| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * tools/testing/selftests/kvm/lib/x86_64/vmx.c |
| * |
| * Copyright (C) 2018, Google LLC. |
| */ |
| |
| #include "test_util.h" |
| #include "kvm_util.h" |
| #include "../kvm_util_internal.h" |
| #include "processor.h" |
| #include "vmx.h" |
| |
| #define PAGE_SHIFT_4K 12 |
| |
| #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000 |
| |
| bool enable_evmcs; |
| |
| struct hv_enlightened_vmcs *current_evmcs; |
| struct hv_vp_assist_page *current_vp_assist; |
| |
| struct eptPageTableEntry { |
| uint64_t readable:1; |
| uint64_t writable:1; |
| uint64_t executable:1; |
| uint64_t memory_type:3; |
| uint64_t ignore_pat:1; |
| uint64_t page_size:1; |
| uint64_t accessed:1; |
| uint64_t dirty:1; |
| uint64_t ignored_11_10:2; |
| uint64_t address:40; |
| uint64_t ignored_62_52:11; |
| uint64_t suppress_ve:1; |
| }; |
| |
| struct eptPageTablePointer { |
| uint64_t memory_type:3; |
| uint64_t page_walk_length:3; |
| uint64_t ad_enabled:1; |
| uint64_t reserved_11_07:5; |
| uint64_t address:40; |
| uint64_t reserved_63_52:12; |
| }; |
| int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id) |
| { |
| uint16_t evmcs_ver; |
| |
| struct kvm_enable_cap enable_evmcs_cap = { |
| .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS, |
| .args[0] = (unsigned long)&evmcs_ver |
| }; |
| |
| vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap); |
| |
| /* KVM should return supported EVMCS version range */ |
| TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) && |
| (evmcs_ver & 0xff) > 0, |
| "Incorrect EVMCS version range: %x:%x\n", |
| evmcs_ver & 0xff, evmcs_ver >> 8); |
| |
| return evmcs_ver; |
| } |
| |
| /* Allocate memory regions for nested VMX tests. |
| * |
| * Input Args: |
| * vm - The VM to allocate guest-virtual addresses in. |
| * |
| * Output Args: |
| * p_vmx_gva - The guest virtual address for the struct vmx_pages. |
| * |
| * Return: |
| * Pointer to structure with the addresses of the VMX areas. |
| */ |
| struct vmx_pages * |
| vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva) |
| { |
| vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva); |
| |
| /* Setup of a region of guest memory for the vmxon region. */ |
| vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon); |
| vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon); |
| |
| /* Setup of a region of guest memory for a vmcs. */ |
| vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs); |
| vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs); |
| |
| /* Setup of a region of guest memory for the MSR bitmap. */ |
| vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr); |
| vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr); |
| memset(vmx->msr_hva, 0, getpagesize()); |
| |
| /* Setup of a region of guest memory for the shadow VMCS. */ |
| vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs); |
| vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs); |
| |
| /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */ |
| vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread); |
| vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread); |
| memset(vmx->vmread_hva, 0, getpagesize()); |
| |
| vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite); |
| vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite); |
| memset(vmx->vmwrite_hva, 0, getpagesize()); |
| |
| /* Setup of a region of guest memory for the VP Assist page. */ |
| vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(), |
| 0x10000, 0, 0); |
| vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist); |
| vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist); |
| |
| /* Setup of a region of guest memory for the enlightened VMCS. */ |
| vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), |
| 0x10000, 0, 0); |
| vmx->enlightened_vmcs_hva = |
| addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs); |
| vmx->enlightened_vmcs_gpa = |
| addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs); |
| |
| *p_vmx_gva = vmx_gva; |
| return vmx; |
| } |
| |
| bool prepare_for_vmx_operation(struct vmx_pages *vmx) |
| { |
| uint64_t feature_control; |
| uint64_t required; |
| unsigned long cr0; |
| unsigned long cr4; |
| |
| /* |
| * Ensure bits in CR0 and CR4 are valid in VMX operation: |
| * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx. |
| * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx. |
| */ |
| __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory"); |
| cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1); |
| cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0); |
| __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory"); |
| |
| __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory"); |
| cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1); |
| cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0); |
| /* Enable VMX operation */ |
| cr4 |= X86_CR4_VMXE; |
| __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory"); |
| |
| /* |
| * Configure IA32_FEATURE_CONTROL MSR to allow VMXON: |
| * Bit 0: Lock bit. If clear, VMXON causes a #GP. |
| * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON |
| * outside of SMX causes a #GP. |
| */ |
| required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; |
| required |= FEAT_CTL_LOCKED; |
| feature_control = rdmsr(MSR_IA32_FEAT_CTL); |
| if ((feature_control & required) != required) |
| wrmsr(MSR_IA32_FEAT_CTL, feature_control | required); |
| |
| /* Enter VMX root operation. */ |
| *(uint32_t *)(vmx->vmxon) = vmcs_revision(); |
| if (vmxon(vmx->vmxon_gpa)) |
| return false; |
| |
| return true; |
| } |
| |
| bool load_vmcs(struct vmx_pages *vmx) |
| { |
| if (!enable_evmcs) { |
| /* Load a VMCS. */ |
| *(uint32_t *)(vmx->vmcs) = vmcs_revision(); |
| if (vmclear(vmx->vmcs_gpa)) |
| return false; |
| |
| if (vmptrld(vmx->vmcs_gpa)) |
| return false; |
| |
| /* Setup shadow VMCS, do not load it yet. */ |
| *(uint32_t *)(vmx->shadow_vmcs) = |
| vmcs_revision() | 0x80000000ul; |
| if (vmclear(vmx->shadow_vmcs_gpa)) |
| return false; |
| } else { |
| if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa, |
| vmx->enlightened_vmcs)) |
| return false; |
| current_evmcs->revision_id = EVMCS_VERSION; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Initialize the control fields to the most basic settings possible. |
| */ |
| static inline void init_vmcs_control_fields(struct vmx_pages *vmx) |
| { |
| uint32_t sec_exec_ctl = 0; |
| |
| vmwrite(VIRTUAL_PROCESSOR_ID, 0); |
| vmwrite(POSTED_INTR_NV, 0); |
| |
| vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS)); |
| |
| if (vmx->eptp_gpa) { |
| uint64_t ept_paddr; |
| struct eptPageTablePointer eptp = { |
| .memory_type = VMX_BASIC_MEM_TYPE_WB, |
| .page_walk_length = 3, /* + 1 */ |
| .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS), |
| .address = vmx->eptp_gpa >> PAGE_SHIFT_4K, |
| }; |
| |
| memcpy(&ept_paddr, &eptp, sizeof(ept_paddr)); |
| vmwrite(EPT_POINTER, ept_paddr); |
| sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT; |
| } |
| |
| if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl)) |
| vmwrite(CPU_BASED_VM_EXEC_CONTROL, |
| rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS); |
| else { |
| vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS)); |
| GUEST_ASSERT(!sec_exec_ctl); |
| } |
| |
| vmwrite(EXCEPTION_BITMAP, 0); |
| vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0); |
| vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */ |
| vmwrite(CR3_TARGET_COUNT, 0); |
| vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) | |
| VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */ |
| vmwrite(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0); |
| vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) | |
| VM_ENTRY_IA32E_MODE); /* 64-bit guest */ |
| vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0); |
| vmwrite(TPR_THRESHOLD, 0); |
| |
| vmwrite(CR0_GUEST_HOST_MASK, 0); |
| vmwrite(CR4_GUEST_HOST_MASK, 0); |
| vmwrite(CR0_READ_SHADOW, get_cr0()); |
| vmwrite(CR4_READ_SHADOW, get_cr4()); |
| |
| vmwrite(MSR_BITMAP, vmx->msr_gpa); |
| vmwrite(VMREAD_BITMAP, vmx->vmread_gpa); |
| vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa); |
| } |
| |
| /* |
| * Initialize the host state fields based on the current host state, with |
| * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch |
| * or vmresume. |
| */ |
| static inline void init_vmcs_host_state(void) |
| { |
| uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS); |
| |
| vmwrite(HOST_ES_SELECTOR, get_es()); |
| vmwrite(HOST_CS_SELECTOR, get_cs()); |
| vmwrite(HOST_SS_SELECTOR, get_ss()); |
| vmwrite(HOST_DS_SELECTOR, get_ds()); |
| vmwrite(HOST_FS_SELECTOR, get_fs()); |
| vmwrite(HOST_GS_SELECTOR, get_gs()); |
| vmwrite(HOST_TR_SELECTOR, get_tr()); |
| |
| if (exit_controls & VM_EXIT_LOAD_IA32_PAT) |
| vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT)); |
| if (exit_controls & VM_EXIT_LOAD_IA32_EFER) |
| vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER)); |
| if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| vmwrite(HOST_IA32_PERF_GLOBAL_CTRL, |
| rdmsr(MSR_CORE_PERF_GLOBAL_CTRL)); |
| |
| vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS)); |
| |
| vmwrite(HOST_CR0, get_cr0()); |
| vmwrite(HOST_CR3, get_cr3()); |
| vmwrite(HOST_CR4, get_cr4()); |
| vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE)); |
| vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE)); |
| vmwrite(HOST_TR_BASE, |
| get_desc64_base((struct desc64 *)(get_gdt().address + get_tr()))); |
| vmwrite(HOST_GDTR_BASE, get_gdt().address); |
| vmwrite(HOST_IDTR_BASE, get_idt().address); |
| vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP)); |
| vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP)); |
| } |
| |
| /* |
| * Initialize the guest state fields essentially as a clone of |
| * the host state fields. Some host state fields have fixed |
| * values, and we set the corresponding guest state fields accordingly. |
| */ |
| static inline void init_vmcs_guest_state(void *rip, void *rsp) |
| { |
| vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR)); |
| vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR)); |
| vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR)); |
| vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR)); |
| vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR)); |
| vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR)); |
| vmwrite(GUEST_LDTR_SELECTOR, 0); |
| vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR)); |
| vmwrite(GUEST_INTR_STATUS, 0); |
| vmwrite(GUEST_PML_INDEX, 0); |
| |
| vmwrite(VMCS_LINK_POINTER, -1ll); |
| vmwrite(GUEST_IA32_DEBUGCTL, 0); |
| vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT)); |
| vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER)); |
| vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL, |
| vmreadz(HOST_IA32_PERF_GLOBAL_CTRL)); |
| |
| vmwrite(GUEST_ES_LIMIT, -1); |
| vmwrite(GUEST_CS_LIMIT, -1); |
| vmwrite(GUEST_SS_LIMIT, -1); |
| vmwrite(GUEST_DS_LIMIT, -1); |
| vmwrite(GUEST_FS_LIMIT, -1); |
| vmwrite(GUEST_GS_LIMIT, -1); |
| vmwrite(GUEST_LDTR_LIMIT, -1); |
| vmwrite(GUEST_TR_LIMIT, 0x67); |
| vmwrite(GUEST_GDTR_LIMIT, 0xffff); |
| vmwrite(GUEST_IDTR_LIMIT, 0xffff); |
| vmwrite(GUEST_ES_AR_BYTES, |
| vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093); |
| vmwrite(GUEST_CS_AR_BYTES, 0xa09b); |
| vmwrite(GUEST_SS_AR_BYTES, 0xc093); |
| vmwrite(GUEST_DS_AR_BYTES, |
| vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093); |
| vmwrite(GUEST_FS_AR_BYTES, |
| vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093); |
| vmwrite(GUEST_GS_AR_BYTES, |
| vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093); |
| vmwrite(GUEST_LDTR_AR_BYTES, 0x10000); |
| vmwrite(GUEST_TR_AR_BYTES, 0x8b); |
| vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0); |
| vmwrite(GUEST_ACTIVITY_STATE, 0); |
| vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS)); |
| vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0); |
| |
| vmwrite(GUEST_CR0, vmreadz(HOST_CR0)); |
| vmwrite(GUEST_CR3, vmreadz(HOST_CR3)); |
| vmwrite(GUEST_CR4, vmreadz(HOST_CR4)); |
| vmwrite(GUEST_ES_BASE, 0); |
| vmwrite(GUEST_CS_BASE, 0); |
| vmwrite(GUEST_SS_BASE, 0); |
| vmwrite(GUEST_DS_BASE, 0); |
| vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE)); |
| vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE)); |
| vmwrite(GUEST_LDTR_BASE, 0); |
| vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE)); |
| vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE)); |
| vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE)); |
| vmwrite(GUEST_DR7, 0x400); |
| vmwrite(GUEST_RSP, (uint64_t)rsp); |
| vmwrite(GUEST_RIP, (uint64_t)rip); |
| vmwrite(GUEST_RFLAGS, 2); |
| vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP)); |
| vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP)); |
| } |
| |
| void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp) |
| { |
| init_vmcs_control_fields(vmx); |
| init_vmcs_host_state(); |
| init_vmcs_guest_state(guest_rip, guest_rsp); |
| } |
| |
| bool nested_vmx_supported(void) |
| { |
| struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1); |
| |
| return entry->ecx & CPUID_VMX; |
| } |
| |
| void nested_vmx_check_supported(void) |
| { |
| if (!nested_vmx_supported()) { |
| print_skip("nested VMX not enabled"); |
| exit(KSFT_SKIP); |
| } |
| } |
| |
| void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm, |
| uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot) |
| { |
| uint16_t index[4]; |
| struct eptPageTableEntry *pml4e; |
| |
| TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " |
| "unknown or unsupported guest mode, mode: 0x%x", vm->mode); |
| |
| TEST_ASSERT((nested_paddr % vm->page_size) == 0, |
| "Nested physical address not on page boundary,\n" |
| " nested_paddr: 0x%lx vm->page_size: 0x%x", |
| nested_paddr, vm->page_size); |
| TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn, |
| "Physical address beyond beyond maximum supported,\n" |
| " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", |
| paddr, vm->max_gfn, vm->page_size); |
| TEST_ASSERT((paddr % vm->page_size) == 0, |
| "Physical address not on page boundary,\n" |
| " paddr: 0x%lx vm->page_size: 0x%x", |
| paddr, vm->page_size); |
| TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, |
| "Physical address beyond beyond maximum supported,\n" |
| " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", |
| paddr, vm->max_gfn, vm->page_size); |
| |
| index[0] = (nested_paddr >> 12) & 0x1ffu; |
| index[1] = (nested_paddr >> 21) & 0x1ffu; |
| index[2] = (nested_paddr >> 30) & 0x1ffu; |
| index[3] = (nested_paddr >> 39) & 0x1ffu; |
| |
| /* Allocate page directory pointer table if not present. */ |
| pml4e = vmx->eptp_hva; |
| if (!pml4e[index[3]].readable) { |
| pml4e[index[3]].address = vm_phy_page_alloc(vm, |
| KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) |
| >> vm->page_shift; |
| pml4e[index[3]].writable = true; |
| pml4e[index[3]].readable = true; |
| pml4e[index[3]].executable = true; |
| } |
| |
| /* Allocate page directory table if not present. */ |
| struct eptPageTableEntry *pdpe; |
| pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); |
| if (!pdpe[index[2]].readable) { |
| pdpe[index[2]].address = vm_phy_page_alloc(vm, |
| KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) |
| >> vm->page_shift; |
| pdpe[index[2]].writable = true; |
| pdpe[index[2]].readable = true; |
| pdpe[index[2]].executable = true; |
| } |
| |
| /* Allocate page table if not present. */ |
| struct eptPageTableEntry *pde; |
| pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); |
| if (!pde[index[1]].readable) { |
| pde[index[1]].address = vm_phy_page_alloc(vm, |
| KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) |
| >> vm->page_shift; |
| pde[index[1]].writable = true; |
| pde[index[1]].readable = true; |
| pde[index[1]].executable = true; |
| } |
| |
| /* Fill in page table entry. */ |
| struct eptPageTableEntry *pte; |
| pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); |
| pte[index[0]].address = paddr >> vm->page_shift; |
| pte[index[0]].writable = true; |
| pte[index[0]].readable = true; |
| pte[index[0]].executable = true; |
| |
| /* |
| * For now mark these as accessed and dirty because the only |
| * testcase we have needs that. Can be reconsidered later. |
| */ |
| pte[index[0]].accessed = true; |
| pte[index[0]].dirty = true; |
| } |
| |
| /* |
| * Map a range of EPT guest physical addresses to the VM's physical address |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * nested_paddr - Nested guest physical address to map |
| * paddr - VM Physical Address |
| * size - The size of the range to map |
| * eptp_memslot - Memory region slot for new virtual translation tables |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Within the VM given by vm, creates a nested guest translation for the |
| * page range starting at nested_paddr to the page range starting at paddr. |
| */ |
| void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm, |
| uint64_t nested_paddr, uint64_t paddr, uint64_t size, |
| uint32_t eptp_memslot) |
| { |
| size_t page_size = vm->page_size; |
| size_t npages = size / page_size; |
| |
| TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow"); |
| TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); |
| |
| while (npages--) { |
| nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot); |
| nested_paddr += page_size; |
| paddr += page_size; |
| } |
| } |
| |
| /* Prepare an identity extended page table that maps all the |
| * physical pages in VM. |
| */ |
| void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm, |
| uint32_t memslot, uint32_t eptp_memslot) |
| { |
| sparsebit_idx_t i, last; |
| struct userspace_mem_region *region = |
| memslot2region(vm, memslot); |
| |
| i = (region->region.guest_phys_addr >> vm->page_shift) - 1; |
| last = i + (region->region.memory_size >> vm->page_shift); |
| for (;;) { |
| i = sparsebit_next_clear(region->unused_phy_pages, i); |
| if (i > last) |
| break; |
| |
| nested_map(vmx, vm, |
| (uint64_t)i << vm->page_shift, |
| (uint64_t)i << vm->page_shift, |
| 1 << vm->page_shift, |
| eptp_memslot); |
| } |
| } |
| |
| void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm, |
| uint32_t eptp_memslot) |
| { |
| vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); |
| vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp); |
| vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp); |
| } |
| |
| void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm, |
| uint32_t eptp_memslot) |
| { |
| vmx->apic_access = (void *)vm_vaddr_alloc(vm, getpagesize(), |
| 0x10000, 0, 0); |
| vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access); |
| vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access); |
| } |