| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * RSS and Classifier helpers for Marvell PPv2 Network Controller |
| * |
| * Copyright (C) 2014 Marvell |
| * |
| * Marcin Wojtas <mw@semihalf.com> |
| */ |
| |
| #include "mvpp2.h" |
| #include "mvpp2_cls.h" |
| #include "mvpp2_prs.h" |
| |
| #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask) \ |
| { \ |
| .flow_type = _type, \ |
| .flow_id = _id, \ |
| .supported_hash_opts = _opts, \ |
| .prs_ri = { \ |
| .ri = _ri, \ |
| .ri_mask = _ri_mask \ |
| } \ |
| } |
| |
| static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = { |
| /* TCP over IPv4 flows, Not fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* TCP over IPv4 flows, Not fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* TCP over IPv4 flows, fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* TCP over IPv4 flows, fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* UDP over IPv4 flows, Not fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP4_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* UDP over IPv4 flows, Not fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, |
| MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* UDP over IPv4 flows, fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* UDP over IPv4 flows, fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* TCP over IPv6 flows, not fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP6_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP6_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* TCP over IPv6 flows, not fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG, |
| MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG, |
| MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* TCP over IPv6 flows, fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | |
| MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | |
| MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* TCP over IPv6 flows, fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* UDP over IPv6 flows, not fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP6_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG, |
| MVPP22_CLS_HEK_IP6_5T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* UDP over IPv6 flows, not fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG, |
| MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG, |
| MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* UDP over IPv6 flows, fragmented, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | |
| MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | |
| MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), |
| |
| /* UDP over IPv6 flows, fragmented, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_IP_MASK), |
| |
| /* IPv4 flows, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4, |
| MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT, |
| MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, |
| MVPP22_CLS_HEK_IP4_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER, |
| MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), |
| |
| /* IPv4 flows, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4, |
| MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OPT, |
| MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, |
| MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP4_OTHER, |
| MVPP2_PRS_RI_L3_PROTO_MASK), |
| |
| /* IPv6 flows, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG, |
| MVPP22_CLS_HEK_IP6_2T, |
| MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), |
| |
| /* IPv6 flows, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_L3_PROTO_MASK), |
| MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG, |
| MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED, |
| MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_L3_PROTO_MASK), |
| |
| /* Non IP flow, no vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG, |
| 0, |
| MVPP2_PRS_RI_VLAN_NONE, |
| MVPP2_PRS_RI_VLAN_MASK), |
| /* Non IP flow, with vlan tag */ |
| MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG, |
| MVPP22_CLS_HEK_OPT_VLAN, |
| 0, 0), |
| }; |
| |
| u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index) |
| { |
| mvpp2_write(priv, MVPP2_CTRS_IDX, index); |
| |
| return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR); |
| } |
| |
| void mvpp2_cls_flow_read(struct mvpp2 *priv, int index, |
| struct mvpp2_cls_flow_entry *fe) |
| { |
| fe->index = index; |
| mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index); |
| fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG); |
| fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG); |
| fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG); |
| } |
| |
| /* Update classification flow table registers */ |
| static void mvpp2_cls_flow_write(struct mvpp2 *priv, |
| struct mvpp2_cls_flow_entry *fe) |
| { |
| mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); |
| } |
| |
| u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index) |
| { |
| mvpp2_write(priv, MVPP2_CTRS_IDX, index); |
| |
| return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR); |
| } |
| |
| void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way, |
| struct mvpp2_cls_lookup_entry *le) |
| { |
| u32 val; |
| |
| val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid; |
| mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); |
| le->way = way; |
| le->lkpid = lkpid; |
| le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG); |
| } |
| |
| /* Update classification lookup table register */ |
| static void mvpp2_cls_lookup_write(struct mvpp2 *priv, |
| struct mvpp2_cls_lookup_entry *le) |
| { |
| u32 val; |
| |
| val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; |
| mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); |
| mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); |
| } |
| |
| /* Operations on flow entry */ |
| static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe) |
| { |
| return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; |
| } |
| |
| static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe, |
| int num_of_fields) |
| { |
| fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; |
| fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields); |
| } |
| |
| static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe, |
| int field_index) |
| { |
| return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) & |
| MVPP2_CLS_FLOW_TBL2_FLD_MASK; |
| } |
| |
| static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe, |
| int field_index, int field_id) |
| { |
| fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index, |
| MVPP2_CLS_FLOW_TBL2_FLD_MASK); |
| fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id); |
| } |
| |
| static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe, |
| int engine) |
| { |
| fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK); |
| fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine); |
| } |
| |
| int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe) |
| { |
| return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) & |
| MVPP2_CLS_FLOW_TBL0_ENG_MASK; |
| } |
| |
| static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe, |
| bool from_packet) |
| { |
| if (from_packet) |
| fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; |
| else |
| fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; |
| } |
| |
| static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe, |
| bool is_last) |
| { |
| fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST; |
| fe->data[0] |= !!is_last; |
| } |
| |
| static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio) |
| { |
| fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK); |
| fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio); |
| } |
| |
| static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe, |
| u32 port) |
| { |
| fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port); |
| } |
| |
| static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe, |
| u32 port) |
| { |
| fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port); |
| } |
| |
| static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe, |
| u8 lu_type) |
| { |
| fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK); |
| fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type); |
| } |
| |
| /* Initialize the parser entry for the given flow */ |
| static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv, |
| const struct mvpp2_cls_flow *flow) |
| { |
| mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri, |
| flow->prs_ri.ri_mask); |
| } |
| |
| /* Initialize the Lookup Id table entry for the given flow */ |
| static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv, |
| const struct mvpp2_cls_flow *flow) |
| { |
| struct mvpp2_cls_lookup_entry le; |
| |
| le.way = 0; |
| le.lkpid = flow->flow_id; |
| |
| /* The default RxQ for this port is set in the C2 lookup */ |
| le.data = 0; |
| |
| /* We point on the first lookup in the sequence for the flow, that is |
| * the C2 lookup. |
| */ |
| le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id)); |
| |
| /* CLS is always enabled, RSS is enabled/disabled in C2 lookup */ |
| le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; |
| |
| mvpp2_cls_lookup_write(priv, &le); |
| } |
| |
| static void mvpp2_cls_c2_write(struct mvpp2 *priv, |
| struct mvpp2_cls_c2_entry *c2) |
| { |
| u32 val; |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index); |
| |
| val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV); |
| if (c2->valid) |
| val &= ~MVPP22_CLS_C2_TCAM_INV_BIT; |
| else |
| val |= MVPP22_CLS_C2_TCAM_INV_BIT; |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val); |
| |
| mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act); |
| |
| mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]); |
| mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]); |
| mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]); |
| mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]); |
| |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]); |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]); |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]); |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]); |
| /* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */ |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]); |
| } |
| |
| void mvpp2_cls_c2_read(struct mvpp2 *priv, int index, |
| struct mvpp2_cls_c2_entry *c2) |
| { |
| u32 val; |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index); |
| |
| c2->index = index; |
| |
| c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0); |
| c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1); |
| c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2); |
| c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3); |
| c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4); |
| |
| c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT); |
| |
| c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0); |
| c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1); |
| c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2); |
| c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3); |
| |
| val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV); |
| c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT); |
| } |
| |
| static int mvpp2_cls_ethtool_flow_to_type(int flow_type) |
| { |
| switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) { |
| case ETHER_FLOW: |
| return MVPP22_FLOW_ETHERNET; |
| case TCP_V4_FLOW: |
| return MVPP22_FLOW_TCP4; |
| case TCP_V6_FLOW: |
| return MVPP22_FLOW_TCP6; |
| case UDP_V4_FLOW: |
| return MVPP22_FLOW_UDP4; |
| case UDP_V6_FLOW: |
| return MVPP22_FLOW_UDP6; |
| case IPV4_FLOW: |
| return MVPP22_FLOW_IP4; |
| case IPV6_FLOW: |
| return MVPP22_FLOW_IP6; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc) |
| { |
| return MVPP22_CLS_C2_RFS_LOC(port->id, loc); |
| } |
| |
| /* Initialize the flow table entries for the given flow */ |
| static void mvpp2_cls_flow_init(struct mvpp2 *priv, |
| const struct mvpp2_cls_flow *flow) |
| { |
| struct mvpp2_cls_flow_entry fe; |
| int i, pri = 0; |
| |
| /* Assign default values to all entries in the flow */ |
| for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id); |
| i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) { |
| memset(&fe, 0, sizeof(fe)); |
| fe.index = i; |
| mvpp2_cls_flow_pri_set(&fe, pri++); |
| |
| if (i == MVPP2_CLS_FLT_LAST(flow->flow_id)) |
| mvpp2_cls_flow_last_set(&fe, 1); |
| |
| mvpp2_cls_flow_write(priv, &fe); |
| } |
| |
| /* RSS config C2 lookup */ |
| mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id), |
| &fe); |
| |
| mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2); |
| mvpp2_cls_flow_port_id_sel(&fe, true); |
| mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL); |
| |
| /* Add all ports */ |
| for (i = 0; i < MVPP2_MAX_PORTS; i++) |
| mvpp2_cls_flow_port_add(&fe, BIT(i)); |
| |
| mvpp2_cls_flow_write(priv, &fe); |
| |
| /* C3Hx lookups */ |
| for (i = 0; i < MVPP2_MAX_PORTS; i++) { |
| mvpp2_cls_flow_read(priv, |
| MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id), |
| &fe); |
| |
| /* Set a default engine. Will be overwritten when setting the |
| * real HEK parameters |
| */ |
| mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA); |
| mvpp2_cls_flow_port_id_sel(&fe, true); |
| mvpp2_cls_flow_port_add(&fe, BIT(i)); |
| |
| mvpp2_cls_flow_write(priv, &fe); |
| } |
| } |
| |
| /* Adds a field to the Header Extracted Key generation parameters*/ |
| static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe, |
| u32 field_id) |
| { |
| int nb_fields = mvpp2_cls_flow_hek_num_get(fe); |
| |
| if (nb_fields == MVPP2_FLOW_N_FIELDS) |
| return -EINVAL; |
| |
| mvpp2_cls_flow_hek_set(fe, nb_fields, field_id); |
| |
| mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1); |
| |
| return 0; |
| } |
| |
| static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe, |
| unsigned long hash_opts) |
| { |
| u32 field_id; |
| int i; |
| |
| /* Clear old fields */ |
| mvpp2_cls_flow_hek_num_set(fe, 0); |
| fe->data[2] = 0; |
| |
| for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { |
| switch (BIT(i)) { |
| case MVPP22_CLS_HEK_OPT_MAC_DA: |
| field_id = MVPP22_CLS_FIELD_MAC_DA; |
| break; |
| case MVPP22_CLS_HEK_OPT_VLAN: |
| field_id = MVPP22_CLS_FIELD_VLAN; |
| break; |
| case MVPP22_CLS_HEK_OPT_VLAN_PRI: |
| field_id = MVPP22_CLS_FIELD_VLAN_PRI; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP4SA: |
| field_id = MVPP22_CLS_FIELD_IP4SA; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP4DA: |
| field_id = MVPP22_CLS_FIELD_IP4DA; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP6SA: |
| field_id = MVPP22_CLS_FIELD_IP6SA; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP6DA: |
| field_id = MVPP22_CLS_FIELD_IP6DA; |
| break; |
| case MVPP22_CLS_HEK_OPT_L4SIP: |
| field_id = MVPP22_CLS_FIELD_L4SIP; |
| break; |
| case MVPP22_CLS_HEK_OPT_L4DIP: |
| field_id = MVPP22_CLS_FIELD_L4DIP; |
| break; |
| default: |
| return -EINVAL; |
| } |
| if (mvpp2_flow_add_hek_field(fe, field_id)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Returns the size, in bits, of the corresponding HEK field */ |
| static int mvpp2_cls_hek_field_size(u32 field) |
| { |
| switch (field) { |
| case MVPP22_CLS_HEK_OPT_MAC_DA: |
| return 48; |
| case MVPP22_CLS_HEK_OPT_VLAN: |
| return 12; |
| case MVPP22_CLS_HEK_OPT_VLAN_PRI: |
| return 3; |
| case MVPP22_CLS_HEK_OPT_IP4SA: |
| case MVPP22_CLS_HEK_OPT_IP4DA: |
| return 32; |
| case MVPP22_CLS_HEK_OPT_IP6SA: |
| case MVPP22_CLS_HEK_OPT_IP6DA: |
| return 128; |
| case MVPP22_CLS_HEK_OPT_L4SIP: |
| case MVPP22_CLS_HEK_OPT_L4DIP: |
| return 16; |
| default: |
| return -1; |
| } |
| } |
| |
| const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow) |
| { |
| if (flow >= MVPP2_N_PRS_FLOWS) |
| return NULL; |
| |
| return &cls_flows[flow]; |
| } |
| |
| /* Set the hash generation options for the given traffic flow. |
| * One traffic flow (in the ethtool sense) has multiple classification flows, |
| * to handle specific cases such as fragmentation, or the presence of a |
| * VLAN / DSA Tag. |
| * |
| * Each of these individual flows has different constraints, for example we |
| * can't hash fragmented packets on L4 data (else we would risk having packet |
| * re-ordering), so each classification flows masks the options with their |
| * supported ones. |
| * |
| */ |
| static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type, |
| u16 requested_opts) |
| { |
| const struct mvpp2_cls_flow *flow; |
| struct mvpp2_cls_flow_entry fe; |
| int i, engine, flow_index; |
| u16 hash_opts; |
| |
| for_each_cls_flow_id_with_type(i, flow_type) { |
| flow = mvpp2_cls_flow_get(i); |
| if (!flow) |
| return -EINVAL; |
| |
| flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id); |
| |
| mvpp2_cls_flow_read(port->priv, flow_index, &fe); |
| |
| hash_opts = flow->supported_hash_opts & requested_opts; |
| |
| /* Use C3HB engine to access L4 infos. This adds L4 infos to the |
| * hash parameters |
| */ |
| if (hash_opts & MVPP22_CLS_HEK_L4_OPTS) |
| engine = MVPP22_CLS_ENGINE_C3HB; |
| else |
| engine = MVPP22_CLS_ENGINE_C3HA; |
| |
| if (mvpp2_flow_set_hek_fields(&fe, hash_opts)) |
| return -EINVAL; |
| |
| mvpp2_cls_flow_eng_set(&fe, engine); |
| |
| mvpp2_cls_flow_write(port->priv, &fe); |
| } |
| |
| return 0; |
| } |
| |
| u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe) |
| { |
| u16 hash_opts = 0; |
| int n_fields, i, field; |
| |
| n_fields = mvpp2_cls_flow_hek_num_get(fe); |
| |
| for (i = 0; i < n_fields; i++) { |
| field = mvpp2_cls_flow_hek_get(fe, i); |
| |
| switch (field) { |
| case MVPP22_CLS_FIELD_MAC_DA: |
| hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; |
| break; |
| case MVPP22_CLS_FIELD_VLAN: |
| hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; |
| break; |
| case MVPP22_CLS_FIELD_VLAN_PRI: |
| hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI; |
| break; |
| case MVPP22_CLS_FIELD_L3_PROTO: |
| hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; |
| break; |
| case MVPP22_CLS_FIELD_IP4SA: |
| hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA; |
| break; |
| case MVPP22_CLS_FIELD_IP4DA: |
| hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA; |
| break; |
| case MVPP22_CLS_FIELD_IP6SA: |
| hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA; |
| break; |
| case MVPP22_CLS_FIELD_IP6DA: |
| hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA; |
| break; |
| case MVPP22_CLS_FIELD_L4SIP: |
| hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; |
| break; |
| case MVPP22_CLS_FIELD_L4DIP: |
| hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; |
| break; |
| default: |
| break; |
| } |
| } |
| return hash_opts; |
| } |
| |
| /* Returns the hash opts for this flow. There are several classifier flows |
| * for one traffic flow, this returns an aggregation of all configurations. |
| */ |
| static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type) |
| { |
| const struct mvpp2_cls_flow *flow; |
| struct mvpp2_cls_flow_entry fe; |
| int i, flow_index; |
| u16 hash_opts = 0; |
| |
| for_each_cls_flow_id_with_type(i, flow_type) { |
| flow = mvpp2_cls_flow_get(i); |
| if (!flow) |
| return 0; |
| |
| flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id); |
| |
| mvpp2_cls_flow_read(port->priv, flow_index, &fe); |
| |
| hash_opts |= mvpp2_flow_get_hek_fields(&fe); |
| } |
| |
| return hash_opts; |
| } |
| |
| static void mvpp2_cls_port_init_flows(struct mvpp2 *priv) |
| { |
| const struct mvpp2_cls_flow *flow; |
| int i; |
| |
| for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) { |
| flow = mvpp2_cls_flow_get(i); |
| if (!flow) |
| break; |
| |
| mvpp2_cls_flow_prs_init(priv, flow); |
| mvpp2_cls_flow_lkp_init(priv, flow); |
| mvpp2_cls_flow_init(priv, flow); |
| } |
| } |
| |
| static void mvpp2_port_c2_cls_init(struct mvpp2_port *port) |
| { |
| struct mvpp2_cls_c2_entry c2; |
| u8 qh, ql, pmap; |
| |
| memset(&c2, 0, sizeof(c2)); |
| |
| c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id); |
| |
| pmap = BIT(port->id); |
| c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap); |
| c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap)); |
| |
| /* Match on Lookup Type */ |
| c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK)); |
| c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL); |
| |
| /* Update RSS status after matching this entry */ |
| c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK); |
| |
| /* Mark packet as "forwarded to software", needed for RSS */ |
| c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK); |
| |
| /* Configure the default rx queue : Update Queue Low and Queue High, but |
| * don't lock, since the rx queue selection might be overridden by RSS |
| */ |
| c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) | |
| MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD); |
| |
| qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; |
| ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK; |
| |
| c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | |
| MVPP22_CLS_C2_ATTR0_QLOW(ql); |
| |
| c2.valid = true; |
| |
| mvpp2_cls_c2_write(port->priv, &c2); |
| } |
| |
| /* Classifier default initialization */ |
| void mvpp2_cls_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_cls_lookup_entry le; |
| struct mvpp2_cls_flow_entry fe; |
| struct mvpp2_cls_c2_entry c2; |
| int index; |
| |
| /* Enable classifier */ |
| mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); |
| |
| /* Clear classifier flow table */ |
| memset(&fe.data, 0, sizeof(fe.data)); |
| for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { |
| fe.index = index; |
| mvpp2_cls_flow_write(priv, &fe); |
| } |
| |
| /* Clear classifier lookup table */ |
| le.data = 0; |
| for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { |
| le.lkpid = index; |
| le.way = 0; |
| mvpp2_cls_lookup_write(priv, &le); |
| |
| le.way = 1; |
| mvpp2_cls_lookup_write(priv, &le); |
| } |
| |
| /* Clear C2 TCAM engine table */ |
| memset(&c2, 0, sizeof(c2)); |
| c2.valid = false; |
| for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) { |
| c2.index = index; |
| mvpp2_cls_c2_write(priv, &c2); |
| } |
| |
| /* Disable the FIFO stages in C2 engine, which are only used in BIST |
| * mode |
| */ |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL, |
| MVPP22_CLS_C2_TCAM_BYPASS_FIFO); |
| |
| mvpp2_cls_port_init_flows(priv); |
| } |
| |
| void mvpp2_cls_port_config(struct mvpp2_port *port) |
| { |
| struct mvpp2_cls_lookup_entry le; |
| u32 val; |
| |
| /* Set way for the port */ |
| val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); |
| val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); |
| |
| /* Pick the entry to be accessed in lookup ID decoding table |
| * according to the way and lkpid. |
| */ |
| le.lkpid = port->id; |
| le.way = 0; |
| le.data = 0; |
| |
| /* Set initial CPU queue for receiving packets */ |
| le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; |
| le.data |= port->first_rxq; |
| |
| /* Disable classification engines */ |
| le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; |
| |
| /* Update lookup ID table entry */ |
| mvpp2_cls_lookup_write(port->priv, &le); |
| |
| mvpp2_port_c2_cls_init(port); |
| } |
| |
| u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index) |
| { |
| mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index); |
| |
| return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR); |
| } |
| |
| static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx) |
| { |
| struct mvpp2_cls_c2_entry c2; |
| u8 qh, ql; |
| |
| mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); |
| |
| /* The RxQ number is used to select the RSS table. It that case, we set |
| * it to be the ctx number. |
| */ |
| qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; |
| ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK; |
| |
| c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | |
| MVPP22_CLS_C2_ATTR0_QLOW(ql); |
| |
| c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN; |
| |
| mvpp2_cls_c2_write(port->priv, &c2); |
| } |
| |
| static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port) |
| { |
| struct mvpp2_cls_c2_entry c2; |
| u8 qh, ql; |
| |
| mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); |
| |
| /* Reset the default destination RxQ to the port's first rx queue. */ |
| qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; |
| ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK; |
| |
| c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | |
| MVPP22_CLS_C2_ATTR0_QLOW(ql); |
| |
| c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN; |
| |
| mvpp2_cls_c2_write(port->priv, &c2); |
| } |
| |
| static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx) |
| { |
| return port->rss_ctx[port_rss_ctx]; |
| } |
| |
| int mvpp22_port_rss_enable(struct mvpp2_port *port) |
| { |
| if (mvpp22_rss_ctx(port, 0) < 0) |
| return -EINVAL; |
| |
| mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0)); |
| |
| return 0; |
| } |
| |
| int mvpp22_port_rss_disable(struct mvpp2_port *port) |
| { |
| if (mvpp22_rss_ctx(port, 0) < 0) |
| return -EINVAL; |
| |
| mvpp2_rss_port_c2_disable(port); |
| |
| return 0; |
| } |
| |
| static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry) |
| { |
| struct mvpp2_cls_c2_entry c2; |
| |
| mvpp2_cls_c2_read(port->priv, entry, &c2); |
| |
| /* Clear the port map so that the entry doesn't match anymore */ |
| c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id))); |
| |
| mvpp2_cls_c2_write(port->priv, &c2); |
| } |
| |
| /* Set CPU queue number for oversize packets */ |
| void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), |
| port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); |
| |
| mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), |
| (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); |
| |
| val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); |
| val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); |
| } |
| |
| static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port, |
| struct mvpp2_rfs_rule *rule) |
| { |
| struct flow_action_entry *act; |
| struct mvpp2_cls_c2_entry c2; |
| u8 qh, ql, pmap; |
| int index, ctx; |
| |
| if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL)) |
| return -EOPNOTSUPP; |
| |
| memset(&c2, 0, sizeof(c2)); |
| |
| index = mvpp2_cls_c2_port_flow_index(port, rule->loc); |
| if (index < 0) |
| return -EINVAL; |
| c2.index = index; |
| |
| act = &rule->flow->action.entries[0]; |
| |
| rule->c2_index = c2.index; |
| |
| c2.tcam[3] = (rule->c2_tcam & 0xffff) | |
| ((rule->c2_tcam_mask & 0xffff) << 16); |
| c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) | |
| (((rule->c2_tcam_mask >> 16) & 0xffff) << 16); |
| c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) | |
| (((rule->c2_tcam_mask >> 32) & 0xffff) << 16); |
| c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) | |
| (((rule->c2_tcam_mask >> 48) & 0xffff) << 16); |
| |
| pmap = BIT(port->id); |
| c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap); |
| c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap)); |
| |
| /* Match on Lookup Type */ |
| c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK)); |
| c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc); |
| |
| if (act->id == FLOW_ACTION_DROP) { |
| c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK); |
| } else { |
| /* We want to keep the default color derived from the Header |
| * Parser drop entries, for VLAN and MAC filtering. This will |
| * assign a default color of Green or Red, and we want matches |
| * with a non-drop action to keep that color. |
| */ |
| c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK); |
| |
| /* Update RSS status after matching this entry */ |
| if (act->queue.ctx) |
| c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN; |
| |
| /* Always lock the RSS_EN decision. We might have high prio |
| * rules steering to an RXQ, and a lower one steering to RSS, |
| * we don't want the low prio RSS rule overwriting this flag. |
| */ |
| c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK); |
| |
| /* Mark packet as "forwarded to software", needed for RSS */ |
| c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK); |
| |
| c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) | |
| MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK); |
| |
| if (act->queue.ctx) { |
| /* Get the global ctx number */ |
| ctx = mvpp22_rss_ctx(port, act->queue.ctx); |
| if (ctx < 0) |
| return -EINVAL; |
| |
| qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; |
| ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK; |
| } else { |
| qh = ((act->queue.index + port->first_rxq) >> 3) & |
| MVPP22_CLS_C2_ATTR0_QHIGH_MASK; |
| ql = (act->queue.index + port->first_rxq) & |
| MVPP22_CLS_C2_ATTR0_QLOW_MASK; |
| } |
| |
| c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | |
| MVPP22_CLS_C2_ATTR0_QLOW(ql); |
| } |
| |
| c2.valid = true; |
| |
| mvpp2_cls_c2_write(port->priv, &c2); |
| |
| return 0; |
| } |
| |
| static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port, |
| struct mvpp2_rfs_rule *rule) |
| { |
| return mvpp2_port_c2_tcam_rule_add(port, rule); |
| } |
| |
| static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port, |
| struct mvpp2_rfs_rule *rule) |
| { |
| const struct mvpp2_cls_flow *flow; |
| struct mvpp2_cls_flow_entry fe; |
| int index, i; |
| |
| for_each_cls_flow_id_containing_type(i, rule->flow_type) { |
| flow = mvpp2_cls_flow_get(i); |
| if (!flow) |
| return 0; |
| |
| index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc); |
| |
| mvpp2_cls_flow_read(port->priv, index, &fe); |
| mvpp2_cls_flow_port_remove(&fe, BIT(port->id)); |
| mvpp2_cls_flow_write(port->priv, &fe); |
| } |
| |
| if (rule->c2_index >= 0) |
| mvpp22_port_c2_lookup_disable(port, rule->c2_index); |
| |
| return 0; |
| } |
| |
| static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port, |
| struct mvpp2_rfs_rule *rule) |
| { |
| const struct mvpp2_cls_flow *flow; |
| struct mvpp2 *priv = port->priv; |
| struct mvpp2_cls_flow_entry fe; |
| int index, ret, i; |
| |
| if (rule->engine != MVPP22_CLS_ENGINE_C2) |
| return -EOPNOTSUPP; |
| |
| ret = mvpp2_port_c2_rfs_rule_insert(port, rule); |
| if (ret) |
| return ret; |
| |
| for_each_cls_flow_id_containing_type(i, rule->flow_type) { |
| flow = mvpp2_cls_flow_get(i); |
| if (!flow) |
| return 0; |
| |
| if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields) |
| continue; |
| |
| index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc); |
| |
| mvpp2_cls_flow_read(priv, index, &fe); |
| mvpp2_cls_flow_eng_set(&fe, rule->engine); |
| mvpp2_cls_flow_port_id_sel(&fe, true); |
| mvpp2_flow_set_hek_fields(&fe, rule->hek_fields); |
| mvpp2_cls_flow_lu_type_set(&fe, rule->loc); |
| mvpp2_cls_flow_port_add(&fe, 0xf); |
| |
| mvpp2_cls_flow_write(priv, &fe); |
| } |
| |
| return 0; |
| } |
| |
| static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule) |
| { |
| struct flow_rule *flow = rule->flow; |
| int offs = 0; |
| |
| /* The order of insertion in C2 tcam must match the order in which |
| * the fields are found in the header |
| */ |
| if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) { |
| struct flow_match_vlan match; |
| |
| flow_rule_match_vlan(flow, &match); |
| if (match.mask->vlan_id) { |
| rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN; |
| |
| rule->c2_tcam |= ((u64)match.key->vlan_id) << offs; |
| rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs; |
| |
| /* Don't update the offset yet */ |
| } |
| |
| if (match.mask->vlan_priority) { |
| rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI; |
| |
| /* VLAN pri is always at offset 13 relative to the |
| * current offset |
| */ |
| rule->c2_tcam |= ((u64)match.key->vlan_priority) << |
| (offs + 13); |
| rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) << |
| (offs + 13); |
| } |
| |
| if (match.mask->vlan_dei) |
| return -EOPNOTSUPP; |
| |
| /* vlan id and prio always seem to take a full 16-bit slot in |
| * the Header Extracted Key. |
| */ |
| offs += 16; |
| } |
| |
| if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) { |
| struct flow_match_ports match; |
| |
| flow_rule_match_ports(flow, &match); |
| if (match.mask->src) { |
| rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP; |
| |
| rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs; |
| rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs; |
| offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP); |
| } |
| |
| if (match.mask->dst) { |
| rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP; |
| |
| rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs; |
| rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs; |
| offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP); |
| } |
| } |
| |
| if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS) |
| return -EOPNOTSUPP; |
| |
| return 0; |
| } |
| |
| static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule) |
| { |
| struct flow_rule *flow = rule->flow; |
| struct flow_action_entry *act; |
| |
| if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL)) |
| return -EOPNOTSUPP; |
| |
| act = &flow->action.entries[0]; |
| if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP) |
| return -EOPNOTSUPP; |
| |
| /* When both an RSS context and an queue index are set, the index |
| * is considered as an offset to be added to the indirection table |
| * entries. We don't support this, so reject this rule. |
| */ |
| if (act->queue.ctx && act->queue.index) |
| return -EOPNOTSUPP; |
| |
| /* For now, only use the C2 engine which has a HEK size limited to 64 |
| * bits for TCAM matching. |
| */ |
| rule->engine = MVPP22_CLS_ENGINE_C2; |
| |
| if (mvpp2_cls_c2_build_match(rule)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port, |
| struct ethtool_rxnfc *rxnfc) |
| { |
| struct mvpp2_ethtool_fs *efs; |
| |
| if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW) |
| return -EINVAL; |
| |
| efs = port->rfs_rules[rxnfc->fs.location]; |
| if (!efs) |
| return -ENOENT; |
| |
| memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc)); |
| |
| return 0; |
| } |
| |
| int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port, |
| struct ethtool_rxnfc *info) |
| { |
| struct ethtool_rx_flow_spec_input input = {}; |
| struct ethtool_rx_flow_rule *ethtool_rule; |
| struct mvpp2_ethtool_fs *efs, *old_efs; |
| int ret = 0; |
| |
| if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW) |
| return -EINVAL; |
| |
| efs = kzalloc(sizeof(*efs), GFP_KERNEL); |
| if (!efs) |
| return -ENOMEM; |
| |
| input.fs = &info->fs; |
| |
| /* We need to manually set the rss_ctx, since this info isn't present |
| * in info->fs |
| */ |
| if (info->fs.flow_type & FLOW_RSS) |
| input.rss_ctx = info->rss_context; |
| |
| ethtool_rule = ethtool_rx_flow_rule_create(&input); |
| if (IS_ERR(ethtool_rule)) { |
| ret = PTR_ERR(ethtool_rule); |
| goto clean_rule; |
| } |
| |
| efs->rule.flow = ethtool_rule->rule; |
| efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type); |
| if (efs->rule.flow_type < 0) { |
| ret = efs->rule.flow_type; |
| goto clean_rule; |
| } |
| |
| ret = mvpp2_cls_rfs_parse_rule(&efs->rule); |
| if (ret) |
| goto clean_eth_rule; |
| |
| efs->rule.loc = info->fs.location; |
| |
| /* Replace an already existing rule */ |
| if (port->rfs_rules[efs->rule.loc]) { |
| old_efs = port->rfs_rules[efs->rule.loc]; |
| ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule); |
| if (ret) |
| goto clean_eth_rule; |
| kfree(old_efs); |
| port->n_rfs_rules--; |
| } |
| |
| ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule); |
| if (ret) |
| goto clean_eth_rule; |
| |
| ethtool_rx_flow_rule_destroy(ethtool_rule); |
| efs->rule.flow = NULL; |
| |
| memcpy(&efs->rxnfc, info, sizeof(*info)); |
| port->rfs_rules[efs->rule.loc] = efs; |
| port->n_rfs_rules++; |
| |
| return ret; |
| |
| clean_eth_rule: |
| ethtool_rx_flow_rule_destroy(ethtool_rule); |
| clean_rule: |
| kfree(efs); |
| return ret; |
| } |
| |
| int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port, |
| struct ethtool_rxnfc *info) |
| { |
| struct mvpp2_ethtool_fs *efs; |
| int ret; |
| |
| if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW) |
| return -EINVAL; |
| |
| efs = port->rfs_rules[info->fs.location]; |
| if (!efs) |
| return -EINVAL; |
| |
| /* Remove the rule from the engines. */ |
| ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule); |
| if (ret) |
| return ret; |
| |
| port->n_rfs_rules--; |
| port->rfs_rules[info->fs.location] = NULL; |
| kfree(efs); |
| |
| return 0; |
| } |
| |
| static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq) |
| { |
| int nrxqs, cpu, cpus = num_possible_cpus(); |
| |
| /* Number of RXQs per CPU */ |
| nrxqs = port->nrxqs / cpus; |
| |
| /* CPU that will handle this rx queue */ |
| cpu = rxq / nrxqs; |
| |
| if (!cpu_online(cpu)) |
| return port->first_rxq; |
| |
| /* Indirection to better distribute the paquets on the CPUs when |
| * configuring the RSS queues. |
| */ |
| return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs); |
| } |
| |
| static void mvpp22_rss_fill_table(struct mvpp2_port *port, |
| struct mvpp2_rss_table *table, |
| u32 rss_ctx) |
| { |
| struct mvpp2 *priv = port->priv; |
| int i; |
| |
| for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) { |
| u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) | |
| MVPP22_RSS_INDEX_TABLE_ENTRY(i); |
| mvpp2_write(priv, MVPP22_RSS_INDEX, sel); |
| |
| mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, |
| mvpp22_rxfh_indir(port, table->indir[i])); |
| } |
| } |
| |
| static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx) |
| { |
| struct mvpp2 *priv = port->priv; |
| u32 ctx; |
| |
| /* Find the first free RSS table */ |
| for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) { |
| if (!priv->rss_tables[ctx]) |
| break; |
| } |
| |
| if (ctx == MVPP22_N_RSS_TABLES) |
| return -EINVAL; |
| |
| priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]), |
| GFP_KERNEL); |
| if (!priv->rss_tables[ctx]) |
| return -ENOMEM; |
| |
| *rss_ctx = ctx; |
| |
| /* Set the table width: replace the whole classifier Rx queue number |
| * with the ones configured in RSS table entries. |
| */ |
| mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx)); |
| mvpp2_write(priv, MVPP22_RSS_WIDTH, 8); |
| |
| mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx)); |
| mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx)); |
| |
| return 0; |
| } |
| |
| int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx) |
| { |
| u32 rss_ctx; |
| int ret, i; |
| |
| ret = mvpp22_rss_context_create(port, &rss_ctx); |
| if (ret) |
| return ret; |
| |
| /* Find the first available context number in the port, starting from 1. |
| * Context 0 on each port is reserved for the default context. |
| */ |
| for (i = 1; i < MVPP22_N_RSS_TABLES; i++) { |
| if (port->rss_ctx[i] < 0) |
| break; |
| } |
| |
| if (i == MVPP22_N_RSS_TABLES) |
| return -EINVAL; |
| |
| port->rss_ctx[i] = rss_ctx; |
| *port_ctx = i; |
| |
| return 0; |
| } |
| |
| static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv, |
| int rss_ctx) |
| { |
| if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES) |
| return NULL; |
| |
| return priv->rss_tables[rss_ctx]; |
| } |
| |
| int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx) |
| { |
| struct mvpp2 *priv = port->priv; |
| struct ethtool_rxnfc *rxnfc; |
| int i, rss_ctx, ret; |
| |
| rss_ctx = mvpp22_rss_ctx(port, port_ctx); |
| |
| if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES) |
| return -EINVAL; |
| |
| /* Invalidate any active classification rule that use this context */ |
| for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) { |
| if (!port->rfs_rules[i]) |
| continue; |
| |
| rxnfc = &port->rfs_rules[i]->rxnfc; |
| if (!(rxnfc->fs.flow_type & FLOW_RSS) || |
| rxnfc->rss_context != port_ctx) |
| continue; |
| |
| ret = mvpp2_ethtool_cls_rule_del(port, rxnfc); |
| if (ret) { |
| netdev_warn(port->dev, |
| "couldn't remove classification rule %d associated to this context", |
| rxnfc->fs.location); |
| } |
| } |
| |
| kfree(priv->rss_tables[rss_ctx]); |
| |
| priv->rss_tables[rss_ctx] = NULL; |
| port->rss_ctx[port_ctx] = -1; |
| |
| return 0; |
| } |
| |
| int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx, |
| const u32 *indir) |
| { |
| int rss_ctx = mvpp22_rss_ctx(port, port_ctx); |
| struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv, |
| rss_ctx); |
| |
| if (!rss_table) |
| return -EINVAL; |
| |
| memcpy(rss_table->indir, indir, |
| MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0])); |
| |
| mvpp22_rss_fill_table(port, rss_table, rss_ctx); |
| |
| return 0; |
| } |
| |
| int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx, |
| u32 *indir) |
| { |
| int rss_ctx = mvpp22_rss_ctx(port, port_ctx); |
| struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv, |
| rss_ctx); |
| |
| if (!rss_table) |
| return -EINVAL; |
| |
| memcpy(indir, rss_table->indir, |
| MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0])); |
| |
| return 0; |
| } |
| |
| int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info) |
| { |
| u16 hash_opts = 0; |
| u32 flow_type; |
| |
| flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type); |
| |
| switch (flow_type) { |
| case MVPP22_FLOW_TCP4: |
| case MVPP22_FLOW_UDP4: |
| case MVPP22_FLOW_TCP6: |
| case MVPP22_FLOW_UDP6: |
| if (info->data & RXH_L4_B_0_1) |
| hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; |
| if (info->data & RXH_L4_B_2_3) |
| hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; |
| /* Fallthrough */ |
| case MVPP22_FLOW_IP4: |
| case MVPP22_FLOW_IP6: |
| if (info->data & RXH_L2DA) |
| hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; |
| if (info->data & RXH_VLAN) |
| hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; |
| if (info->data & RXH_L3_PROTO) |
| hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; |
| if (info->data & RXH_IP_SRC) |
| hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA | |
| MVPP22_CLS_HEK_OPT_IP6SA); |
| if (info->data & RXH_IP_DST) |
| hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA | |
| MVPP22_CLS_HEK_OPT_IP6DA); |
| break; |
| default: return -EOPNOTSUPP; |
| } |
| |
| return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts); |
| } |
| |
| int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info) |
| { |
| unsigned long hash_opts; |
| u32 flow_type; |
| int i; |
| |
| flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type); |
| |
| hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type); |
| info->data = 0; |
| |
| for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { |
| switch (BIT(i)) { |
| case MVPP22_CLS_HEK_OPT_MAC_DA: |
| info->data |= RXH_L2DA; |
| break; |
| case MVPP22_CLS_HEK_OPT_VLAN: |
| info->data |= RXH_VLAN; |
| break; |
| case MVPP22_CLS_HEK_OPT_L3_PROTO: |
| info->data |= RXH_L3_PROTO; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP4SA: |
| case MVPP22_CLS_HEK_OPT_IP6SA: |
| info->data |= RXH_IP_SRC; |
| break; |
| case MVPP22_CLS_HEK_OPT_IP4DA: |
| case MVPP22_CLS_HEK_OPT_IP6DA: |
| info->data |= RXH_IP_DST; |
| break; |
| case MVPP22_CLS_HEK_OPT_L4SIP: |
| info->data |= RXH_L4_B_0_1; |
| break; |
| case MVPP22_CLS_HEK_OPT_L4DIP: |
| info->data |= RXH_L4_B_2_3; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| int mvpp22_port_rss_init(struct mvpp2_port *port) |
| { |
| struct mvpp2_rss_table *table; |
| u32 context = 0; |
| int i, ret; |
| |
| for (i = 0; i < MVPP22_N_RSS_TABLES; i++) |
| port->rss_ctx[i] = -1; |
| |
| ret = mvpp22_rss_context_create(port, &context); |
| if (ret) |
| return ret; |
| |
| table = mvpp22_rss_table_get(port->priv, context); |
| if (!table) |
| return -EINVAL; |
| |
| port->rss_ctx[0] = context; |
| |
| /* Configure the first table to evenly distribute the packets across |
| * real Rx Queues. The table entries map a hash to a port Rx Queue. |
| */ |
| for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) |
| table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs); |
| |
| mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0)); |
| |
| /* Configure default flows */ |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T); |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T); |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T); |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T); |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T); |
| mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T); |
| |
| return 0; |
| } |