| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * PCI <-> OF mapping helpers |
| * |
| * Copyright 2011 IBM Corp. |
| */ |
| #define pr_fmt(fmt) "PCI: OF: " fmt |
| |
| #include <linux/cleanup.h> |
| #include <linux/irqdomain.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/of_pci.h> |
| #include <linux/platform_device.h> |
| #include "pci.h" |
| |
| #ifdef CONFIG_PCI |
| /** |
| * pci_set_of_node - Find and set device's DT device_node |
| * @dev: the PCI device structure to fill |
| * |
| * Returns 0 on success with of_node set or when no device is described in the |
| * DT. Returns -ENODEV if the device is present, but disabled in the DT. |
| */ |
| int pci_set_of_node(struct pci_dev *dev) |
| { |
| if (!dev->bus->dev.of_node) |
| return 0; |
| |
| struct device_node *node __free(device_node) = |
| of_pci_find_child_device(dev->bus->dev.of_node, dev->devfn); |
| if (!node) |
| return 0; |
| |
| struct device *pdev __free(put_device) = |
| bus_find_device_by_of_node(&platform_bus_type, node); |
| if (pdev) |
| dev->bus->dev.of_node_reused = true; |
| |
| device_set_node(&dev->dev, of_fwnode_handle(no_free_ptr(node))); |
| return 0; |
| } |
| |
| void pci_release_of_node(struct pci_dev *dev) |
| { |
| of_node_put(dev->dev.of_node); |
| device_set_node(&dev->dev, NULL); |
| } |
| |
| void pci_set_bus_of_node(struct pci_bus *bus) |
| { |
| struct device_node *node; |
| |
| if (bus->self == NULL) { |
| node = pcibios_get_phb_of_node(bus); |
| } else { |
| node = of_node_get(bus->self->dev.of_node); |
| if (node && of_property_read_bool(node, "external-facing")) |
| bus->self->external_facing = true; |
| } |
| |
| device_set_node(&bus->dev, of_fwnode_handle(node)); |
| } |
| |
| void pci_release_bus_of_node(struct pci_bus *bus) |
| { |
| of_node_put(bus->dev.of_node); |
| device_set_node(&bus->dev, NULL); |
| } |
| |
| struct device_node * __weak pcibios_get_phb_of_node(struct pci_bus *bus) |
| { |
| /* This should only be called for PHBs */ |
| if (WARN_ON(bus->self || bus->parent)) |
| return NULL; |
| |
| /* |
| * Look for a node pointer in either the intermediary device we |
| * create above the root bus or its own parent. Normally only |
| * the later is populated. |
| */ |
| if (bus->bridge->of_node) |
| return of_node_get(bus->bridge->of_node); |
| if (bus->bridge->parent && bus->bridge->parent->of_node) |
| return of_node_get(bus->bridge->parent->of_node); |
| return NULL; |
| } |
| |
| struct irq_domain *pci_host_bridge_of_msi_domain(struct pci_bus *bus) |
| { |
| #ifdef CONFIG_IRQ_DOMAIN |
| struct irq_domain *d; |
| |
| if (!bus->dev.of_node) |
| return NULL; |
| |
| /* Start looking for a phandle to an MSI controller. */ |
| d = of_msi_get_domain(&bus->dev, bus->dev.of_node, DOMAIN_BUS_PCI_MSI); |
| if (d) |
| return d; |
| |
| /* |
| * If we don't have an msi-parent property, look for a domain |
| * directly attached to the host bridge. |
| */ |
| d = irq_find_matching_host(bus->dev.of_node, DOMAIN_BUS_PCI_MSI); |
| if (d) |
| return d; |
| |
| return irq_find_host(bus->dev.of_node); |
| #else |
| return NULL; |
| #endif |
| } |
| |
| bool pci_host_of_has_msi_map(struct device *dev) |
| { |
| if (dev && dev->of_node) |
| return of_get_property(dev->of_node, "msi-map", NULL); |
| return false; |
| } |
| |
| static inline int __of_pci_pci_compare(struct device_node *node, |
| unsigned int data) |
| { |
| int devfn; |
| |
| devfn = of_pci_get_devfn(node); |
| if (devfn < 0) |
| return 0; |
| |
| return devfn == data; |
| } |
| |
| struct device_node *of_pci_find_child_device(struct device_node *parent, |
| unsigned int devfn) |
| { |
| struct device_node *node, *node2; |
| |
| for_each_child_of_node(parent, node) { |
| if (__of_pci_pci_compare(node, devfn)) |
| return node; |
| /* |
| * Some OFs create a parent node "multifunc-device" as |
| * a fake root for all functions of a multi-function |
| * device we go down them as well. |
| */ |
| if (of_node_name_eq(node, "multifunc-device")) { |
| for_each_child_of_node(node, node2) { |
| if (__of_pci_pci_compare(node2, devfn)) { |
| of_node_put(node); |
| return node2; |
| } |
| } |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_find_child_device); |
| |
| /** |
| * of_pci_get_devfn() - Get device and function numbers for a device node |
| * @np: device node |
| * |
| * Parses a standard 5-cell PCI resource and returns an 8-bit value that can |
| * be passed to the PCI_SLOT() and PCI_FUNC() macros to extract the device |
| * and function numbers respectively. On error a negative error code is |
| * returned. |
| */ |
| int of_pci_get_devfn(struct device_node *np) |
| { |
| u32 reg[5]; |
| int error; |
| |
| error = of_property_read_u32_array(np, "reg", reg, ARRAY_SIZE(reg)); |
| if (error) |
| return error; |
| |
| return (reg[0] >> 8) & 0xff; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_get_devfn); |
| |
| /** |
| * of_pci_parse_bus_range() - parse the bus-range property of a PCI device |
| * @node: device node |
| * @res: address to a struct resource to return the bus-range |
| * |
| * Returns 0 on success or a negative error-code on failure. |
| */ |
| int of_pci_parse_bus_range(struct device_node *node, struct resource *res) |
| { |
| u32 bus_range[2]; |
| int error; |
| |
| error = of_property_read_u32_array(node, "bus-range", bus_range, |
| ARRAY_SIZE(bus_range)); |
| if (error) |
| return error; |
| |
| res->name = node->name; |
| res->start = bus_range[0]; |
| res->end = bus_range[1]; |
| res->flags = IORESOURCE_BUS; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_parse_bus_range); |
| |
| /** |
| * of_get_pci_domain_nr - Find the host bridge domain number |
| * of the given device node. |
| * @node: Device tree node with the domain information. |
| * |
| * This function will try to obtain the host bridge domain number by finding |
| * a property called "linux,pci-domain" of the given device node. |
| * |
| * Return: |
| * * > 0 - On success, an associated domain number. |
| * * -EINVAL - The property "linux,pci-domain" does not exist. |
| * * -ENODATA - The linux,pci-domain" property does not have value. |
| * * -EOVERFLOW - Invalid "linux,pci-domain" property value. |
| * |
| * Returns the associated domain number from DT in the range [0-0xffff], or |
| * a negative value if the required property is not found. |
| */ |
| int of_get_pci_domain_nr(struct device_node *node) |
| { |
| u32 domain; |
| int error; |
| |
| error = of_property_read_u32(node, "linux,pci-domain", &domain); |
| if (error) |
| return error; |
| |
| return (u16)domain; |
| } |
| EXPORT_SYMBOL_GPL(of_get_pci_domain_nr); |
| |
| /** |
| * of_pci_preserve_config - Return true if the boot configuration needs to |
| * be preserved |
| * @node: Device tree node. |
| * |
| * Look for "linux,pci-probe-only" property for a given PCI controller's |
| * node and return true if found. Also look in the chosen node if the |
| * property is not found in the given controller's node. Having this |
| * property ensures that the kernel doesn't reconfigure the BARs and bridge |
| * windows that are already done by the platform firmware. |
| * |
| * Return: true if the property exists; false otherwise. |
| */ |
| bool of_pci_preserve_config(struct device_node *node) |
| { |
| u32 val = 0; |
| int ret; |
| |
| if (!node) { |
| pr_warn("device node is NULL, trying with of_chosen\n"); |
| node = of_chosen; |
| } |
| |
| retry: |
| ret = of_property_read_u32(node, "linux,pci-probe-only", &val); |
| if (ret) { |
| if (ret == -ENODATA || ret == -EOVERFLOW) { |
| pr_warn("Incorrect value for linux,pci-probe-only in %pOF, ignoring\n", |
| node); |
| return false; |
| } |
| if (ret == -EINVAL) { |
| if (node == of_chosen) |
| return false; |
| |
| node = of_chosen; |
| goto retry; |
| } |
| } |
| |
| if (val) |
| return true; |
| else |
| return false; |
| } |
| |
| /** |
| * of_pci_check_probe_only - Setup probe only mode if linux,pci-probe-only |
| * is present and valid |
| */ |
| void of_pci_check_probe_only(void) |
| { |
| if (of_pci_preserve_config(of_chosen)) |
| pci_add_flags(PCI_PROBE_ONLY); |
| else |
| pci_clear_flags(PCI_PROBE_ONLY); |
| } |
| EXPORT_SYMBOL_GPL(of_pci_check_probe_only); |
| |
| /** |
| * devm_of_pci_get_host_bridge_resources() - Resource-managed parsing of PCI |
| * host bridge resources from DT |
| * @dev: host bridge device |
| * @busno: bus number associated with the bridge root bus |
| * @bus_max: maximum number of buses for this bridge |
| * @resources: list where the range of resources will be added after DT parsing |
| * @ib_resources: list where the range of inbound resources (with addresses |
| * from 'dma-ranges') will be added after DT parsing |
| * @io_base: pointer to a variable that will contain on return the physical |
| * address for the start of the I/O range. Can be NULL if the caller doesn't |
| * expect I/O ranges to be present in the device tree. |
| * |
| * This function will parse the "ranges" property of a PCI host bridge device |
| * node and setup the resource mapping based on its content. It is expected |
| * that the property conforms with the Power ePAPR document. |
| * |
| * It returns zero if the range parsing has been successful or a standard error |
| * value if it failed. |
| */ |
| static int devm_of_pci_get_host_bridge_resources(struct device *dev, |
| unsigned char busno, unsigned char bus_max, |
| struct list_head *resources, |
| struct list_head *ib_resources, |
| resource_size_t *io_base) |
| { |
| struct device_node *dev_node = dev->of_node; |
| struct resource *res, tmp_res; |
| struct resource *bus_range; |
| struct of_pci_range range; |
| struct of_pci_range_parser parser; |
| const char *range_type; |
| int err; |
| |
| if (io_base) |
| *io_base = (resource_size_t)OF_BAD_ADDR; |
| |
| bus_range = devm_kzalloc(dev, sizeof(*bus_range), GFP_KERNEL); |
| if (!bus_range) |
| return -ENOMEM; |
| |
| dev_info(dev, "host bridge %pOF ranges:\n", dev_node); |
| |
| err = of_pci_parse_bus_range(dev_node, bus_range); |
| if (err) { |
| bus_range->start = busno; |
| bus_range->end = bus_max; |
| bus_range->flags = IORESOURCE_BUS; |
| dev_info(dev, " No bus range found for %pOF, using %pR\n", |
| dev_node, bus_range); |
| } else { |
| if (bus_range->end > bus_range->start + bus_max) |
| bus_range->end = bus_range->start + bus_max; |
| } |
| pci_add_resource(resources, bus_range); |
| |
| /* Check for ranges property */ |
| err = of_pci_range_parser_init(&parser, dev_node); |
| if (err) |
| return 0; |
| |
| dev_dbg(dev, "Parsing ranges property...\n"); |
| for_each_of_pci_range(&parser, &range) { |
| /* Read next ranges element */ |
| if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_IO) |
| range_type = "IO"; |
| else if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_MEM) |
| range_type = "MEM"; |
| else |
| range_type = "err"; |
| dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", |
| range_type, range.cpu_addr, |
| range.cpu_addr + range.size - 1, range.pci_addr); |
| |
| /* |
| * If we failed translation or got a zero-sized region |
| * then skip this range |
| */ |
| if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) |
| continue; |
| |
| err = of_pci_range_to_resource(&range, dev_node, &tmp_res); |
| if (err) |
| continue; |
| |
| res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); |
| if (!res) { |
| err = -ENOMEM; |
| goto failed; |
| } |
| |
| if (resource_type(res) == IORESOURCE_IO) { |
| if (!io_base) { |
| dev_err(dev, "I/O range found for %pOF. Please provide an io_base pointer to save CPU base address\n", |
| dev_node); |
| err = -EINVAL; |
| goto failed; |
| } |
| if (*io_base != (resource_size_t)OF_BAD_ADDR) |
| dev_warn(dev, "More than one I/O resource converted for %pOF. CPU base address for old range lost!\n", |
| dev_node); |
| *io_base = range.cpu_addr; |
| } else if (resource_type(res) == IORESOURCE_MEM) { |
| res->flags &= ~IORESOURCE_MEM_64; |
| } |
| |
| pci_add_resource_offset(resources, res, res->start - range.pci_addr); |
| } |
| |
| /* Check for dma-ranges property */ |
| if (!ib_resources) |
| return 0; |
| err = of_pci_dma_range_parser_init(&parser, dev_node); |
| if (err) |
| return 0; |
| |
| dev_dbg(dev, "Parsing dma-ranges property...\n"); |
| for_each_of_pci_range(&parser, &range) { |
| /* |
| * If we failed translation or got a zero-sized region |
| * then skip this range |
| */ |
| if (((range.flags & IORESOURCE_TYPE_BITS) != IORESOURCE_MEM) || |
| range.cpu_addr == OF_BAD_ADDR || range.size == 0) |
| continue; |
| |
| dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", |
| "IB MEM", range.cpu_addr, |
| range.cpu_addr + range.size - 1, range.pci_addr); |
| |
| |
| err = of_pci_range_to_resource(&range, dev_node, &tmp_res); |
| if (err) |
| continue; |
| |
| res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); |
| if (!res) { |
| err = -ENOMEM; |
| goto failed; |
| } |
| |
| pci_add_resource_offset(ib_resources, res, |
| res->start - range.pci_addr); |
| } |
| |
| return 0; |
| |
| failed: |
| pci_free_resource_list(resources); |
| return err; |
| } |
| |
| #if IS_ENABLED(CONFIG_OF_IRQ) |
| /** |
| * of_irq_parse_pci - Resolve the interrupt for a PCI device |
| * @pdev: the device whose interrupt is to be resolved |
| * @out_irq: structure of_phandle_args filled by this function |
| * |
| * This function resolves the PCI interrupt for a given PCI device. If a |
| * device-node exists for a given pci_dev, it will use normal OF tree |
| * walking. If not, it will implement standard swizzling and walk up the |
| * PCI tree until an device-node is found, at which point it will finish |
| * resolving using the OF tree walking. |
| */ |
| static int of_irq_parse_pci(const struct pci_dev *pdev, struct of_phandle_args *out_irq) |
| { |
| struct device_node *dn, *ppnode = NULL; |
| struct pci_dev *ppdev; |
| __be32 laddr[3]; |
| u8 pin; |
| int rc; |
| |
| /* |
| * Check if we have a device node, if yes, fallback to standard |
| * device tree parsing |
| */ |
| dn = pci_device_to_OF_node(pdev); |
| if (dn) { |
| rc = of_irq_parse_one(dn, 0, out_irq); |
| if (!rc) |
| return rc; |
| } |
| |
| /* |
| * Ok, we don't, time to have fun. Let's start by building up an |
| * interrupt spec. we assume #interrupt-cells is 1, which is standard |
| * for PCI. If you do different, then don't use that routine. |
| */ |
| rc = pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pin); |
| if (rc != 0) |
| goto err; |
| /* No pin, exit with no error message. */ |
| if (pin == 0) |
| return -ENODEV; |
| |
| /* Local interrupt-map in the device node? Use it! */ |
| if (of_property_present(dn, "interrupt-map")) { |
| pin = pci_swizzle_interrupt_pin(pdev, pin); |
| ppnode = dn; |
| } |
| |
| /* Now we walk up the PCI tree */ |
| while (!ppnode) { |
| /* Get the pci_dev of our parent */ |
| ppdev = pdev->bus->self; |
| |
| /* Ouch, it's a host bridge... */ |
| if (ppdev == NULL) { |
| ppnode = pci_bus_to_OF_node(pdev->bus); |
| |
| /* No node for host bridge ? give up */ |
| if (ppnode == NULL) { |
| rc = -EINVAL; |
| goto err; |
| } |
| } else { |
| /* We found a P2P bridge, check if it has a node */ |
| ppnode = pci_device_to_OF_node(ppdev); |
| } |
| |
| /* |
| * Ok, we have found a parent with a device-node, hand over to |
| * the OF parsing code. |
| * We build a unit address from the linux device to be used for |
| * resolution. Note that we use the linux bus number which may |
| * not match your firmware bus numbering. |
| * Fortunately, in most cases, interrupt-map-mask doesn't |
| * include the bus number as part of the matching. |
| * You should still be careful about that though if you intend |
| * to rely on this function (you ship a firmware that doesn't |
| * create device nodes for all PCI devices). |
| */ |
| if (ppnode) |
| break; |
| |
| /* |
| * We can only get here if we hit a P2P bridge with no node; |
| * let's do standard swizzling and try again |
| */ |
| pin = pci_swizzle_interrupt_pin(pdev, pin); |
| pdev = ppdev; |
| } |
| |
| out_irq->np = ppnode; |
| out_irq->args_count = 1; |
| out_irq->args[0] = pin; |
| laddr[0] = cpu_to_be32((pdev->bus->number << 16) | (pdev->devfn << 8)); |
| laddr[1] = laddr[2] = cpu_to_be32(0); |
| rc = of_irq_parse_raw(laddr, out_irq); |
| if (rc) |
| goto err; |
| return 0; |
| err: |
| if (rc == -ENOENT) { |
| dev_warn(&pdev->dev, |
| "%s: no interrupt-map found, INTx interrupts not available\n", |
| __func__); |
| pr_warn_once("%s: possibly some PCI slots don't have level triggered interrupts capability\n", |
| __func__); |
| } else { |
| dev_err(&pdev->dev, "%s: failed with rc=%d\n", __func__, rc); |
| } |
| return rc; |
| } |
| |
| /** |
| * of_irq_parse_and_map_pci() - Decode a PCI IRQ from the device tree and map to a VIRQ |
| * @dev: The PCI device needing an IRQ |
| * @slot: PCI slot number; passed when used as map_irq callback. Unused |
| * @pin: PCI IRQ pin number; passed when used as map_irq callback. Unused |
| * |
| * @slot and @pin are unused, but included in the function so that this |
| * function can be used directly as the map_irq callback to |
| * pci_assign_irq() and struct pci_host_bridge.map_irq pointer |
| */ |
| int of_irq_parse_and_map_pci(const struct pci_dev *dev, u8 slot, u8 pin) |
| { |
| struct of_phandle_args oirq; |
| int ret; |
| |
| ret = of_irq_parse_pci(dev, &oirq); |
| if (ret) |
| return 0; /* Proper return code 0 == NO_IRQ */ |
| |
| return irq_create_of_mapping(&oirq); |
| } |
| EXPORT_SYMBOL_GPL(of_irq_parse_and_map_pci); |
| #endif /* CONFIG_OF_IRQ */ |
| |
| static int pci_parse_request_of_pci_ranges(struct device *dev, |
| struct pci_host_bridge *bridge) |
| { |
| int err, res_valid = 0; |
| resource_size_t iobase; |
| struct resource_entry *win, *tmp; |
| |
| INIT_LIST_HEAD(&bridge->windows); |
| INIT_LIST_HEAD(&bridge->dma_ranges); |
| |
| err = devm_of_pci_get_host_bridge_resources(dev, 0, 0xff, &bridge->windows, |
| &bridge->dma_ranges, &iobase); |
| if (err) |
| return err; |
| |
| err = devm_request_pci_bus_resources(dev, &bridge->windows); |
| if (err) |
| return err; |
| |
| resource_list_for_each_entry_safe(win, tmp, &bridge->windows) { |
| struct resource *res = win->res; |
| |
| switch (resource_type(res)) { |
| case IORESOURCE_IO: |
| err = devm_pci_remap_iospace(dev, res, iobase); |
| if (err) { |
| dev_warn(dev, "error %d: failed to map resource %pR\n", |
| err, res); |
| resource_list_destroy_entry(win); |
| } |
| break; |
| case IORESOURCE_MEM: |
| res_valid |= !(res->flags & IORESOURCE_PREFETCH); |
| |
| if (!(res->flags & IORESOURCE_PREFETCH)) |
| if (upper_32_bits(resource_size(res))) |
| dev_warn(dev, "Memory resource size exceeds max for 32 bits\n"); |
| |
| break; |
| } |
| } |
| |
| if (!res_valid) |
| dev_warn(dev, "non-prefetchable memory resource required\n"); |
| |
| return 0; |
| } |
| |
| int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) |
| { |
| if (!dev->of_node) |
| return 0; |
| |
| bridge->swizzle_irq = pci_common_swizzle; |
| bridge->map_irq = of_irq_parse_and_map_pci; |
| |
| return pci_parse_request_of_pci_ranges(dev, bridge); |
| } |
| |
| #ifdef CONFIG_PCI_DYNAMIC_OF_NODES |
| |
| void of_pci_remove_node(struct pci_dev *pdev) |
| { |
| struct device_node *np; |
| |
| np = pci_device_to_OF_node(pdev); |
| if (!np || !of_node_check_flag(np, OF_DYNAMIC)) |
| return; |
| pdev->dev.of_node = NULL; |
| |
| of_changeset_revert(np->data); |
| of_changeset_destroy(np->data); |
| of_node_put(np); |
| } |
| |
| void of_pci_make_dev_node(struct pci_dev *pdev) |
| { |
| struct device_node *ppnode, *np = NULL; |
| const char *pci_type; |
| struct of_changeset *cset; |
| const char *name; |
| int ret; |
| |
| /* |
| * If there is already a device tree node linked to this device, |
| * return immediately. |
| */ |
| if (pci_device_to_OF_node(pdev)) |
| return; |
| |
| /* Check if there is device tree node for parent device */ |
| if (!pdev->bus->self) |
| ppnode = pdev->bus->dev.of_node; |
| else |
| ppnode = pdev->bus->self->dev.of_node; |
| if (!ppnode) |
| return; |
| |
| if (pci_is_bridge(pdev)) |
| pci_type = "pci"; |
| else |
| pci_type = "dev"; |
| |
| name = kasprintf(GFP_KERNEL, "%s@%x,%x", pci_type, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| if (!name) |
| return; |
| |
| cset = kmalloc(sizeof(*cset), GFP_KERNEL); |
| if (!cset) |
| goto out_free_name; |
| of_changeset_init(cset); |
| |
| np = of_changeset_create_node(cset, ppnode, name); |
| if (!np) |
| goto out_destroy_cset; |
| |
| ret = of_pci_add_properties(pdev, cset, np); |
| if (ret) |
| goto out_free_node; |
| |
| ret = of_changeset_apply(cset); |
| if (ret) |
| goto out_free_node; |
| |
| np->data = cset; |
| pdev->dev.of_node = np; |
| kfree(name); |
| |
| return; |
| |
| out_free_node: |
| of_node_put(np); |
| out_destroy_cset: |
| of_changeset_destroy(cset); |
| kfree(cset); |
| out_free_name: |
| kfree(name); |
| } |
| #endif |
| |
| #endif /* CONFIG_PCI */ |
| |
| /** |
| * of_pci_get_max_link_speed - Find the maximum link speed of the given device node. |
| * @node: Device tree node with the maximum link speed information. |
| * |
| * This function will try to find the limitation of link speed by finding |
| * a property called "max-link-speed" of the given device node. |
| * |
| * Return: |
| * * > 0 - On success, a maximum link speed. |
| * * -EINVAL - Invalid "max-link-speed" property value, or failure to access |
| * the property of the device tree node. |
| * |
| * Returns the associated max link speed from DT, or a negative value if the |
| * required property is not found or is invalid. |
| */ |
| int of_pci_get_max_link_speed(struct device_node *node) |
| { |
| u32 max_link_speed; |
| |
| if (of_property_read_u32(node, "max-link-speed", &max_link_speed) || |
| max_link_speed == 0 || max_link_speed > 4) |
| return -EINVAL; |
| |
| return max_link_speed; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_get_max_link_speed); |
| |
| /** |
| * of_pci_get_slot_power_limit - Parses the "slot-power-limit-milliwatt" |
| * property. |
| * |
| * @node: device tree node with the slot power limit information |
| * @slot_power_limit_value: pointer where the value should be stored in PCIe |
| * Slot Capabilities Register format |
| * @slot_power_limit_scale: pointer where the scale should be stored in PCIe |
| * Slot Capabilities Register format |
| * |
| * Returns the slot power limit in milliwatts and if @slot_power_limit_value |
| * and @slot_power_limit_scale pointers are non-NULL, fills in the value and |
| * scale in format used by PCIe Slot Capabilities Register. |
| * |
| * If the property is not found or is invalid, returns 0. |
| */ |
| u32 of_pci_get_slot_power_limit(struct device_node *node, |
| u8 *slot_power_limit_value, |
| u8 *slot_power_limit_scale) |
| { |
| u32 slot_power_limit_mw; |
| u8 value, scale; |
| |
| if (of_property_read_u32(node, "slot-power-limit-milliwatt", |
| &slot_power_limit_mw)) |
| slot_power_limit_mw = 0; |
| |
| /* Calculate Slot Power Limit Value and Slot Power Limit Scale */ |
| if (slot_power_limit_mw == 0) { |
| value = 0x00; |
| scale = 0; |
| } else if (slot_power_limit_mw <= 255) { |
| value = slot_power_limit_mw; |
| scale = 3; |
| } else if (slot_power_limit_mw <= 255*10) { |
| value = slot_power_limit_mw / 10; |
| scale = 2; |
| slot_power_limit_mw = slot_power_limit_mw / 10 * 10; |
| } else if (slot_power_limit_mw <= 255*100) { |
| value = slot_power_limit_mw / 100; |
| scale = 1; |
| slot_power_limit_mw = slot_power_limit_mw / 100 * 100; |
| } else if (slot_power_limit_mw <= 239*1000) { |
| value = slot_power_limit_mw / 1000; |
| scale = 0; |
| slot_power_limit_mw = slot_power_limit_mw / 1000 * 1000; |
| } else if (slot_power_limit_mw < 250*1000) { |
| value = 0xEF; |
| scale = 0; |
| slot_power_limit_mw = 239*1000; |
| } else if (slot_power_limit_mw <= 600*1000) { |
| value = 0xF0 + (slot_power_limit_mw / 1000 - 250) / 25; |
| scale = 0; |
| slot_power_limit_mw = slot_power_limit_mw / (1000*25) * (1000*25); |
| } else { |
| value = 0xFE; |
| scale = 0; |
| slot_power_limit_mw = 600*1000; |
| } |
| |
| if (slot_power_limit_value) |
| *slot_power_limit_value = value; |
| |
| if (slot_power_limit_scale) |
| *slot_power_limit_scale = scale; |
| |
| return slot_power_limit_mw; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_get_slot_power_limit); |