blob: 5c4e88be46ee3316330e26a68d06540ff1db86ff [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the TI TPS23881 PoE PSE Controller driver (I2C bus)
*
* Copyright (c) 2023 Bootlin, Kory Maincent <kory.maincent@bootlin.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pse-pd/pse.h>
#define TPS23881_MAX_CHANS 8
#define TPS23881_REG_PW_STATUS 0x10
#define TPS23881_REG_OP_MODE 0x12
#define TPS23881_OP_MODE_SEMIAUTO 0xaaaa
#define TPS23881_REG_DIS_EN 0x13
#define TPS23881_REG_DET_CLA_EN 0x14
#define TPS23881_REG_GEN_MASK 0x17
#define TPS23881_REG_NBITACC BIT(5)
#define TPS23881_REG_PW_EN 0x19
#define TPS23881_REG_PORT_MAP 0x26
#define TPS23881_REG_PORT_POWER 0x29
#define TPS23881_REG_POEPLUS 0x40
#define TPS23881_REG_TPON BIT(0)
#define TPS23881_REG_FWREV 0x41
#define TPS23881_REG_DEVID 0x43
#define TPS23881_REG_DEVID_MASK 0xF0
#define TPS23881_DEVICE_ID 0x02
#define TPS23881_REG_SRAM_CTRL 0x60
#define TPS23881_REG_SRAM_DATA 0x61
struct tps23881_port_desc {
u8 chan[2];
bool is_4p;
};
struct tps23881_priv {
struct i2c_client *client;
struct pse_controller_dev pcdev;
struct device_node *np;
struct tps23881_port_desc port[TPS23881_MAX_CHANS];
};
static struct tps23881_priv *to_tps23881_priv(struct pse_controller_dev *pcdev)
{
return container_of(pcdev, struct tps23881_priv, pcdev);
}
static int tps23881_pi_enable(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
u8 chan;
u16 val;
int ret;
if (id >= TPS23881_MAX_CHANS)
return -ERANGE;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
if (chan < 4)
val = (u16)(ret | BIT(chan));
else
val = (u16)(ret | BIT(chan + 4));
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
if (chan < 4)
val |= BIT(chan);
else
val |= BIT(chan + 4);
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PW_EN, val);
if (ret)
return ret;
return 0;
}
static int tps23881_pi_disable(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
u8 chan;
u16 val;
int ret;
if (id >= TPS23881_MAX_CHANS)
return -ERANGE;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
if (chan < 4)
val = (u16)(ret | BIT(chan + 4));
else
val = (u16)(ret | BIT(chan + 8));
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
if (chan < 4)
val |= BIT(chan + 4);
else
val |= BIT(chan + 8);
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PW_EN, val);
if (ret)
return ret;
return 0;
}
static int tps23881_pi_is_enabled(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
bool enabled;
u8 chan;
int ret;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
if (chan < 4)
enabled = ret & BIT(chan);
else
enabled = ret & BIT(chan + 4);
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
if (chan < 4)
enabled &= !!(ret & BIT(chan));
else
enabled &= !!(ret & BIT(chan + 4));
}
/* Return enabled status only if both channel are on this state */
return enabled;
}
static int tps23881_ethtool_get_status(struct pse_controller_dev *pcdev,
unsigned long id,
struct netlink_ext_ack *extack,
struct pse_control_status *status)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
bool enabled, delivering;
u8 chan;
int ret;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
if (chan < 4) {
enabled = ret & BIT(chan);
delivering = ret & BIT(chan + 4);
} else {
enabled = ret & BIT(chan + 4);
delivering = ret & BIT(chan + 8);
}
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
if (chan < 4) {
enabled &= !!(ret & BIT(chan));
delivering &= !!(ret & BIT(chan + 4));
} else {
enabled &= !!(ret & BIT(chan + 4));
delivering &= !!(ret & BIT(chan + 8));
}
}
/* Return delivering status only if both channel are on this state */
if (delivering)
status->c33_pw_status = ETHTOOL_C33_PSE_PW_D_STATUS_DELIVERING;
else
status->c33_pw_status = ETHTOOL_C33_PSE_PW_D_STATUS_DISABLED;
/* Return enabled status only if both channel are on this state */
if (enabled)
status->c33_admin_state = ETHTOOL_C33_PSE_ADMIN_STATE_ENABLED;
else
status->c33_admin_state = ETHTOOL_C33_PSE_ADMIN_STATE_DISABLED;
return 0;
}
/* Parse managers subnode into a array of device node */
static int
tps23881_get_of_channels(struct tps23881_priv *priv,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
struct device_node *channels_node, *node;
int i, ret;
if (!priv->np)
return -EINVAL;
channels_node = of_find_node_by_name(priv->np, "channels");
if (!channels_node)
return -EINVAL;
for_each_child_of_node(channels_node, node) {
u32 chan_id;
if (!of_node_name_eq(node, "channel"))
continue;
ret = of_property_read_u32(node, "reg", &chan_id);
if (ret) {
ret = -EINVAL;
goto out;
}
if (chan_id >= TPS23881_MAX_CHANS || chan_node[chan_id]) {
dev_err(&priv->client->dev,
"wrong number of port (%d)\n", chan_id);
ret = -EINVAL;
goto out;
}
of_node_get(node);
chan_node[chan_id] = node;
}
of_node_put(channels_node);
return 0;
out:
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
of_node_put(chan_node[i]);
chan_node[i] = NULL;
}
of_node_put(node);
of_node_put(channels_node);
return ret;
}
struct tps23881_port_matrix {
u8 pi_id;
u8 lgcl_chan[2];
u8 hw_chan[2];
bool is_4p;
bool exist;
};
static int
tps23881_match_channel(const struct pse_pi_pairset *pairset,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
int i;
/* Look on every channels */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (pairset->np == chan_node[i])
return i;
}
return -ENODEV;
}
static bool
tps23881_is_chan_free(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int chan)
{
int i;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (port_matrix[i].exist &&
(port_matrix[i].hw_chan[0] == chan ||
port_matrix[i].hw_chan[1] == chan))
return false;
}
return true;
}
/* Fill port matrix with the matching channels */
static int
tps23881_match_port_matrix(struct pse_pi *pi, int pi_id,
struct device_node *chan_node[TPS23881_MAX_CHANS],
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
int ret;
if (!pi->pairset[0].np)
return 0;
ret = tps23881_match_channel(&pi->pairset[0], chan_node);
if (ret < 0)
return ret;
if (!tps23881_is_chan_free(port_matrix, ret)) {
pr_err("tps23881: channel %d already used\n", ret);
return -ENODEV;
}
port_matrix[pi_id].hw_chan[0] = ret;
port_matrix[pi_id].exist = true;
if (!pi->pairset[1].np)
return 0;
ret = tps23881_match_channel(&pi->pairset[1], chan_node);
if (ret < 0)
return ret;
if (!tps23881_is_chan_free(port_matrix, ret)) {
pr_err("tps23881: channel %d already used\n", ret);
return -ENODEV;
}
if (port_matrix[pi_id].hw_chan[0] / 4 != ret / 4) {
pr_err("tps23881: 4-pair PSE can only be set within the same 4 ports group");
return -ENODEV;
}
port_matrix[pi_id].hw_chan[1] = ret;
port_matrix[pi_id].is_4p = true;
return 0;
}
static int
tps23881_get_unused_chan(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int port_cnt)
{
bool used;
int i, j;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
used = false;
for (j = 0; j < port_cnt; j++) {
if (port_matrix[j].hw_chan[0] == i) {
used = true;
break;
}
if (port_matrix[j].is_4p &&
port_matrix[j].hw_chan[1] == i) {
used = true;
break;
}
}
if (!used)
return i;
}
return -ENODEV;
}
/* Sort the port matrix to following particular hardware ports matrix
* specification of the tps23881. The device has two 4-ports groups and
* each 4-pair powered device has to be configured to use two consecutive
* logical channel in each 4 ports group (1 and 2 or 3 and 4). Also the
* hardware matrix has to be fully configured even with unused chan to be
* valid.
*/
static int
tps23881_sort_port_matrix(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
struct tps23881_port_matrix tmp_port_matrix[TPS23881_MAX_CHANS] = {0};
int i, ret, port_cnt = 0, cnt_4ch_grp1 = 0, cnt_4ch_grp2 = 4;
/* Configure 4p port matrix */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
int *cnt;
if (!port_matrix[i].exist || !port_matrix[i].is_4p)
continue;
if (port_matrix[i].hw_chan[0] < 4)
cnt = &cnt_4ch_grp1;
else
cnt = &cnt_4ch_grp2;
tmp_port_matrix[port_cnt].exist = true;
tmp_port_matrix[port_cnt].is_4p = true;
tmp_port_matrix[port_cnt].pi_id = i;
tmp_port_matrix[port_cnt].hw_chan[0] = port_matrix[i].hw_chan[0];
tmp_port_matrix[port_cnt].hw_chan[1] = port_matrix[i].hw_chan[1];
/* 4-pair ports have to be configured with consecutive
* logical channels 0 and 1, 2 and 3.
*/
tmp_port_matrix[port_cnt].lgcl_chan[0] = (*cnt)++;
tmp_port_matrix[port_cnt].lgcl_chan[1] = (*cnt)++;
port_cnt++;
}
/* Configure 2p port matrix */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
int *cnt;
if (!port_matrix[i].exist || port_matrix[i].is_4p)
continue;
if (port_matrix[i].hw_chan[0] < 4)
cnt = &cnt_4ch_grp1;
else
cnt = &cnt_4ch_grp2;
tmp_port_matrix[port_cnt].exist = true;
tmp_port_matrix[port_cnt].pi_id = i;
tmp_port_matrix[port_cnt].lgcl_chan[0] = (*cnt)++;
tmp_port_matrix[port_cnt].hw_chan[0] = port_matrix[i].hw_chan[0];
port_cnt++;
}
/* Complete the rest of the first 4 port group matrix even if
* channels are unused
*/
while (cnt_4ch_grp1 < 4) {
ret = tps23881_get_unused_chan(tmp_port_matrix, port_cnt);
if (ret < 0) {
pr_err("tps23881: port matrix issue, no chan available\n");
return ret;
}
if (port_cnt >= TPS23881_MAX_CHANS) {
pr_err("tps23881: wrong number of channels\n");
return -ENODEV;
}
tmp_port_matrix[port_cnt].lgcl_chan[0] = cnt_4ch_grp1;
tmp_port_matrix[port_cnt].hw_chan[0] = ret;
cnt_4ch_grp1++;
port_cnt++;
}
/* Complete the rest of the second 4 port group matrix even if
* channels are unused
*/
while (cnt_4ch_grp2 < 8) {
ret = tps23881_get_unused_chan(tmp_port_matrix, port_cnt);
if (ret < 0) {
pr_err("tps23881: port matrix issue, no chan available\n");
return -ENODEV;
}
if (port_cnt >= TPS23881_MAX_CHANS) {
pr_err("tps23881: wrong number of channels\n");
return -ENODEV;
}
tmp_port_matrix[port_cnt].lgcl_chan[0] = cnt_4ch_grp2;
tmp_port_matrix[port_cnt].hw_chan[0] = ret;
cnt_4ch_grp2++;
port_cnt++;
}
memcpy(port_matrix, tmp_port_matrix, sizeof(tmp_port_matrix));
return port_cnt;
}
/* Write port matrix to the hardware port matrix and the software port
* matrix.
*/
static int
tps23881_write_port_matrix(struct tps23881_priv *priv,
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int port_cnt)
{
struct i2c_client *client = priv->client;
u8 pi_id, lgcl_chan, hw_chan;
u16 val = 0;
int i, ret;
for (i = 0; i < port_cnt; i++) {
pi_id = port_matrix[i].pi_id;
lgcl_chan = port_matrix[i].lgcl_chan[0];
hw_chan = port_matrix[i].hw_chan[0] % 4;
/* Set software port matrix for existing ports */
if (port_matrix[i].exist)
priv->port[pi_id].chan[0] = lgcl_chan;
/* Set hardware port matrix for all ports */
val |= hw_chan << (lgcl_chan * 2);
if (!port_matrix[i].is_4p)
continue;
lgcl_chan = port_matrix[i].lgcl_chan[1];
hw_chan = port_matrix[i].hw_chan[1] % 4;
/* Set software port matrix for existing ports */
if (port_matrix[i].exist) {
priv->port[pi_id].is_4p = true;
priv->port[pi_id].chan[1] = lgcl_chan;
}
/* Set hardware port matrix for all ports */
val |= hw_chan << (lgcl_chan * 2);
}
/* Write hardware ports matrix */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PORT_MAP, val);
if (ret)
return ret;
return 0;
}
static int
tps23881_set_ports_conf(struct tps23881_priv *priv,
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
struct i2c_client *client = priv->client;
int i, ret;
u16 val;
/* Set operating mode */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_OP_MODE,
TPS23881_OP_MODE_SEMIAUTO);
if (ret)
return ret;
/* Disable DC disconnect */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DIS_EN, 0x0);
if (ret)
return ret;
/* Set port power allocation */
val = 0;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!port_matrix[i].exist)
continue;
if (port_matrix[i].is_4p)
val |= 0xf << ((port_matrix[i].lgcl_chan[0] / 2) * 4);
else
val |= 0x3 << ((port_matrix[i].lgcl_chan[0] / 2) * 4);
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PORT_POWER, val);
if (ret)
return ret;
/* Enable detection and classification */
val = 0;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!port_matrix[i].exist)
continue;
val |= BIT(port_matrix[i].lgcl_chan[0]) |
BIT(port_matrix[i].lgcl_chan[0] + 4);
if (port_matrix[i].is_4p)
val |= BIT(port_matrix[i].lgcl_chan[1]) |
BIT(port_matrix[i].lgcl_chan[1] + 4);
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DET_CLA_EN, val);
if (ret)
return ret;
return 0;
}
static int
tps23881_set_ports_matrix(struct tps23881_priv *priv,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS] = {0};
int i, ret;
/* Update with values for every PSE PIs */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
ret = tps23881_match_port_matrix(&priv->pcdev.pi[i], i,
chan_node, port_matrix);
if (ret)
return ret;
}
ret = tps23881_sort_port_matrix(port_matrix);
if (ret < 0)
return ret;
ret = tps23881_write_port_matrix(priv, port_matrix, ret);
if (ret)
return ret;
ret = tps23881_set_ports_conf(priv, port_matrix);
if (ret)
return ret;
return 0;
}
static int tps23881_setup_pi_matrix(struct pse_controller_dev *pcdev)
{
struct device_node *chan_node[TPS23881_MAX_CHANS] = {NULL};
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
int ret, i;
ret = tps23881_get_of_channels(priv, chan_node);
if (ret < 0) {
dev_warn(&priv->client->dev,
"Unable to parse port-matrix, default matrix will be used\n");
return 0;
}
ret = tps23881_set_ports_matrix(priv, chan_node);
for (i = 0; i < TPS23881_MAX_CHANS; i++)
of_node_put(chan_node[i]);
return ret;
}
static const struct pse_controller_ops tps23881_ops = {
.setup_pi_matrix = tps23881_setup_pi_matrix,
.pi_enable = tps23881_pi_enable,
.pi_disable = tps23881_pi_disable,
.pi_is_enabled = tps23881_pi_is_enabled,
.ethtool_get_status = tps23881_ethtool_get_status,
};
static const char fw_parity_name[] = "ti/tps23881/tps23881-parity-14.bin";
static const char fw_sram_name[] = "ti/tps23881/tps23881-sram-14.bin";
struct tps23881_fw_conf {
u8 reg;
u8 val;
};
static const struct tps23881_fw_conf tps23881_fw_parity_conf[] = {
{.reg = 0x60, .val = 0x01},
{.reg = 0x62, .val = 0x00},
{.reg = 0x63, .val = 0x80},
{.reg = 0x60, .val = 0xC4},
{.reg = 0x1D, .val = 0xBC},
{.reg = 0xD7, .val = 0x02},
{.reg = 0x91, .val = 0x00},
{.reg = 0x90, .val = 0x00},
{.reg = 0xD7, .val = 0x00},
{.reg = 0x1D, .val = 0x00},
{ /* sentinel */ }
};
static const struct tps23881_fw_conf tps23881_fw_sram_conf[] = {
{.reg = 0x60, .val = 0xC5},
{.reg = 0x62, .val = 0x00},
{.reg = 0x63, .val = 0x80},
{.reg = 0x60, .val = 0xC0},
{.reg = 0x1D, .val = 0xBC},
{.reg = 0xD7, .val = 0x02},
{.reg = 0x91, .val = 0x00},
{.reg = 0x90, .val = 0x00},
{.reg = 0xD7, .val = 0x00},
{.reg = 0x1D, .val = 0x00},
{ /* sentinel */ }
};
static int tps23881_flash_sram_fw_part(struct i2c_client *client,
const char *fw_name,
const struct tps23881_fw_conf *fw_conf)
{
const struct firmware *fw = NULL;
int i, ret;
ret = request_firmware(&fw, fw_name, &client->dev);
if (ret)
return ret;
dev_dbg(&client->dev, "Flashing %s\n", fw_name);
/* Prepare device for RAM download */
while (fw_conf->reg) {
ret = i2c_smbus_write_byte_data(client, fw_conf->reg,
fw_conf->val);
if (ret)
goto out;
fw_conf++;
}
/* Flash the firmware file */
for (i = 0; i < fw->size; i++) {
ret = i2c_smbus_write_byte_data(client,
TPS23881_REG_SRAM_DATA,
fw->data[i]);
if (ret)
goto out;
}
out:
release_firmware(fw);
return ret;
}
static int tps23881_flash_sram_fw(struct i2c_client *client)
{
int ret;
ret = tps23881_flash_sram_fw_part(client, fw_parity_name,
tps23881_fw_parity_conf);
if (ret)
return ret;
ret = tps23881_flash_sram_fw_part(client, fw_sram_name,
tps23881_fw_sram_conf);
if (ret)
return ret;
ret = i2c_smbus_write_byte_data(client, TPS23881_REG_SRAM_CTRL, 0x18);
if (ret)
return ret;
mdelay(12);
return 0;
}
static int tps23881_i2c_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tps23881_priv *priv;
struct gpio_desc *reset;
int ret;
u8 val;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "i2c check functionality failed\n");
return -ENXIO;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(reset))
return dev_err_probe(&client->dev, PTR_ERR(reset), "Failed to get reset GPIO\n");
if (reset) {
/* TPS23880 datasheet (Rev G) indicates minimum reset pulse is 5us */
usleep_range(5, 10);
gpiod_set_value_cansleep(reset, 0); /* De-assert reset */
/* TPS23880 datasheet indicates the minimum time after power on reset
* should be 20ms, but the document describing how to load SRAM ("How
* to Load TPS2388x SRAM and Parity Code over I2C" (Rev E))
* indicates we should delay that programming by at least 50ms. So
* we'll wait the entire 50ms here to ensure we're safe to go to the
* SRAM loading proceedure.
*/
msleep(50);
}
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_DEVID);
if (ret < 0)
return ret;
if (FIELD_GET(TPS23881_REG_DEVID_MASK, ret) != TPS23881_DEVICE_ID) {
dev_err(dev, "Wrong device ID\n");
return -ENXIO;
}
ret = tps23881_flash_sram_fw(client);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_FWREV);
if (ret < 0)
return ret;
dev_info(&client->dev, "Firmware revision 0x%x\n", ret);
/* Set configuration B, 16 bit access on a single device address */
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_GEN_MASK);
if (ret < 0)
return ret;
val = ret | TPS23881_REG_NBITACC;
ret = i2c_smbus_write_byte_data(client, TPS23881_REG_GEN_MASK, val);
if (ret)
return ret;
priv->client = client;
i2c_set_clientdata(client, priv);
priv->np = dev->of_node;
priv->pcdev.owner = THIS_MODULE;
priv->pcdev.ops = &tps23881_ops;
priv->pcdev.dev = dev;
priv->pcdev.types = ETHTOOL_PSE_C33;
priv->pcdev.nr_lines = TPS23881_MAX_CHANS;
ret = devm_pse_controller_register(dev, &priv->pcdev);
if (ret) {
return dev_err_probe(dev, ret,
"failed to register PSE controller\n");
}
return ret;
}
static const struct i2c_device_id tps23881_id[] = {
{ "tps23881" },
{ }
};
MODULE_DEVICE_TABLE(i2c, tps23881_id);
static const struct of_device_id tps23881_of_match[] = {
{ .compatible = "ti,tps23881", },
{ },
};
MODULE_DEVICE_TABLE(of, tps23881_of_match);
static struct i2c_driver tps23881_driver = {
.probe = tps23881_i2c_probe,
.id_table = tps23881_id,
.driver = {
.name = "tps23881",
.of_match_table = tps23881_of_match,
},
};
module_i2c_driver(tps23881_driver);
MODULE_AUTHOR("Kory Maincent <kory.maincent@bootlin.com>");
MODULE_DESCRIPTION("TI TPS23881 PoE PSE Controller driver");
MODULE_LICENSE("GPL");