| /* |
| * Memory arbiter functions. Allocates bandwidth through the |
| * arbiter and sets up arbiter breakpoints. |
| * |
| * The algorithm first assigns slots to the clients that has specified |
| * bandwidth (e.g. ethernet) and then the remaining slots are divided |
| * on all the active clients. |
| * |
| * Copyright (c) 2004-2007 Axis Communications AB. |
| */ |
| |
| #include <hwregs/reg_map.h> |
| #include <hwregs/reg_rdwr.h> |
| #include <hwregs/marb_defs.h> |
| #include <arbiter.h> |
| #include <hwregs/intr_vect.h> |
| #include <linux/interrupt.h> |
| #include <linux/signal.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| #include <asm/io.h> |
| #include <asm/irq_regs.h> |
| |
| struct crisv32_watch_entry { |
| unsigned long instance; |
| watch_callback *cb; |
| unsigned long start; |
| unsigned long end; |
| int used; |
| }; |
| |
| #define NUMBER_OF_BP 4 |
| #define NBR_OF_CLIENTS 14 |
| #define NBR_OF_SLOTS 64 |
| #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */ |
| #define INTMEM_BANDWIDTH 400000000 |
| #define NBR_OF_REGIONS 2 |
| |
| static struct crisv32_watch_entry watches[NUMBER_OF_BP] = { |
| {regi_marb_bp0}, |
| {regi_marb_bp1}, |
| {regi_marb_bp2}, |
| {regi_marb_bp3} |
| }; |
| |
| static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| static int max_bandwidth[NBR_OF_REGIONS] = |
| { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH }; |
| |
| DEFINE_SPINLOCK(arbiter_lock); |
| |
| static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id); |
| |
| /* |
| * "I'm the arbiter, I know the score. |
| * From square one I'll be watching all 64." |
| * (memory arbiter slots, that is) |
| * |
| * Or in other words: |
| * Program the memory arbiter slots for "region" according to what's |
| * in requested_slots[] and active_clients[], while minimizing |
| * latency. A caller may pass a non-zero positive amount for |
| * "unused_slots", which must then be the unallocated, remaining |
| * number of slots, free to hand out to any client. |
| */ |
| |
| static void crisv32_arbiter_config(int region, int unused_slots) |
| { |
| int slot; |
| int client; |
| int interval = 0; |
| |
| /* |
| * This vector corresponds to the hardware arbiter slots (see |
| * the hardware documentation for semantics). We initialize |
| * each slot with a suitable sentinel value outside the valid |
| * range {0 .. NBR_OF_CLIENTS - 1} and replace them with |
| * client indexes. Then it's fed to the hardware. |
| */ |
| s8 val[NBR_OF_SLOTS]; |
| |
| for (slot = 0; slot < NBR_OF_SLOTS; slot++) |
| val[slot] = -1; |
| |
| for (client = 0; client < NBR_OF_CLIENTS; client++) { |
| int pos; |
| /* Allocate the requested non-zero number of slots, but |
| * also give clients with zero-requests one slot each |
| * while stocks last. We do the latter here, in client |
| * order. This makes sure zero-request clients are the |
| * first to get to any spare slots, else those slots |
| * could, when bandwidth is allocated close to the limit, |
| * all be allocated to low-index non-zero-request clients |
| * in the default-fill loop below. Another positive but |
| * secondary effect is a somewhat better spread of the |
| * zero-bandwidth clients in the vector, avoiding some of |
| * the latency that could otherwise be caused by the |
| * partitioning of non-zero-bandwidth clients at low |
| * indexes and zero-bandwidth clients at high |
| * indexes. (Note that this spreading can only affect the |
| * unallocated bandwidth.) All the above only matters for |
| * memory-intensive situations, of course. |
| */ |
| if (!requested_slots[region][client]) { |
| /* |
| * Skip inactive clients. Also skip zero-slot |
| * allocations in this pass when there are no known |
| * free slots. |
| */ |
| if (!active_clients[region][client] |
| || unused_slots <= 0) |
| continue; |
| |
| unused_slots--; |
| |
| /* Only allocate one slot for this client. */ |
| interval = NBR_OF_SLOTS; |
| } else |
| interval = |
| NBR_OF_SLOTS / requested_slots[region][client]; |
| |
| pos = 0; |
| while (pos < NBR_OF_SLOTS) { |
| if (val[pos] >= 0) |
| pos++; |
| else { |
| val[pos] = client; |
| pos += interval; |
| } |
| } |
| } |
| |
| client = 0; |
| for (slot = 0; slot < NBR_OF_SLOTS; slot++) { |
| /* |
| * Allocate remaining slots in round-robin |
| * client-number order for active clients. For this |
| * pass, we ignore requested bandwidth and previous |
| * allocations. |
| */ |
| if (val[slot] < 0) { |
| int first = client; |
| while (!active_clients[region][client]) { |
| client = (client + 1) % NBR_OF_CLIENTS; |
| if (client == first) |
| break; |
| } |
| val[slot] = client; |
| client = (client + 1) % NBR_OF_CLIENTS; |
| } |
| if (region == EXT_REGION) |
| REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot, |
| val[slot]); |
| else if (region == INT_REGION) |
| REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot, |
| val[slot]); |
| } |
| } |
| |
| extern char _stext, _etext; |
| |
| static void crisv32_arbiter_init(void) |
| { |
| static int initialized; |
| |
| if (initialized) |
| return; |
| |
| initialized = 1; |
| |
| /* |
| * CPU caches are always set to active, but with zero |
| * bandwidth allocated. It should be ok to allocate zero |
| * bandwidth for the caches, because DMA for other channels |
| * will supposedly finish, once their programmed amount is |
| * done, and then the caches will get access according to the |
| * "fixed scheme" for unclaimed slots. Though, if for some |
| * use-case somewhere, there's a maximum CPU latency for |
| * e.g. some interrupt, we have to start allocating specific |
| * bandwidth for the CPU caches too. |
| */ |
| active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1; |
| crisv32_arbiter_config(EXT_REGION, 0); |
| crisv32_arbiter_config(INT_REGION, 0); |
| |
| if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED, |
| "arbiter", NULL)) |
| printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); |
| |
| #ifndef CONFIG_ETRAX_KGDB |
| /* Global watch for writes to kernel text segment. */ |
| crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext, |
| arbiter_all_clients, arbiter_all_write, NULL); |
| #endif |
| } |
| |
| /* Main entry for bandwidth allocation. */ |
| |
| int crisv32_arbiter_allocate_bandwidth(int client, int region, |
| unsigned long bandwidth) |
| { |
| int i; |
| int total_assigned = 0; |
| int total_clients = 0; |
| int req; |
| |
| crisv32_arbiter_init(); |
| |
| for (i = 0; i < NBR_OF_CLIENTS; i++) { |
| total_assigned += requested_slots[region][i]; |
| total_clients += active_clients[region][i]; |
| } |
| |
| /* Avoid division by 0 for 0-bandwidth requests. */ |
| req = bandwidth == 0 |
| ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); |
| |
| /* |
| * We make sure that there are enough slots only for non-zero |
| * requests. Requesting 0 bandwidth *may* allocate slots, |
| * though if all bandwidth is allocated, such a client won't |
| * get any and will have to rely on getting memory access |
| * according to the fixed scheme that's the default when one |
| * of the slot-allocated clients doesn't claim their slot. |
| */ |
| if (total_assigned + req > NBR_OF_SLOTS) |
| return -ENOMEM; |
| |
| active_clients[region][client] = 1; |
| requested_slots[region][client] = req; |
| crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned); |
| |
| return 0; |
| } |
| |
| /* |
| * Main entry for bandwidth deallocation. |
| * |
| * Strictly speaking, for a somewhat constant set of clients where |
| * each client gets a constant bandwidth and is just enabled or |
| * disabled (somewhat dynamically), no action is necessary here to |
| * avoid starvation for non-zero-allocation clients, as the allocated |
| * slots will just be unused. However, handing out those unused slots |
| * to active clients avoids needless latency if the "fixed scheme" |
| * would give unclaimed slots to an eager low-index client. |
| */ |
| |
| void crisv32_arbiter_deallocate_bandwidth(int client, int region) |
| { |
| int i; |
| int total_assigned = 0; |
| |
| requested_slots[region][client] = 0; |
| active_clients[region][client] = 0; |
| |
| for (i = 0; i < NBR_OF_CLIENTS; i++) |
| total_assigned += requested_slots[region][i]; |
| |
| crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned); |
| } |
| |
| int crisv32_arbiter_watch(unsigned long start, unsigned long size, |
| unsigned long clients, unsigned long accesses, |
| watch_callback *cb) |
| { |
| int i; |
| |
| crisv32_arbiter_init(); |
| |
| if (start > 0x80000000) { |
| printk(KERN_ERR "Arbiter: %lX doesn't look like a " |
| "physical address", start); |
| return -EFAULT; |
| } |
| |
| spin_lock(&arbiter_lock); |
| |
| for (i = 0; i < NUMBER_OF_BP; i++) { |
| if (!watches[i].used) { |
| reg_marb_rw_intr_mask intr_mask = |
| REG_RD(marb, regi_marb, rw_intr_mask); |
| |
| watches[i].used = 1; |
| watches[i].start = start; |
| watches[i].end = start + size; |
| watches[i].cb = cb; |
| |
| REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr, |
| watches[i].start); |
| REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr, |
| watches[i].end); |
| REG_WR_INT(marb_bp, watches[i].instance, rw_op, |
| accesses); |
| REG_WR_INT(marb_bp, watches[i].instance, rw_clients, |
| clients); |
| |
| if (i == 0) |
| intr_mask.bp0 = regk_marb_yes; |
| else if (i == 1) |
| intr_mask.bp1 = regk_marb_yes; |
| else if (i == 2) |
| intr_mask.bp2 = regk_marb_yes; |
| else if (i == 3) |
| intr_mask.bp3 = regk_marb_yes; |
| |
| REG_WR(marb, regi_marb, rw_intr_mask, intr_mask); |
| spin_unlock(&arbiter_lock); |
| |
| return i; |
| } |
| } |
| spin_unlock(&arbiter_lock); |
| return -ENOMEM; |
| } |
| |
| int crisv32_arbiter_unwatch(int id) |
| { |
| reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask); |
| |
| crisv32_arbiter_init(); |
| |
| spin_lock(&arbiter_lock); |
| |
| if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) { |
| spin_unlock(&arbiter_lock); |
| return -EINVAL; |
| } |
| |
| memset(&watches[id], 0, sizeof(struct crisv32_watch_entry)); |
| |
| if (id == 0) |
| intr_mask.bp0 = regk_marb_no; |
| else if (id == 1) |
| intr_mask.bp1 = regk_marb_no; |
| else if (id == 2) |
| intr_mask.bp2 = regk_marb_no; |
| else if (id == 3) |
| intr_mask.bp3 = regk_marb_no; |
| |
| REG_WR(marb, regi_marb, rw_intr_mask, intr_mask); |
| |
| spin_unlock(&arbiter_lock); |
| return 0; |
| } |
| |
| extern void show_registers(struct pt_regs *regs); |
| |
| static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id) |
| { |
| reg_marb_r_masked_intr masked_intr = |
| REG_RD(marb, regi_marb, r_masked_intr); |
| reg_marb_bp_r_brk_clients r_clients; |
| reg_marb_bp_r_brk_addr r_addr; |
| reg_marb_bp_r_brk_op r_op; |
| reg_marb_bp_r_brk_first_client r_first; |
| reg_marb_bp_r_brk_size r_size; |
| reg_marb_bp_rw_ack ack = { 0 }; |
| reg_marb_rw_ack_intr ack_intr = { |
| .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 |
| }; |
| struct crisv32_watch_entry *watch; |
| |
| if (masked_intr.bp0) { |
| watch = &watches[0]; |
| ack_intr.bp0 = regk_marb_yes; |
| } else if (masked_intr.bp1) { |
| watch = &watches[1]; |
| ack_intr.bp1 = regk_marb_yes; |
| } else if (masked_intr.bp2) { |
| watch = &watches[2]; |
| ack_intr.bp2 = regk_marb_yes; |
| } else if (masked_intr.bp3) { |
| watch = &watches[3]; |
| ack_intr.bp3 = regk_marb_yes; |
| } else { |
| return IRQ_NONE; |
| } |
| |
| /* Retrieve all useful information and print it. */ |
| r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients); |
| r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr); |
| r_op = REG_RD(marb_bp, watch->instance, r_brk_op); |
| r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client); |
| r_size = REG_RD(marb_bp, watch->instance, r_brk_size); |
| |
| printk(KERN_INFO "Arbiter IRQ\n"); |
| printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n", |
| REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients), |
| REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr), |
| REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op), |
| REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first), |
| REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size)); |
| |
| REG_WR(marb_bp, watch->instance, rw_ack, ack); |
| REG_WR(marb, regi_marb, rw_ack_intr, ack_intr); |
| |
| printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp); |
| |
| if (watch->cb) |
| watch->cb(); |
| |
| return IRQ_HANDLED; |
| } |