| |
| /* |
| * ASoC makes it a bit hard to retrieve a pointer to the |
| * vc4_hdmi structure. Registering the card will overwrite our |
| * device drvdata with a pointer to the snd_soc_card structure, |
| * which can then be used to retrieve whatever drvdata we want |
| * to associate. |
| * |
| * However, that doesn't fly in the case where we wouldn't |
| * register an ASoC card (because of an old DT that is missing |
| * the dmas properties for example), then the card isn't |
| * registered and the device drvdata wouldn't be set. |
| * |
| * We can deal with both cases by making sure a snd_soc_card |
| * pointer and a vc4_hdmi structure are pointing to the same |
| * memory address, so we can treat them indistinctly without any |
| * issue. |
| */ |
| BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0); |
| BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0); |
| |
| if (!of_find_property(dev->of_node, "dmas", &len) || !len) { |
| dev_warn(dev, |
| "'dmas' DT property is missing or empty, no HDMI audio\n"); |
| return 0; |
| } |
| |
| if (mai_data->reg != VC4_HD) { |
| WARN_ONCE(true, "MAI isn't in the HD block\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve |
| * the bus address specified in the DT, because the physical address |
| * (the one returned by platform_get_resource()) is not appropriate |
| * for DMA transfers. |
| * This VC/MMU should probably be exposed to avoid this kind of hacks. |
| */ |
| index = of_property_match_string(dev->of_node, "reg-names", "hd"); |
| /* Before BCM2711, we don't have a named register range */ |
| if (index < 0) |
| index = 1; |
| |
| addr = of_get_address(dev->of_node, index, NULL, NULL); |
| if (!addr) |
| return -EINVAL; |
| |
| vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset; |
| vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| vc4_hdmi->audio.dma_data.maxburst = 2; |
| |
| /* |
| * NOTE: Strictly speaking, we should probably use a DRM-managed |
| * registration there to avoid removing all the audio components |
| * by the time the driver doesn't have any user anymore. |
| * |
| * However, the ASoC core uses a number of devm_kzalloc calls |
| * when registering, even when using non-device-managed |
| * functions (such as in snd_soc_register_component()). |
| * |
| * If we call snd_soc_unregister_component() in a DRM-managed |
| * action, the device-managed actions have already been executed |
| * and thus we would access memory that has been freed. |
| * |
| * Using device-managed hooks here probably leaves us open to a |
| * bunch of issues if userspace still has a handle on the ALSA |
| * device when the device is removed. However, this is mitigated |
| * by the use of drm_dev_enter()/drm_dev_exit() in the audio |
| * path to prevent the access to the device resources if it |
| * isn't there anymore. |
| * |
| * Then, the vc4_hdmi structure is DRM-managed and thus only |
| * freed whenever the last user has closed the DRM device file. |
| * It should thus outlive ALSA in most situations. |
| */ |
| ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0); |
| if (ret) { |
| dev_err(dev, "Could not register PCM component: %d\n", ret); |
| return ret; |
| } |
| |
| ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp, |
| &vc4_hdmi_audio_cpu_dai_drv, 1); |
| if (ret) { |
| dev_err(dev, "Could not register CPU DAI: %d\n", ret); |
| return ret; |
| } |
| |
| codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME, |
| PLATFORM_DEVID_AUTO, |
| &vc4_hdmi_codec_pdata, |
| sizeof(vc4_hdmi_codec_pdata)); |
| if (IS_ERR(codec_pdev)) { |
| dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev)); |
| return PTR_ERR(codec_pdev); |
| } |
| vc4_hdmi->audio.codec_pdev = codec_pdev; |
| |
| ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| dai_link->cpus = &vc4_hdmi->audio.cpu; |
| dai_link->codecs = &vc4_hdmi->audio.codec; |
| dai_link->platforms = &vc4_hdmi->audio.platform; |
| |
| dai_link->num_cpus = 1; |
| dai_link->num_codecs = 1; |
| dai_link->num_platforms = 1; |
| |
| dai_link->name = "MAI"; |
| dai_link->stream_name = "MAI PCM"; |
| dai_link->codecs->dai_name = "i2s-hifi"; |
| dai_link->cpus->dai_name = dev_name(dev); |
| dai_link->codecs->name = dev_name(&codec_pdev->dev); |
| dai_link->platforms->name = dev_name(dev); |
| |
| card->dai_link = dai_link; |
| card->num_links = 1; |
| card->name = vc4_hdmi->variant->card_name; |
| card->driver_name = "vc4-hdmi"; |
| card->dev = dev; |
| card->owner = THIS_MODULE; |
| |
| /* |
| * Be careful, snd_soc_register_card() calls dev_set_drvdata() and |
| * stores a pointer to the snd card object in dev->driver_data. This |
| * means we cannot use it for something else. The hdmi back-pointer is |
| * now stored in card->drvdata and should be retrieved with |
| * snd_soc_card_get_drvdata() if needed. |
| */ |
| snd_soc_card_set_drvdata(card, vc4_hdmi); |
| ret = devm_snd_soc_register_card(dev, card); |
| if (ret) |
| dev_err_probe(dev, ret, "Could not register sound card\n"); |
| |
| return ret; |
| |
| } |
| |
| static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct drm_device *dev = connector->dev; |
| |
| if (dev && dev->registered) |
| drm_connector_helper_hpd_irq_event(connector); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct drm_connector *connector = &vc4_hdmi->connector; |
| struct platform_device *pdev = vc4_hdmi->pdev; |
| int ret; |
| |
| if (vc4_hdmi->variant->external_irq_controller) { |
| unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected"); |
| unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed"); |
| |
| ret = devm_request_threaded_irq(&pdev->dev, hpd_con, |
| NULL, |
| vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, |
| "vc4 hdmi hpd connected", vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| ret = devm_request_threaded_irq(&pdev->dev, hpd_rm, |
| NULL, |
| vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, |
| "vc4 hdmi hpd disconnected", vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| connector->polled = DRM_CONNECTOR_POLL_HPD; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DRM_VC4_HDMI_CEC |
| static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| |
| if (vc4_hdmi->cec_rx_msg.len) |
| cec_received_msg(vc4_hdmi->cec_adap, |
| &vc4_hdmi->cec_rx_msg); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| |
| if (vc4_hdmi->cec_tx_ok) { |
| cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK, |
| 0, 0, 0, 0); |
| } else { |
| /* |
| * This CEC implementation makes 1 retry, so if we |
| * get a NACK, then that means it made 2 attempts. |
| */ |
| cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK, |
| 0, 2, 0, 0); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| irqreturn_t ret; |
| |
| if (vc4_hdmi->cec_irq_was_rx) |
| ret = vc4_cec_irq_handler_rx_thread(irq, priv); |
| else |
| ret = vc4_cec_irq_handler_tx_thread(irq, priv); |
| |
| return ret; |
| } |
| |
| static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1) |
| { |
| struct drm_device *dev = vc4_hdmi->connector.dev; |
| struct cec_msg *msg = &vc4_hdmi->cec_rx_msg; |
| unsigned int i; |
| |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >> |
| VC4_HDMI_CEC_REC_WRD_CNT_SHIFT); |
| |
| if (msg->len > 16) { |
| drm_err(dev, "Attempting to read too much data (%d)\n", msg->len); |
| return; |
| } |
| |
| for (i = 0; i < msg->len; i += 4) { |
| u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2)); |
| |
| msg->msg[i] = val & 0xff; |
| msg->msg[i + 1] = (val >> 8) & 0xff; |
| msg->msg[i + 2] = (val >> 16) & 0xff; |
| msg->msg[i + 3] = (val >> 24) & 0xff; |
| } |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi) |
| { |
| u32 cntrl1; |
| |
| /* |
| * We don't need to protect the register access using |
| * drm_dev_enter() there because the interrupt handler lifetime |
| * is tied to the device itself, and not to the DRM device. |
| * |
| * So when the device will be gone, one of the first thing we |
| * will be doing will be to unregister the interrupt handler, |
| * and then unregister the DRM device. drm_dev_enter() would |
| * thus always succeed if we are here. |
| */ |
| |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); |
| vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD; |
| cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| irqreturn_t ret; |
| |
| spin_lock(&vc4_hdmi->hw_lock); |
| ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); |
| spin_unlock(&vc4_hdmi->hw_lock); |
| |
| return ret; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi) |
| { |
| u32 cntrl1; |
| |
| lockdep_assert_held(&vc4_hdmi->hw_lock); |
| |
| /* |
| * We don't need to protect the register access using |
| * drm_dev_enter() there because the interrupt handler lifetime |
| * is tied to the device itself, and not to the DRM device. |
| * |
| * So when the device will be gone, one of the first thing we |
| * will be doing will be to unregister the interrupt handler, |
| * and then unregister the DRM device. drm_dev_enter() would |
| * thus always succeed if we are here. |
| */ |
| |
| vc4_hdmi->cec_rx_msg.len = 0; |
| cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); |
| vc4_cec_read_msg(vc4_hdmi, cntrl1); |
| cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); |
| cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; |
| |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| irqreturn_t ret; |
| |
| spin_lock(&vc4_hdmi->hw_lock); |
| ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); |
| spin_unlock(&vc4_hdmi->hw_lock); |
| |
| return ret; |
| } |
| |
| static irqreturn_t vc4_cec_irq_handler(int irq, void *priv) |
| { |
| struct vc4_hdmi *vc4_hdmi = priv; |
| u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS); |
| irqreturn_t ret; |
| u32 cntrl5; |
| |
| /* |
| * We don't need to protect the register access using |
| * drm_dev_enter() there because the interrupt handler lifetime |
| * is tied to the device itself, and not to the DRM device. |
| * |
| * So when the device will be gone, one of the first thing we |
| * will be doing will be to unregister the interrupt handler, |
| * and then unregister the DRM device. drm_dev_enter() would |
| * thus always succeed if we are here. |
| */ |
| |
| if (!(stat & VC4_HDMI_CPU_CEC)) |
| return IRQ_NONE; |
| |
| spin_lock(&vc4_hdmi->hw_lock); |
| cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5); |
| vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT; |
| if (vc4_hdmi->cec_irq_was_rx) |
| ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); |
| else |
| ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); |
| |
| HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC); |
| spin_unlock(&vc4_hdmi->hw_lock); |
| |
| return ret; |
| } |
| |
| static int vc4_hdmi_cec_enable(struct cec_adapter *adap) |
| { |
| struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| /* clock period in microseconds */ |
| const u32 usecs = 1000000 / CEC_CLOCK_FREQ; |
| unsigned long flags; |
| u32 val; |
| int ret; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| /* |
| * We can't return an error code, because the CEC |
| * framework will emit WARN_ON messages at unbind |
| * otherwise. |
| */ |
| return 0; |
| |
| ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); |
| if (ret) { |
| drm_dev_exit(idx); |
| return ret; |
| } |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| val = HDMI_READ(HDMI_CEC_CNTRL_5); |
| val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET | |
| VC4_HDMI_CEC_CNT_TO_4700_US_MASK | |
| VC4_HDMI_CEC_CNT_TO_4500_US_MASK); |
| val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) | |
| ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT); |
| |
| HDMI_WRITE(HDMI_CEC_CNTRL_5, val | |
| VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); |
| HDMI_WRITE(HDMI_CEC_CNTRL_5, val); |
| HDMI_WRITE(HDMI_CEC_CNTRL_2, |
| ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) | |
| ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) | |
| ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) | |
| ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) | |
| ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT)); |
| HDMI_WRITE(HDMI_CEC_CNTRL_3, |
| ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) | |
| ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) | |
| ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) | |
| ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT)); |
| HDMI_WRITE(HDMI_CEC_CNTRL_4, |
| ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) | |
| ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) | |
| ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) | |
| ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT)); |
| |
| if (!vc4_hdmi->variant->external_irq_controller) |
| HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| mutex_unlock(&vc4_hdmi->mutex); |
| drm_dev_exit(idx); |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_cec_disable(struct cec_adapter *adap) |
| { |
| struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| /* |
| * We can't return an error code, because the CEC |
| * framework will emit WARN_ON messages at unbind |
| * otherwise. |
| */ |
| return 0; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| if (!vc4_hdmi->variant->external_irq_controller) |
| HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC); |
| |
| HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) | |
| VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| pm_runtime_put(&vc4_hdmi->pdev->dev); |
| |
| drm_dev_exit(idx); |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable) |
| { |
| if (enable) |
| return vc4_hdmi_cec_enable(adap); |
| else |
| return vc4_hdmi_cec_disable(adap); |
| } |
| |
| static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) |
| { |
| struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); |
| struct drm_device *drm = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| int idx; |
| |
| if (!drm_dev_enter(drm, &idx)) |
| /* |
| * We can't return an error code, because the CEC |
| * framework will emit WARN_ON messages at unbind |
| * otherwise. |
| */ |
| return 0; |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, |
| (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) | |
| (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| mutex_unlock(&vc4_hdmi->mutex); |
| |
| drm_dev_exit(idx); |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, |
| u32 signal_free_time, struct cec_msg *msg) |
| { |
| struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); |
| struct drm_device *dev = vc4_hdmi->connector.dev; |
| unsigned long flags; |
| u32 val; |
| unsigned int i; |
| int idx; |
| |
| if (!drm_dev_enter(dev, &idx)) |
| return -ENODEV; |
| |
| if (msg->len > 16) { |
| drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len); |
| drm_dev_exit(idx); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&vc4_hdmi->mutex); |
| |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| |
| for (i = 0; i < msg->len; i += 4) |
| HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2), |
| (msg->msg[i]) | |
| (msg->msg[i + 1] << 8) | |
| (msg->msg[i + 2] << 16) | |
| (msg->msg[i + 3] << 24)); |
| |
| val = HDMI_READ(HDMI_CEC_CNTRL_1); |
| val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, val); |
| val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK; |
| val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT; |
| val |= VC4_HDMI_CEC_START_XMIT_BEGIN; |
| |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, val); |
| |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| mutex_unlock(&vc4_hdmi->mutex); |
| drm_dev_exit(idx); |
| |
| return 0; |
| } |
| |
| static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = { |
| .adap_enable = vc4_hdmi_cec_adap_enable, |
| .adap_log_addr = vc4_hdmi_cec_adap_log_addr, |
| .adap_transmit = vc4_hdmi_cec_adap_transmit, |
| }; |
| |
| static void vc4_hdmi_cec_release(void *ptr) |
| { |
| struct vc4_hdmi *vc4_hdmi = ptr; |
| |
| cec_unregister_adapter(vc4_hdmi->cec_adap); |
| vc4_hdmi->cec_adap = NULL; |
| } |
| |
| static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) |
| { |
| struct cec_connector_info conn_info; |
| struct platform_device *pdev = vc4_hdmi->pdev; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| if (!of_property_present(dev->of_node, "interrupts")) { |
| dev_warn(dev, "'interrupts' DT property is missing, no CEC\n"); |
| return 0; |
| } |
| |
| vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops, |
| vc4_hdmi, |
| vc4_hdmi->variant->card_name, |
| CEC_CAP_DEFAULTS | |
| CEC_CAP_CONNECTOR_INFO, 1); |
| ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap); |
| if (ret < 0) |
| return ret; |
| |
| cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector); |
| cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info); |
| |
| if (vc4_hdmi->variant->external_irq_controller) { |
| ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"), |
| vc4_cec_irq_handler_rx_bare, |
| vc4_cec_irq_handler_rx_thread, 0, |
| "vc4 hdmi cec rx", vc4_hdmi); |
| if (ret) |
| goto err_delete_cec_adap; |
| |
| ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"), |
| vc4_cec_irq_handler_tx_bare, |
| vc4_cec_irq_handler_tx_thread, 0, |
| "vc4 hdmi cec tx", vc4_hdmi); |
| if (ret) |
| goto err_delete_cec_adap; |
| } else { |
| ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), |
| vc4_cec_irq_handler, |
| vc4_cec_irq_handler_thread, 0, |
| "vc4 hdmi cec", vc4_hdmi); |
| if (ret) |
| goto err_delete_cec_adap; |
| } |
| |
| ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev); |
| if (ret < 0) |
| goto err_delete_cec_adap; |
| |
| /* |
| * NOTE: Strictly speaking, we should probably use a DRM-managed |
| * registration there to avoid removing the CEC adapter by the |
| * time the DRM driver doesn't have any user anymore. |
| * |
| * However, the CEC framework already cleans up the CEC adapter |
| * only when the last user has closed its file descriptor, so we |
| * don't need to handle it in DRM. |
| * |
| * By the time the device-managed hook is executed, we will give |
| * up our reference to the CEC adapter and therefore don't |
| * really care when it's actually freed. |
| * |
| * There's still a problematic sequence: if we unregister our |
| * CEC adapter, but the userspace keeps a handle on the CEC |
| * adapter but not the DRM device for some reason. In such a |
| * case, our vc4_hdmi structure will be freed, but the |
| * cec_adapter structure will have a dangling pointer to what |
| * used to be our HDMI controller. If we get a CEC call at that |
| * moment, we could end up with a use-after-free. Fortunately, |
| * the CEC framework already handles this too, by calling |
| * cec_is_registered() in cec_ioctl() and cec_poll(). |
| */ |
| ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| return 0; |
| |
| err_delete_cec_adap: |
| cec_delete_adapter(vc4_hdmi->cec_adap); |
| |
| return ret; |
| } |
| #else |
| static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) |
| { |
| return 0; |
| } |
| #endif |
| |
| static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr) |
| { |
| struct debugfs_reg32 *regs = ptr; |
| |
| kfree(regs); |
| } |
| |
| static int vc4_hdmi_build_regset(struct drm_device *drm, |
| struct vc4_hdmi *vc4_hdmi, |
| struct debugfs_regset32 *regset, |
| enum vc4_hdmi_regs reg) |
| { |
| const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; |
| struct debugfs_reg32 *regs, *new_regs; |
| unsigned int count = 0; |
| unsigned int i; |
| int ret; |
| |
| regs = kcalloc(variant->num_registers, sizeof(*regs), |
| GFP_KERNEL); |
| if (!regs) |
| return -ENOMEM; |
| |
| for (i = 0; i < variant->num_registers; i++) { |
| const struct vc4_hdmi_register *field = &variant->registers[i]; |
| |
| if (field->reg != reg) |
| continue; |
| |
| regs[count].name = field->name; |
| regs[count].offset = field->offset; |
| count++; |
| } |
| |
| new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL); |
| if (!new_regs) |
| return -ENOMEM; |
| |
| regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg); |
| regset->regs = new_regs; |
| regset->nregs = count; |
| |
| ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_init_resources(struct drm_device *drm, |
| struct vc4_hdmi *vc4_hdmi) |
| { |
| struct platform_device *pdev = vc4_hdmi->pdev; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0); |
| if (IS_ERR(vc4_hdmi->hdmicore_regs)) |
| return PTR_ERR(vc4_hdmi->hdmicore_regs); |
| |
| vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1); |
| if (IS_ERR(vc4_hdmi->hd_regs)) |
| return PTR_ERR(vc4_hdmi->hd_regs); |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); |
| if (ret) |
| return ret; |
| |
| vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel"); |
| if (IS_ERR(vc4_hdmi->pixel_clock)) { |
| ret = PTR_ERR(vc4_hdmi->pixel_clock); |
| if (ret != -EPROBE_DEFER) |
| drm_err(drm, "Failed to get pixel clock\n"); |
| return ret; |
| } |
| |
| vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); |
| if (IS_ERR(vc4_hdmi->hsm_clock)) { |
| drm_err(drm, "Failed to get HDMI state machine clock\n"); |
| return PTR_ERR(vc4_hdmi->hsm_clock); |
| } |
| vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock; |
| vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock; |
| |
| return 0; |
| } |
| |
| static int vc5_hdmi_init_resources(struct drm_device *drm, |
| struct vc4_hdmi *vc4_hdmi) |
| { |
| struct platform_device *pdev = vc4_hdmi->pdev; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int ret; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start, |
| resource_size(res)); |
| if (!vc4_hdmi->hdmicore_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->hd_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->cec_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->csc_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->dvp_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->phy_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->ram_regs) |
| return -ENOMEM; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm"); |
| if (!res) |
| return -ENODEV; |
| |
| vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!vc4_hdmi->rm_regs) |
| return -ENOMEM; |
| |
| vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); |
| if (IS_ERR(vc4_hdmi->hsm_clock)) { |
| drm_err(drm, "Failed to get HDMI state machine clock\n"); |
| return PTR_ERR(vc4_hdmi->hsm_clock); |
| } |
| |
| vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb"); |
| if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) { |
| drm_err(drm, "Failed to get pixel bvb clock\n"); |
| return PTR_ERR(vc4_hdmi->pixel_bvb_clock); |
| } |
| |
| vc4_hdmi->audio_clock = devm_clk_get(dev, "audio"); |
| if (IS_ERR(vc4_hdmi->audio_clock)) { |
| drm_err(drm, "Failed to get audio clock\n"); |
| return PTR_ERR(vc4_hdmi->audio_clock); |
| } |
| |
| vc4_hdmi->cec_clock = devm_clk_get(dev, "cec"); |
| if (IS_ERR(vc4_hdmi->cec_clock)) { |
| drm_err(drm, "Failed to get CEC clock\n"); |
| return PTR_ERR(vc4_hdmi->cec_clock); |
| } |
| |
| vc4_hdmi->reset = devm_reset_control_get(dev, NULL); |
| if (IS_ERR(vc4_hdmi->reset)) { |
| drm_err(drm, "Failed to get HDMI reset line\n"); |
| return PTR_ERR(vc4_hdmi->reset); |
| } |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM); |
| if (ret) |
| return ret; |
| |
| ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_runtime_suspend(struct device *dev) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(vc4_hdmi->hsm_clock); |
| |
| return 0; |
| } |
| |
| static int vc4_hdmi_runtime_resume(struct device *dev) |
| { |
| struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); |
| unsigned long __maybe_unused flags; |
| u32 __maybe_unused value; |
| unsigned long rate; |
| int ret; |
| |
| ret = clk_prepare_enable(vc4_hdmi->hsm_clock); |
| if (ret) |
| return ret; |
| |
| /* |
| * Whenever the RaspberryPi boots without an HDMI monitor |
| * plugged in, the firmware won't have initialized the HSM clock |
| * rate and it will be reported as 0. |
| * |
| * If we try to access a register of the controller in such a |
| * case, it will lead to a silent CPU stall. Let's make sure we |
| * prevent such a case. |
| */ |
| rate = clk_get_rate(vc4_hdmi->hsm_clock); |
| if (!rate) { |
| ret = -EINVAL; |
| goto err_disable_clk; |
| } |
| |
| if (vc4_hdmi->variant->reset) |
| vc4_hdmi->variant->reset(vc4_hdmi); |
| |
| #ifdef CONFIG_DRM_VC4_HDMI_CEC |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| value = HDMI_READ(HDMI_CEC_CNTRL_1); |
| /* Set the logical address to Unregistered */ |
| value |= VC4_HDMI_CEC_ADDR_MASK; |
| HDMI_WRITE(HDMI_CEC_CNTRL_1, value); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| |
| vc4_hdmi_cec_update_clk_div(vc4_hdmi); |
| |
| if (!vc4_hdmi->variant->external_irq_controller) { |
| spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); |
| HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff); |
| spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); |
| } |
| #endif |
| |
| return 0; |
| |
| err_disable_clk: |
| clk_disable_unprepare(vc4_hdmi->hsm_clock); |
| return ret; |
| } |
| |
| static void vc4_hdmi_put_ddc_device(void *ptr) |
| { |
| struct vc4_hdmi *vc4_hdmi = ptr; |
| |
| put_device(&vc4_hdmi->ddc->dev); |
| } |
| |
| static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data) |
| { |
| const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev); |
| struct platform_device *pdev = to_platform_device(dev); |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_hdmi *vc4_hdmi; |
| struct drm_encoder *encoder; |
| struct device_node *ddc_node; |
| int ret; |
| |
| vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL); |
| if (!vc4_hdmi) |
| return -ENOMEM; |
| |
| ret = drmm_mutex_init(drm, &vc4_hdmi->mutex); |
| if (ret) |
| return ret; |
| |
| spin_lock_init(&vc4_hdmi->hw_lock); |
| INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq); |
| |
| dev_set_drvdata(dev, vc4_hdmi); |
| encoder = &vc4_hdmi->encoder.base; |
| vc4_hdmi->encoder.type = variant->encoder_type; |
| vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure; |
| vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable; |
| vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable; |
| vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable; |
| vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown; |
| vc4_hdmi->pdev = pdev; |
| vc4_hdmi->variant = variant; |
| |
| /* |
| * Since we don't know the state of the controller and its |
| * display (if any), let's assume it's always enabled. |
| * vc4_hdmi_disable_scrambling() will thus run at boot, make |
| * sure it's disabled, and avoid any inconsistency. |
| */ |
| if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK) |
| vc4_hdmi->scdc_enabled = true; |
| |
| ret = variant->init_resources(drm, vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| ddc_node = of_parse_phandle(dev->of_node, "ddc", 0); |
| if (!ddc_node) { |
| drm_err(drm, "Failed to find ddc node in device tree\n"); |
| return -ENODEV; |
| } |
| |
| vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node); |
| of_node_put(ddc_node); |
| if (!vc4_hdmi->ddc) { |
| drm_err(drm, "Failed to get ddc i2c adapter by node\n"); |
| return -EPROBE_DEFER; |
| } |
| |
| ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi); |
| if (ret) |
| return ret; |
| |
| /* Only use the GPIO HPD pin if present in the DT, otherwise |
| * we'll use the HDMI core's register. |
| */ |
| vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN); |
| if (IS_ERR(vc4_hdmi->hpd_gpio)) { |
| return PTR_ERR(vc4_hdmi->hpd_gpio); |
| } |
| |
| vc4_hdmi->disable_wifi_frequencies = |
| of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence"); |
| |
| ret = devm_pm_runtime_enable(dev); |
| if (ret) |
| return ret; |
| |
| /* |
| * We need to have the device powered up at this point to call |
| * our reset hook and for the CEC init. |
| */ |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret) |
| return ret; |
| |
| if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") || |
| of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) && |
| HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) { |
| clk_prepare_enable(vc4_hdmi->pixel_clock); |
| clk_prepare_enable(vc4_hdmi->hsm_clock); |
| clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); |
| } |
| |
| ret = drmm_encoder_init(drm, encoder, |
| &vc4_hdmi_encoder_funcs, |
| DRM_MODE_ENCODER_TMDS, |
| NULL); |
| if (ret) |
| goto err_put_runtime_pm; |
| |
| drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs); |
| |
| ret = vc4_hdmi_connector_init(drm, vc4_hdmi); |
| if (ret) |
| goto err_put_runtime_pm; |
| |
| ret = vc4_hdmi_hotplug_init(vc4_hdmi); |
| if (ret) |
| goto err_put_runtime_pm; |
| |
| ret = vc4_hdmi_cec_init(vc4_hdmi); |
| if (ret) |
| goto err_put_runtime_pm; |
| |
| ret = vc4_hdmi_audio_init(vc4_hdmi); |
| if (ret) |
| goto err_put_runtime_pm; |
| |
| pm_runtime_put_sync(dev); |
| |
| return 0; |
| |
| err_put_runtime_pm: |
| pm_runtime_put_sync(dev); |
| |
| return ret; |
| } |
| |
| static const struct component_ops vc4_hdmi_ops = { |
| .bind = vc4_hdmi_bind, |
| }; |
| |
| static int vc4_hdmi_dev_probe(struct platform_device *pdev) |
| { |
| return component_add(&pdev->dev, &vc4_hdmi_ops); |
| } |
| |
| static void vc4_hdmi_dev_remove(struct platform_device *pdev) |
| { |
| component_del(&pdev->dev, &vc4_hdmi_ops); |
| } |
| |
| static const struct vc4_hdmi_variant bcm2835_variant = { |
| .encoder_type = VC4_ENCODER_TYPE_HDMI0, |
| .debugfs_name = "hdmi_regs", |
| .card_name = "vc4-hdmi", |
| .max_pixel_clock = 162000000, |
| .registers = vc4_hdmi_fields, |
| .num_registers = ARRAY_SIZE(vc4_hdmi_fields), |
| |
| .init_resources = vc4_hdmi_init_resources, |
| .csc_setup = vc4_hdmi_csc_setup, |
| .reset = vc4_hdmi_reset, |
| .set_timings = vc4_hdmi_set_timings, |
| .phy_init = vc4_hdmi_phy_init, |
| .phy_disable = vc4_hdmi_phy_disable, |
| .phy_rng_enable = vc4_hdmi_phy_rng_enable, |
| .phy_rng_disable = vc4_hdmi_phy_rng_disable, |
| .channel_map = vc4_hdmi_channel_map, |
| .supports_hdr = false, |
| }; |
| |
| static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = { |
| .encoder_type = VC4_ENCODER_TYPE_HDMI0, |
| .debugfs_name = "hdmi0_regs", |
| .card_name = "vc4-hdmi-0", |
| .max_pixel_clock = 600000000, |
| .registers = vc5_hdmi_hdmi0_fields, |
| .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields), |
| .phy_lane_mapping = { |
| PHY_LANE_0, |
| PHY_LANE_1, |
| PHY_LANE_2, |
| PHY_LANE_CK, |
| }, |
| .unsupported_odd_h_timings = true, |
| .external_irq_controller = true, |
| |
| .init_resources = vc5_hdmi_init_resources, |
| .csc_setup = vc5_hdmi_csc_setup, |
| .reset = vc5_hdmi_reset, |
| .set_timings = vc5_hdmi_set_timings, |
| .phy_init = vc5_hdmi_phy_init, |
| .phy_disable = vc5_hdmi_phy_disable, |
| .phy_rng_enable = vc5_hdmi_phy_rng_enable, |
| .phy_rng_disable = vc5_hdmi_phy_rng_disable, |
| .channel_map = vc5_hdmi_channel_map, |
| .supports_hdr = true, |
| .hp_detect = vc5_hdmi_hp_detect, |
| }; |
| |
| static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = { |
| .encoder_type = VC4_ENCODER_TYPE_HDMI1, |
| .debugfs_name = "hdmi1_regs", |
| .card_name = "vc4-hdmi-1", |
| .max_pixel_clock = HDMI_14_MAX_TMDS_CLK, |
| .registers = vc5_hdmi_hdmi1_fields, |
| .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields), |
| .phy_lane_mapping = { |
| PHY_LANE_1, |
| PHY_LANE_0, |
| PHY_LANE_CK, |
| PHY_LANE_2, |
| }, |
| .unsupported_odd_h_timings = true, |
| .external_irq_controller = true, |
| |
| .init_resources = vc5_hdmi_init_resources, |
| .csc_setup = vc5_hdmi_csc_setup, |
| .reset = vc5_hdmi_reset, |
| .set_timings = vc5_hdmi_set_timings, |
| .phy_init = vc5_hdmi_phy_init, |
| .phy_disable = vc5_hdmi_phy_disable, |
| .phy_rng_enable = vc5_hdmi_phy_rng_enable, |
| .phy_rng_disable = vc5_hdmi_phy_rng_disable, |
| .channel_map = vc5_hdmi_channel_map, |
| .supports_hdr = true, |
| .hp_detect = vc5_hdmi_hp_detect, |
| }; |
| |
| static const struct of_device_id vc4_hdmi_dt_match[] = { |
| { .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant }, |
| { .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant }, |
| { .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant }, |
| {} |
| }; |
| |
| static const struct dev_pm_ops vc4_hdmi_pm_ops = { |
| SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend, |
| vc4_hdmi_runtime_resume, |
| NULL) |
| }; |
| |
| struct platform_driver vc4_hdmi_driver = { |
| .probe = vc4_hdmi_dev_probe, |
| .remove_new = vc4_hdmi_dev_remove, |
| .driver = { |
| .name = "vc4_hdmi", |
| .of_match_table = vc4_hdmi_dt_match, |
| .pm = &vc4_hdmi_pm_ops, |
| }, |
| }; |