blob: 3e0734ddafe363355c17614a3c14b885ae7164ea [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ADXRS290 SPI Gyroscope Driver
*
* Copyright (C) 2020 Nishant Malpani <nish.malpani25@gmail.com>
* Copyright (C) 2020 Analog Devices, Inc.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#define ADXRS290_ADI_ID 0xAD
#define ADXRS290_MEMS_ID 0x1D
#define ADXRS290_DEV_ID 0x92
#define ADXRS290_REG_ADI_ID 0x00
#define ADXRS290_REG_MEMS_ID 0x01
#define ADXRS290_REG_DEV_ID 0x02
#define ADXRS290_REG_REV_ID 0x03
#define ADXRS290_REG_SN0 0x04 /* Serial Number Registers, 4 bytes */
#define ADXRS290_REG_DATAX0 0x08 /* Roll Rate o/p Data Regs, 2 bytes */
#define ADXRS290_REG_DATAY0 0x0A /* Pitch Rate o/p Data Regs, 2 bytes */
#define ADXRS290_REG_TEMP0 0x0C
#define ADXRS290_REG_POWER_CTL 0x10
#define ADXRS290_REG_FILTER 0x11
#define ADXRS290_REG_DATA_RDY 0x12
#define ADXRS290_READ BIT(7)
#define ADXRS290_TSM BIT(0)
#define ADXRS290_MEASUREMENT BIT(1)
#define ADXRS290_DATA_RDY_OUT BIT(0)
#define ADXRS290_SYNC_MASK GENMASK(1, 0)
#define ADXRS290_SYNC(x) FIELD_PREP(ADXRS290_SYNC_MASK, x)
#define ADXRS290_LPF_MASK GENMASK(2, 0)
#define ADXRS290_LPF(x) FIELD_PREP(ADXRS290_LPF_MASK, x)
#define ADXRS290_HPF_MASK GENMASK(7, 4)
#define ADXRS290_HPF(x) FIELD_PREP(ADXRS290_HPF_MASK, x)
#define ADXRS290_READ_REG(reg) (ADXRS290_READ | (reg))
#define ADXRS290_MAX_TRANSITION_TIME_MS 100
enum adxrs290_mode {
ADXRS290_MODE_STANDBY,
ADXRS290_MODE_MEASUREMENT,
};
enum adxrs290_scan_index {
ADXRS290_IDX_X,
ADXRS290_IDX_Y,
ADXRS290_IDX_TEMP,
ADXRS290_IDX_TS,
};
struct adxrs290_state {
struct spi_device *spi;
/* Serialize reads and their subsequent processing */
struct mutex lock;
enum adxrs290_mode mode;
unsigned int lpf_3db_freq_idx;
unsigned int hpf_3db_freq_idx;
struct iio_trigger *dready_trig;
/* Ensure correct alignment of timestamp when present */
struct {
s16 channels[3];
s64 ts __aligned(8);
} buffer;
};
/*
* Available cut-off frequencies of the low pass filter in Hz.
* The integer part and fractional part are represented separately.
*/
static const int adxrs290_lpf_3db_freq_hz_table[][2] = {
[0] = {480, 0},
[1] = {320, 0},
[2] = {160, 0},
[3] = {80, 0},
[4] = {56, 600000},
[5] = {40, 0},
[6] = {28, 300000},
[7] = {20, 0},
};
/*
* Available cut-off frequencies of the high pass filter in Hz.
* The integer part and fractional part are represented separately.
*/
static const int adxrs290_hpf_3db_freq_hz_table[][2] = {
[0] = {0, 0},
[1] = {0, 11000},
[2] = {0, 22000},
[3] = {0, 44000},
[4] = {0, 87000},
[5] = {0, 175000},
[6] = {0, 350000},
[7] = {0, 700000},
[8] = {1, 400000},
[9] = {2, 800000},
[10] = {11, 300000},
};
static int adxrs290_get_rate_data(struct iio_dev *indio_dev, const u8 cmd, int *val)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
int temp;
mutex_lock(&st->lock);
temp = spi_w8r16(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
*val = temp;
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_get_temp_data(struct iio_dev *indio_dev, int *val)
{
const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_TEMP0);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
int temp;
mutex_lock(&st->lock);
temp = spi_w8r16(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
/* extract lower 12 bits temperature reading */
*val = temp & 0x0FFF;
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_get_3db_freq(struct iio_dev *indio_dev, u8 *val, u8 *val2)
{
const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_FILTER);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
short temp;
mutex_lock(&st->lock);
temp = spi_w8r8(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
*val = FIELD_GET(ADXRS290_LPF_MASK, temp);
*val2 = FIELD_GET(ADXRS290_HPF_MASK, temp);
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_spi_write_reg(struct spi_device *spi, const u8 reg,
const u8 val)
{
u8 buf[2];
buf[0] = reg;
buf[1] = val;
return spi_write_then_read(spi, buf, ARRAY_SIZE(buf), NULL, 0);
}
static int adxrs290_find_match(const int (*freq_tbl)[2], const int n,
const int val, const int val2)
{
int i;
for (i = 0; i < n; i++) {
if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
return i;
}
return -EINVAL;
}
static int adxrs290_set_filter_freq(struct iio_dev *indio_dev,
const unsigned int lpf_idx,
const unsigned int hpf_idx)
{
struct adxrs290_state *st = iio_priv(indio_dev);
u8 val;
val = ADXRS290_HPF(hpf_idx) | ADXRS290_LPF(lpf_idx);
return adxrs290_spi_write_reg(st->spi, ADXRS290_REG_FILTER, val);
}
static int adxrs290_set_mode(struct iio_dev *indio_dev, enum adxrs290_mode mode)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int val, ret;
if (st->mode == mode)
return 0;
mutex_lock(&st->lock);
ret = spi_w8r8(st->spi, ADXRS290_READ_REG(ADXRS290_REG_POWER_CTL));
if (ret < 0)
goto out_unlock;
val = ret;
switch (mode) {
case ADXRS290_MODE_STANDBY:
val &= ~ADXRS290_MEASUREMENT;
break;
case ADXRS290_MODE_MEASUREMENT:
val |= ADXRS290_MEASUREMENT;
break;
default:
ret = -EINVAL;
goto out_unlock;
}
ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_POWER_CTL, val);
if (ret < 0) {
dev_err(&st->spi->dev, "unable to set mode: %d\n", ret);
goto out_unlock;
}
/* update cached mode */
st->mode = mode;
out_unlock:
mutex_unlock(&st->lock);
return ret;
}
static void adxrs290_chip_off_action(void *data)
{
struct iio_dev *indio_dev = data;
adxrs290_set_mode(indio_dev, ADXRS290_MODE_STANDBY);
}
static int adxrs290_initial_setup(struct iio_dev *indio_dev)
{
struct adxrs290_state *st = iio_priv(indio_dev);
struct spi_device *spi = st->spi;
int ret;
ret = adxrs290_spi_write_reg(spi, ADXRS290_REG_POWER_CTL,
ADXRS290_MEASUREMENT | ADXRS290_TSM);
if (ret < 0)
return ret;
st->mode = ADXRS290_MODE_MEASUREMENT;
return devm_add_action_or_reset(&spi->dev, adxrs290_chip_off_action,
indio_dev);
}
static int adxrs290_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct adxrs290_state *st = iio_priv(indio_dev);
unsigned int t;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch (chan->type) {
case IIO_ANGL_VEL:
ret = adxrs290_get_rate_data(indio_dev,
ADXRS290_READ_REG(chan->address),
val);
if (ret < 0)
break;
ret = IIO_VAL_INT;
break;
case IIO_TEMP:
ret = adxrs290_get_temp_data(indio_dev, val);
if (ret < 0)
break;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
/* 1 LSB = 0.005 degrees/sec */
*val = 0;
*val2 = 87266;
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
/* 1 LSB = 0.1 degrees Celsius */
*val = 100;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
t = st->lpf_3db_freq_idx;
*val = adxrs290_lpf_3db_freq_hz_table[t][0];
*val2 = adxrs290_lpf_3db_freq_hz_table[t][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
t = st->hpf_3db_freq_idx;
*val = adxrs290_hpf_3db_freq_hz_table[t][0];
*val2 = adxrs290_hpf_3db_freq_hz_table[t][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
return -EINVAL;
}
static int adxrs290_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret, lpf_idx, hpf_idx;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
lpf_idx = adxrs290_find_match(adxrs290_lpf_3db_freq_hz_table,
ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table),
val, val2);
if (lpf_idx < 0) {
ret = -EINVAL;
break;
}
/* caching the updated state of the low-pass filter */
st->lpf_3db_freq_idx = lpf_idx;
/* retrieving the current state of the high-pass filter */
hpf_idx = st->hpf_3db_freq_idx;
ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
break;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
hpf_idx = adxrs290_find_match(adxrs290_hpf_3db_freq_hz_table,
ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table),
val, val2);
if (hpf_idx < 0) {
ret = -EINVAL;
break;
}
/* caching the updated state of the high-pass filter */
st->hpf_3db_freq_idx = hpf_idx;
/* retrieving the current state of the low-pass filter */
lpf_idx = st->lpf_3db_freq_idx;
ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int adxrs290_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = (const int *)adxrs290_lpf_3db_freq_hz_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
*vals = (const int *)adxrs290_hpf_3db_freq_hz_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int adxrs290_reg_access_rw(struct spi_device *spi, unsigned int reg,
unsigned int *readval)
{
int ret;
ret = spi_w8r8(spi, ADXRS290_READ_REG(reg));
if (ret < 0)
return ret;
*readval = ret;
return 0;
}
static int adxrs290_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct adxrs290_state *st = iio_priv(indio_dev);
if (readval)
return adxrs290_reg_access_rw(st->spi, reg, readval);
else
return adxrs290_spi_write_reg(st->spi, reg, writeval);
}
static int adxrs290_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret;
u8 val;
val = state ? ADXRS290_SYNC(ADXRS290_DATA_RDY_OUT) : 0;
ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_DATA_RDY, val);
if (ret < 0)
dev_err(&st->spi->dev, "failed to start data rdy interrupt\n");
return ret;
}
static void adxrs290_reset_trig(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
int val;
/*
* Data ready interrupt is reset after a read of the data registers.
* Here, we only read the 16b DATAY registers as that marks the end of
* a read of the data registers and initiates a reset for the interrupt
* line.
*/
adxrs290_get_rate_data(indio_dev,
ADXRS290_READ_REG(ADXRS290_REG_DATAY0), &val);
}
static const struct iio_trigger_ops adxrs290_trigger_ops = {
.set_trigger_state = &adxrs290_data_rdy_trigger_set_state,
.validate_device = &iio_trigger_validate_own_device,
.reenable = &adxrs290_reset_trig,
};
static irqreturn_t adxrs290_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adxrs290_state *st = iio_priv(indio_dev);
u8 tx = ADXRS290_READ_REG(ADXRS290_REG_DATAX0);
int ret;
mutex_lock(&st->lock);
/* exercise a bulk data capture starting from reg DATAX0... */
ret = spi_write_then_read(st->spi, &tx, sizeof(tx), st->buffer.channels,
sizeof(st->buffer.channels));
if (ret < 0)
goto out_unlock_notify;
iio_push_to_buffers_with_timestamp(indio_dev, &st->buffer,
pf->timestamp);
out_unlock_notify:
mutex_unlock(&st->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
#define ADXRS290_ANGL_VEL_CHANNEL(reg, axis) { \
.type = IIO_ANGL_VEL, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = ADXRS290_IDX_##axis, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec adxrs290_channels[] = {
ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAX0, X),
ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAY0, Y),
{
.type = IIO_TEMP,
.address = ADXRS290_REG_TEMP0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = ADXRS290_IDX_TEMP,
.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.endianness = IIO_LE,
},
},
IIO_CHAN_SOFT_TIMESTAMP(ADXRS290_IDX_TS),
};
static const unsigned long adxrs290_avail_scan_masks[] = {
BIT(ADXRS290_IDX_X) | BIT(ADXRS290_IDX_Y) | BIT(ADXRS290_IDX_TEMP),
0
};
static const struct iio_info adxrs290_info = {
.read_raw = &adxrs290_read_raw,
.write_raw = &adxrs290_write_raw,
.read_avail = &adxrs290_read_avail,
.debugfs_reg_access = &adxrs290_reg_access,
};
static int adxrs290_probe_trigger(struct iio_dev *indio_dev)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret;
if (!st->spi->irq) {
dev_info(&st->spi->dev, "no irq, using polling\n");
return 0;
}
st->dready_trig = devm_iio_trigger_alloc(&st->spi->dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!st->dready_trig)
return -ENOMEM;
st->dready_trig->ops = &adxrs290_trigger_ops;
iio_trigger_set_drvdata(st->dready_trig, indio_dev);
ret = devm_request_irq(&st->spi->dev, st->spi->irq,
&iio_trigger_generic_data_rdy_poll,
IRQF_ONESHOT, "adxrs290_irq", st->dready_trig);
if (ret < 0)
return dev_err_probe(&st->spi->dev, ret,
"request irq %d failed\n", st->spi->irq);
ret = devm_iio_trigger_register(&st->spi->dev, st->dready_trig);
if (ret) {
dev_err(&st->spi->dev, "iio trigger register failed\n");
return ret;
}
indio_dev->trig = iio_trigger_get(st->dready_trig);
return 0;
}
static int adxrs290_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct adxrs290_state *st;
u8 val, val2;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
indio_dev->name = "adxrs290";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adxrs290_channels;
indio_dev->num_channels = ARRAY_SIZE(adxrs290_channels);
indio_dev->info = &adxrs290_info;
indio_dev->available_scan_masks = adxrs290_avail_scan_masks;
mutex_init(&st->lock);
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_ADI_ID));
if (val != ADXRS290_ADI_ID) {
dev_err(&spi->dev, "Wrong ADI ID 0x%02x\n", val);
return -ENODEV;
}
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_MEMS_ID));
if (val != ADXRS290_MEMS_ID) {
dev_err(&spi->dev, "Wrong MEMS ID 0x%02x\n", val);
return -ENODEV;
}
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_DEV_ID));
if (val != ADXRS290_DEV_ID) {
dev_err(&spi->dev, "Wrong DEV ID 0x%02x\n", val);
return -ENODEV;
}
/* default mode the gyroscope starts in */
st->mode = ADXRS290_MODE_STANDBY;
/* switch to measurement mode and switch on the temperature sensor */
ret = adxrs290_initial_setup(indio_dev);
if (ret < 0)
return ret;
/* max transition time to measurement mode */
msleep(ADXRS290_MAX_TRANSITION_TIME_MS);
ret = adxrs290_get_3db_freq(indio_dev, &val, &val2);
if (ret < 0)
return ret;
st->lpf_3db_freq_idx = val;
st->hpf_3db_freq_idx = val2;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
&iio_pollfunc_store_time,
&adxrs290_trigger_handler, NULL);
if (ret < 0)
return dev_err_probe(&spi->dev, ret,
"iio triggered buffer setup failed\n");
ret = adxrs290_probe_trigger(indio_dev);
if (ret < 0)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id adxrs290_of_match[] = {
{ .compatible = "adi,adxrs290" },
{ }
};
MODULE_DEVICE_TABLE(of, adxrs290_of_match);
static struct spi_driver adxrs290_driver = {
.driver = {
.name = "adxrs290",
.of_match_table = adxrs290_of_match,
},
.probe = adxrs290_probe,
};
module_spi_driver(adxrs290_driver);
MODULE_AUTHOR("Nishant Malpani <nish.malpani25@gmail.com>");
MODULE_DESCRIPTION("Analog Devices ADXRS290 Gyroscope SPI driver");
MODULE_LICENSE("GPL");