| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/mm/fault.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Modifications for ARM processor (c) 1995-2004 Russell King |
| */ |
| #include <linux/extable.h> |
| #include <linux/signal.h> |
| #include <linux/mm.h> |
| #include <linux/hardirq.h> |
| #include <linux/init.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/page-flags.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/debug.h> |
| #include <linux/highmem.h> |
| #include <linux/perf_event.h> |
| #include <linux/kfence.h> |
| |
| #include <asm/system_misc.h> |
| #include <asm/system_info.h> |
| #include <asm/tlbflush.h> |
| |
| #include "fault.h" |
| |
| #ifdef CONFIG_MMU |
| |
| bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size) |
| { |
| unsigned long addr = (unsigned long)unsafe_src; |
| |
| return addr >= TASK_SIZE && ULONG_MAX - addr >= size; |
| } |
| |
| /* |
| * This is useful to dump out the page tables associated with |
| * 'addr' in mm 'mm'. |
| */ |
| void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| |
| if (!mm) |
| mm = &init_mm; |
| |
| pgd = pgd_offset(mm, addr); |
| printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); |
| |
| do { |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| p4d = p4d_offset(pgd, addr); |
| if (p4d_none(*p4d)) |
| break; |
| |
| if (p4d_bad(*p4d)) { |
| pr_cont("(bad)"); |
| break; |
| } |
| |
| pud = pud_offset(p4d, addr); |
| if (PTRS_PER_PUD != 1) |
| pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); |
| |
| if (pud_none(*pud)) |
| break; |
| |
| if (pud_bad(*pud)) { |
| pr_cont("(bad)"); |
| break; |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| if (PTRS_PER_PMD != 1) |
| pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); |
| |
| if (pmd_none(*pmd)) |
| break; |
| |
| if (pmd_bad(*pmd)) { |
| pr_cont("(bad)"); |
| break; |
| } |
| |
| /* We must not map this if we have highmem enabled */ |
| if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) |
| break; |
| |
| pte = pte_offset_map(pmd, addr); |
| if (!pte) |
| break; |
| |
| pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); |
| #ifndef CONFIG_ARM_LPAE |
| pr_cont(", *ppte=%08llx", |
| (long long)pte_val(pte[PTE_HWTABLE_PTRS])); |
| #endif |
| pte_unmap(pte); |
| } while(0); |
| |
| pr_cont("\n"); |
| } |
| #else /* CONFIG_MMU */ |
| void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) |
| { } |
| #endif /* CONFIG_MMU */ |
| |
| static inline bool is_write_fault(unsigned int fsr) |
| { |
| return (fsr & FSR_WRITE) && !(fsr & FSR_CM); |
| } |
| |
| static inline bool is_translation_fault(unsigned int fsr) |
| { |
| int fs = fsr_fs(fsr); |
| #ifdef CONFIG_ARM_LPAE |
| if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) |
| return true; |
| #else |
| if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static void die_kernel_fault(const char *msg, struct mm_struct *mm, |
| unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| bust_spinlocks(1); |
| pr_alert("8<--- cut here ---\n"); |
| pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", |
| msg, addr, fsr & FSR_LNX_PF ? "execute" : |
| fsr & FSR_WRITE ? "write" : "read"); |
| |
| show_pte(KERN_ALERT, mm, addr); |
| die("Oops", regs, fsr); |
| bust_spinlocks(0); |
| make_task_dead(SIGKILL); |
| } |
| |
| /* |
| * Oops. The kernel tried to access some page that wasn't present. |
| */ |
| static void |
| __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| const char *msg; |
| /* |
| * Are we prepared to handle this kernel fault? |
| */ |
| if (fixup_exception(regs)) |
| return; |
| |
| /* |
| * No handler, we'll have to terminate things with extreme prejudice. |
| */ |
| if (addr < PAGE_SIZE) { |
| msg = "NULL pointer dereference"; |
| } else { |
| if (is_translation_fault(fsr) && |
| kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) |
| return; |
| |
| msg = "paging request"; |
| } |
| |
| die_kernel_fault(msg, mm, addr, fsr, regs); |
| } |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * User mode accesses just cause a SIGSEGV |
| */ |
| static void |
| __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, |
| int code, struct pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| |
| if (addr > TASK_SIZE) |
| harden_branch_predictor(); |
| |
| #ifdef CONFIG_DEBUG_USER |
| if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || |
| ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { |
| pr_err("8<--- cut here ---\n"); |
| pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", |
| tsk->comm, sig, addr, fsr); |
| show_pte(KERN_ERR, tsk->mm, addr); |
| show_regs(regs); |
| } |
| #endif |
| #ifndef CONFIG_KUSER_HELPERS |
| if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) |
| printk_ratelimited(KERN_DEBUG |
| "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", |
| tsk->comm, addr); |
| #endif |
| |
| tsk->thread.address = addr; |
| tsk->thread.error_code = fsr; |
| tsk->thread.trap_no = 14; |
| force_sig_fault(sig, code, (void __user *)addr); |
| } |
| |
| void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->active_mm; |
| |
| /* |
| * If we are in kernel mode at this point, we |
| * have no context to handle this fault with. |
| */ |
| if (user_mode(regs)) |
| __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); |
| else |
| __do_kernel_fault(mm, addr, fsr, regs); |
| } |
| |
| #ifdef CONFIG_MMU |
| static inline bool is_permission_fault(unsigned int fsr) |
| { |
| int fs = fsr_fs(fsr); |
| #ifdef CONFIG_ARM_LPAE |
| if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) |
| return true; |
| #else |
| if (fs == FS_L1_PERM || fs == FS_L2_PERM) |
| return true; |
| #endif |
| return false; |
| } |
| |
| #ifdef CONFIG_CPU_TTBR0_PAN |
| static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) |
| { |
| struct svc_pt_regs *svcregs; |
| |
| /* If we are in user mode: permission granted */ |
| if (user_mode(regs)) |
| return true; |
| |
| /* uaccess state saved above pt_regs on SVC exception entry */ |
| svcregs = to_svc_pt_regs(regs); |
| |
| return !(svcregs->ttbcr & TTBCR_EPD0); |
| } |
| #else |
| static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) |
| { |
| return true; |
| } |
| #endif |
| |
| static int __kprobes |
| do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| int sig, code; |
| vm_fault_t fault; |
| unsigned int flags = FAULT_FLAG_DEFAULT; |
| unsigned long vm_flags = VM_ACCESS_FLAGS; |
| |
| if (kprobe_page_fault(regs, fsr)) |
| return 0; |
| |
| |
| /* Enable interrupts if they were enabled in the parent context. */ |
| if (interrupts_enabled(regs)) |
| local_irq_enable(); |
| |
| /* |
| * If we're in an interrupt or have no user |
| * context, we must not take the fault.. |
| */ |
| if (faulthandler_disabled() || !mm) |
| goto no_context; |
| |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| |
| if (is_write_fault(fsr)) { |
| flags |= FAULT_FLAG_WRITE; |
| vm_flags = VM_WRITE; |
| } |
| |
| if (fsr & FSR_LNX_PF) { |
| vm_flags = VM_EXEC; |
| |
| if (is_permission_fault(fsr) && !user_mode(regs)) |
| die_kernel_fault("execution of memory", |
| mm, addr, fsr, regs); |
| } |
| |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); |
| |
| /* |
| * Privileged access aborts with CONFIG_CPU_TTBR0_PAN enabled are |
| * routed via the translation fault mechanism. Check whether uaccess |
| * is disabled while in kernel mode. |
| */ |
| if (!ttbr0_usermode_access_allowed(regs)) |
| goto no_context; |
| |
| if (!(flags & FAULT_FLAG_USER)) |
| goto lock_mmap; |
| |
| vma = lock_vma_under_rcu(mm, addr); |
| if (!vma) |
| goto lock_mmap; |
| |
| if (!(vma->vm_flags & vm_flags)) { |
| vma_end_read(vma); |
| count_vm_vma_lock_event(VMA_LOCK_SUCCESS); |
| fault = 0; |
| code = SEGV_ACCERR; |
| goto bad_area; |
| } |
| fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs); |
| if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) |
| vma_end_read(vma); |
| |
| if (!(fault & VM_FAULT_RETRY)) { |
| count_vm_vma_lock_event(VMA_LOCK_SUCCESS); |
| goto done; |
| } |
| count_vm_vma_lock_event(VMA_LOCK_RETRY); |
| if (fault & VM_FAULT_MAJOR) |
| flags |= FAULT_FLAG_TRIED; |
| |
| /* Quick path to respond to signals */ |
| if (fault_signal_pending(fault, regs)) { |
| if (!user_mode(regs)) |
| goto no_context; |
| return 0; |
| } |
| lock_mmap: |
| |
| retry: |
| vma = lock_mm_and_find_vma(mm, addr, regs); |
| if (unlikely(!vma)) { |
| fault = 0; |
| code = SEGV_MAPERR; |
| goto bad_area; |
| } |
| |
| /* |
| * ok, we have a good vm_area for this memory access, check the |
| * permissions on the VMA allow for the fault which occurred. |
| */ |
| if (!(vma->vm_flags & vm_flags)) { |
| mmap_read_unlock(mm); |
| fault = 0; |
| code = SEGV_ACCERR; |
| goto bad_area; |
| } |
| |
| fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); |
| |
| /* If we need to retry but a fatal signal is pending, handle the |
| * signal first. We do not need to release the mmap_lock because |
| * it would already be released in __lock_page_or_retry in |
| * mm/filemap.c. */ |
| if (fault_signal_pending(fault, regs)) { |
| if (!user_mode(regs)) |
| goto no_context; |
| return 0; |
| } |
| |
| /* The fault is fully completed (including releasing mmap lock) */ |
| if (fault & VM_FAULT_COMPLETED) |
| return 0; |
| |
| if (!(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_RETRY) { |
| flags |= FAULT_FLAG_TRIED; |
| goto retry; |
| } |
| } |
| |
| mmap_read_unlock(mm); |
| done: |
| |
| /* Handle the "normal" case first */ |
| if (likely(!(fault & VM_FAULT_ERROR))) |
| return 0; |
| |
| code = SEGV_MAPERR; |
| bad_area: |
| /* |
| * If we are in kernel mode at this point, we |
| * have no context to handle this fault with. |
| */ |
| if (!user_mode(regs)) |
| goto no_context; |
| |
| if (fault & VM_FAULT_OOM) { |
| /* |
| * We ran out of memory, call the OOM killer, and return to |
| * userspace (which will retry the fault, or kill us if we |
| * got oom-killed) |
| */ |
| pagefault_out_of_memory(); |
| return 0; |
| } |
| |
| if (fault & VM_FAULT_SIGBUS) { |
| /* |
| * We had some memory, but were unable to |
| * successfully fix up this page fault. |
| */ |
| sig = SIGBUS; |
| code = BUS_ADRERR; |
| } else { |
| /* |
| * Something tried to access memory that |
| * isn't in our memory map.. |
| */ |
| sig = SIGSEGV; |
| } |
| |
| __do_user_fault(addr, fsr, sig, code, regs); |
| return 0; |
| |
| no_context: |
| __do_kernel_fault(mm, addr, fsr, regs); |
| return 0; |
| } |
| #else /* CONFIG_MMU */ |
| static int |
| do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| /* |
| * First Level Translation Fault Handler |
| * |
| * We enter here because the first level page table doesn't contain |
| * a valid entry for the address. |
| * |
| * If the address is in kernel space (>= TASK_SIZE), then we are |
| * probably faulting in the vmalloc() area. |
| * |
| * If the init_task's first level page tables contains the relevant |
| * entry, we copy the it to this task. If not, we send the process |
| * a signal, fixup the exception, or oops the kernel. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may be in an |
| * interrupt or a critical region, and should only copy the information |
| * from the master page table, nothing more. |
| */ |
| #ifdef CONFIG_MMU |
| static int __kprobes |
| do_translation_fault(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| unsigned int index; |
| pgd_t *pgd, *pgd_k; |
| p4d_t *p4d, *p4d_k; |
| pud_t *pud, *pud_k; |
| pmd_t *pmd, *pmd_k; |
| |
| if (addr < TASK_SIZE) |
| return do_page_fault(addr, fsr, regs); |
| |
| if (user_mode(regs)) |
| goto bad_area; |
| |
| index = pgd_index(addr); |
| |
| pgd = cpu_get_pgd() + index; |
| pgd_k = init_mm.pgd + index; |
| |
| p4d = p4d_offset(pgd, addr); |
| p4d_k = p4d_offset(pgd_k, addr); |
| |
| if (p4d_none(*p4d_k)) |
| goto bad_area; |
| if (!p4d_present(*p4d)) |
| set_p4d(p4d, *p4d_k); |
| |
| pud = pud_offset(p4d, addr); |
| pud_k = pud_offset(p4d_k, addr); |
| |
| if (pud_none(*pud_k)) |
| goto bad_area; |
| if (!pud_present(*pud)) |
| set_pud(pud, *pud_k); |
| |
| pmd = pmd_offset(pud, addr); |
| pmd_k = pmd_offset(pud_k, addr); |
| |
| #ifdef CONFIG_ARM_LPAE |
| /* |
| * Only one hardware entry per PMD with LPAE. |
| */ |
| index = 0; |
| #else |
| /* |
| * On ARM one Linux PGD entry contains two hardware entries (see page |
| * tables layout in pgtable.h). We normally guarantee that we always |
| * fill both L1 entries. But create_mapping() doesn't follow the rule. |
| * It can create inidividual L1 entries, so here we have to call |
| * pmd_none() check for the entry really corresponded to address, not |
| * for the first of pair. |
| */ |
| index = (addr >> SECTION_SHIFT) & 1; |
| #endif |
| if (pmd_none(pmd_k[index])) |
| goto bad_area; |
| |
| copy_pmd(pmd, pmd_k); |
| return 0; |
| |
| bad_area: |
| do_bad_area(addr, fsr, regs); |
| return 0; |
| } |
| #else /* CONFIG_MMU */ |
| static int |
| do_translation_fault(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| /* |
| * Some section permission faults need to be handled gracefully. |
| * They can happen due to a __{get,put}_user during an oops. |
| */ |
| #ifndef CONFIG_ARM_LPAE |
| static int |
| do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| do_bad_area(addr, fsr, regs); |
| return 0; |
| } |
| #endif /* CONFIG_ARM_LPAE */ |
| |
| /* |
| * This abort handler always returns "fault". |
| */ |
| static int |
| do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| return 1; |
| } |
| |
| struct fsr_info { |
| int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); |
| int sig; |
| int code; |
| const char *name; |
| }; |
| |
| /* FSR definition */ |
| #ifdef CONFIG_ARM_LPAE |
| #include "fsr-3level.c" |
| #else |
| #include "fsr-2level.c" |
| #endif |
| |
| void __init |
| hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), |
| int sig, int code, const char *name) |
| { |
| if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) |
| BUG(); |
| |
| fsr_info[nr].fn = fn; |
| fsr_info[nr].sig = sig; |
| fsr_info[nr].code = code; |
| fsr_info[nr].name = name; |
| } |
| |
| /* |
| * Dispatch a data abort to the relevant handler. |
| */ |
| asmlinkage void |
| do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| const struct fsr_info *inf = fsr_info + fsr_fs(fsr); |
| |
| if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) |
| return; |
| |
| pr_alert("8<--- cut here ---\n"); |
| pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", |
| inf->name, fsr, addr); |
| show_pte(KERN_ALERT, current->mm, addr); |
| |
| arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, |
| fsr, 0); |
| } |
| |
| void __init |
| hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), |
| int sig, int code, const char *name) |
| { |
| if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) |
| BUG(); |
| |
| ifsr_info[nr].fn = fn; |
| ifsr_info[nr].sig = sig; |
| ifsr_info[nr].code = code; |
| ifsr_info[nr].name = name; |
| } |
| |
| asmlinkage void |
| do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) |
| { |
| const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); |
| |
| if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) |
| return; |
| |
| pr_alert("8<--- cut here ---\n"); |
| pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", |
| inf->name, ifsr, addr); |
| |
| arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, |
| ifsr, 0); |
| } |
| |
| /* |
| * Abort handler to be used only during first unmasking of asynchronous aborts |
| * on the boot CPU. This makes sure that the machine will not die if the |
| * firmware/bootloader left an imprecise abort pending for us to trip over. |
| */ |
| static int __init early_abort_handler(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " |
| "first unmask, this is most likely caused by a " |
| "firmware/bootloader bug.\n", fsr); |
| |
| return 0; |
| } |
| |
| void __init early_abt_enable(void) |
| { |
| fsr_info[FSR_FS_AEA].fn = early_abort_handler; |
| local_abt_enable(); |
| fsr_info[FSR_FS_AEA].fn = do_bad; |
| } |
| |
| #ifndef CONFIG_ARM_LPAE |
| static int __init exceptions_init(void) |
| { |
| if (cpu_architecture() >= CPU_ARCH_ARMv6) { |
| hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, |
| "I-cache maintenance fault"); |
| } |
| |
| if (cpu_architecture() >= CPU_ARCH_ARMv7) { |
| /* |
| * TODO: Access flag faults introduced in ARMv6K. |
| * Runtime check for 'K' extension is needed |
| */ |
| hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, |
| "section access flag fault"); |
| hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, |
| "section access flag fault"); |
| } |
| |
| return 0; |
| } |
| |
| arch_initcall(exceptions_init); |
| #endif |