blob: 040b7f113a3b4382a3853505a7d886908c2a94ae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
#include <linux/kernel.h>
#include <linux/minmax.h>
#include <drm/drm_blend.h>
#include <drm/drm_rect.h>
#include <drm/drm_fixed.h>
#include "vkms_formats.h"
static size_t pixel_offset(const struct vkms_frame_info *frame_info, int x, int y)
{
return frame_info->offset + (y * frame_info->pitch)
+ (x * frame_info->cpp);
}
/*
* packed_pixels_addr - Get the pointer to pixel of a given pair of coordinates
*
* @frame_info: Buffer metadata
* @x: The x(width) coordinate of the 2D buffer
* @y: The y(Heigth) coordinate of the 2D buffer
*
* Takes the information stored in the frame_info, a pair of coordinates, and
* returns the address of the first color channel.
* This function assumes the channels are packed together, i.e. a color channel
* comes immediately after another in the memory. And therefore, this function
* doesn't work for YUV with chroma subsampling (e.g. YUV420 and NV21).
*/
static void *packed_pixels_addr(const struct vkms_frame_info *frame_info,
int x, int y)
{
size_t offset = pixel_offset(frame_info, x, y);
return (u8 *)frame_info->map[0].vaddr + offset;
}
static void *get_packed_src_addr(const struct vkms_frame_info *frame_info, int y)
{
int x_src = frame_info->src.x1 >> 16;
int y_src = y - frame_info->rotated.y1 + (frame_info->src.y1 >> 16);
return packed_pixels_addr(frame_info, x_src, y_src);
}
static int get_x_position(const struct vkms_frame_info *frame_info, int limit, int x)
{
if (frame_info->rotation & (DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_270))
return limit - x - 1;
return x;
}
static void ARGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
{
/*
* The 257 is the "conversion ratio". This number is obtained by the
* (2^16 - 1) / (2^8 - 1) division. Which, in this case, tries to get
* the best color value in a pixel format with more possibilities.
* A similar idea applies to others RGB color conversions.
*/
out_pixel->a = (u16)src_pixels[3] * 257;
out_pixel->r = (u16)src_pixels[2] * 257;
out_pixel->g = (u16)src_pixels[1] * 257;
out_pixel->b = (u16)src_pixels[0] * 257;
}
static void XRGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
{
out_pixel->a = (u16)0xffff;
out_pixel->r = (u16)src_pixels[2] * 257;
out_pixel->g = (u16)src_pixels[1] * 257;
out_pixel->b = (u16)src_pixels[0] * 257;
}
static void ARGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
{
__le16 *pixels = (__force __le16 *)src_pixels;
out_pixel->a = le16_to_cpu(pixels[3]);
out_pixel->r = le16_to_cpu(pixels[2]);
out_pixel->g = le16_to_cpu(pixels[1]);
out_pixel->b = le16_to_cpu(pixels[0]);
}
static void XRGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
{
__le16 *pixels = (__force __le16 *)src_pixels;
out_pixel->a = (u16)0xffff;
out_pixel->r = le16_to_cpu(pixels[2]);
out_pixel->g = le16_to_cpu(pixels[1]);
out_pixel->b = le16_to_cpu(pixels[0]);
}
static void RGB565_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
{
__le16 *pixels = (__force __le16 *)src_pixels;
s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));
u16 rgb_565 = le16_to_cpu(*pixels);
s64 fp_r = drm_int2fixp((rgb_565 >> 11) & 0x1f);
s64 fp_g = drm_int2fixp((rgb_565 >> 5) & 0x3f);
s64 fp_b = drm_int2fixp(rgb_565 & 0x1f);
out_pixel->a = (u16)0xffff;
out_pixel->r = drm_fixp2int_round(drm_fixp_mul(fp_r, fp_rb_ratio));
out_pixel->g = drm_fixp2int_round(drm_fixp_mul(fp_g, fp_g_ratio));
out_pixel->b = drm_fixp2int_round(drm_fixp_mul(fp_b, fp_rb_ratio));
}
/**
* vkms_compose_row - compose a single row of a plane
* @stage_buffer: output line with the composed pixels
* @plane: state of the plane that is being composed
* @y: y coordinate of the row
*
* This function composes a single row of a plane. It gets the source pixels
* through the y coordinate (see get_packed_src_addr()) and goes linearly
* through the source pixel, reading the pixels and converting it to
* ARGB16161616 (see the pixel_read() callback). For rotate-90 and rotate-270,
* the source pixels are not traversed linearly. The source pixels are queried
* on each iteration in order to traverse the pixels vertically.
*/
void vkms_compose_row(struct line_buffer *stage_buffer, struct vkms_plane_state *plane, int y)
{
struct pixel_argb_u16 *out_pixels = stage_buffer->pixels;
struct vkms_frame_info *frame_info = plane->frame_info;
u8 *src_pixels = get_packed_src_addr(frame_info, y);
int limit = min_t(size_t, drm_rect_width(&frame_info->dst), stage_buffer->n_pixels);
for (size_t x = 0; x < limit; x++, src_pixels += frame_info->cpp) {
int x_pos = get_x_position(frame_info, limit, x);
if (drm_rotation_90_or_270(frame_info->rotation))
src_pixels = get_packed_src_addr(frame_info, x + frame_info->rotated.y1)
+ frame_info->cpp * y;
plane->pixel_read(src_pixels, &out_pixels[x_pos]);
}
}
/*
* The following functions take an line of argb_u16 pixels from the
* src_buffer, convert them to a specific format, and store them in the
* destination.
*
* They are used in the `compose_active_planes` to convert and store a line
* from the src_buffer to the writeback buffer.
*/
static void argb_u16_to_ARGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
{
/*
* This sequence below is important because the format's byte order is
* in little-endian. In the case of the ARGB8888 the memory is
* organized this way:
*
* | Addr | = blue channel
* | Addr + 1 | = green channel
* | Addr + 2 | = Red channel
* | Addr + 3 | = Alpha channel
*/
dst_pixels[3] = DIV_ROUND_CLOSEST(in_pixel->a, 257);
dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
}
static void argb_u16_to_XRGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
{
dst_pixels[3] = 0xff;
dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
}
static void argb_u16_to_ARGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
{
__le16 *pixels = (__force __le16 *)dst_pixels;
pixels[3] = cpu_to_le16(in_pixel->a);
pixels[2] = cpu_to_le16(in_pixel->r);
pixels[1] = cpu_to_le16(in_pixel->g);
pixels[0] = cpu_to_le16(in_pixel->b);
}
static void argb_u16_to_XRGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
{
__le16 *pixels = (__force __le16 *)dst_pixels;
pixels[3] = cpu_to_le16(0xffff);
pixels[2] = cpu_to_le16(in_pixel->r);
pixels[1] = cpu_to_le16(in_pixel->g);
pixels[0] = cpu_to_le16(in_pixel->b);
}
static void argb_u16_to_RGB565(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
{
__le16 *pixels = (__force __le16 *)dst_pixels;
s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));
s64 fp_r = drm_int2fixp(in_pixel->r);
s64 fp_g = drm_int2fixp(in_pixel->g);
s64 fp_b = drm_int2fixp(in_pixel->b);
u16 r = drm_fixp2int(drm_fixp_div(fp_r, fp_rb_ratio));
u16 g = drm_fixp2int(drm_fixp_div(fp_g, fp_g_ratio));
u16 b = drm_fixp2int(drm_fixp_div(fp_b, fp_rb_ratio));
*pixels = cpu_to_le16(r << 11 | g << 5 | b);
}
void vkms_writeback_row(struct vkms_writeback_job *wb,
const struct line_buffer *src_buffer, int y)
{
struct vkms_frame_info *frame_info = &wb->wb_frame_info;
int x_dst = frame_info->dst.x1;
u8 *dst_pixels = packed_pixels_addr(frame_info, x_dst, y);
struct pixel_argb_u16 *in_pixels = src_buffer->pixels;
int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), src_buffer->n_pixels);
for (size_t x = 0; x < x_limit; x++, dst_pixels += frame_info->cpp)
wb->pixel_write(dst_pixels, &in_pixels[x]);
}
void *get_pixel_conversion_function(u32 format)
{
switch (format) {
case DRM_FORMAT_ARGB8888:
return &ARGB8888_to_argb_u16;
case DRM_FORMAT_XRGB8888:
return &XRGB8888_to_argb_u16;
case DRM_FORMAT_ARGB16161616:
return &ARGB16161616_to_argb_u16;
case DRM_FORMAT_XRGB16161616:
return &XRGB16161616_to_argb_u16;
case DRM_FORMAT_RGB565:
return &RGB565_to_argb_u16;
default:
return NULL;
}
}
void *get_pixel_write_function(u32 format)
{
switch (format) {
case DRM_FORMAT_ARGB8888:
return &argb_u16_to_ARGB8888;
case DRM_FORMAT_XRGB8888:
return &argb_u16_to_XRGB8888;
case DRM_FORMAT_ARGB16161616:
return &argb_u16_to_ARGB16161616;
case DRM_FORMAT_XRGB16161616:
return &argb_u16_to_XRGB16161616;
case DRM_FORMAT_RGB565:
return &argb_u16_to_RGB565;
default:
return NULL;
}
}