| /* |
| Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver |
| |
| Copyright (C) 2005 Steven Toth <stoth@hauppauge.com> |
| |
| Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| |
| #include "dvb_frontend.h" |
| #include "cx24123.h" |
| |
| #define XTAL 10111000 |
| |
| static int force_band; |
| static int debug; |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) printk (KERN_DEBUG "cx24123: " args); \ |
| } while (0) |
| |
| struct cx24123_state |
| { |
| struct i2c_adapter* i2c; |
| struct dvb_frontend_ops ops; |
| const struct cx24123_config* config; |
| |
| struct dvb_frontend frontend; |
| |
| u32 lastber; |
| u16 snr; |
| |
| /* Some PLL specifics for tuning */ |
| u32 VCAarg; |
| u32 VGAarg; |
| u32 bandselectarg; |
| u32 pllarg; |
| u32 FILTune; |
| |
| /* The Demod/Tuner can't easily provide these, we cache them */ |
| u32 currentfreq; |
| u32 currentsymbolrate; |
| }; |
| |
| /* Various tuner defaults need to be established for a given symbol rate Sps */ |
| static struct |
| { |
| u32 symbolrate_low; |
| u32 symbolrate_high; |
| u32 VCAprogdata; |
| u32 VGAprogdata; |
| u32 FILTune; |
| } cx24123_AGC_vals[] = |
| { |
| { |
| .symbolrate_low = 1000000, |
| .symbolrate_high = 4999999, |
| /* the specs recommend other values for VGA offsets, |
| but tests show they are wrong */ |
| .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07, |
| .FILTune = 0x27f /* 0.41 V */ |
| }, |
| { |
| .symbolrate_low = 5000000, |
| .symbolrate_high = 14999999, |
| .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f, |
| .FILTune = 0x317 /* 0.90 V */ |
| }, |
| { |
| .symbolrate_low = 15000000, |
| .symbolrate_high = 45000000, |
| .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f, |
| .FILTune = 0x145 /* 2.70 V */ |
| }, |
| }; |
| |
| /* |
| * Various tuner defaults need to be established for a given frequency kHz. |
| * fixme: The bounds on the bands do not match the doc in real life. |
| * fixme: Some of them have been moved, other might need adjustment. |
| */ |
| static struct |
| { |
| u32 freq_low; |
| u32 freq_high; |
| u32 VCOdivider; |
| u32 progdata; |
| } cx24123_bandselect_vals[] = |
| { |
| /* band 1 */ |
| { |
| .freq_low = 950000, |
| .freq_high = 1074999, |
| .VCOdivider = 4, |
| .progdata = (0 << 19) | (0 << 9) | 0x40, |
| }, |
| |
| /* band 2 */ |
| { |
| .freq_low = 1075000, |
| .freq_high = 1177999, |
| .VCOdivider = 4, |
| .progdata = (0 << 19) | (0 << 9) | 0x80, |
| }, |
| |
| /* band 3 */ |
| { |
| .freq_low = 1178000, |
| .freq_high = 1295999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x01, |
| }, |
| |
| /* band 4 */ |
| { |
| .freq_low = 1296000, |
| .freq_high = 1431999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x02, |
| }, |
| |
| /* band 5 */ |
| { |
| .freq_low = 1432000, |
| .freq_high = 1575999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x04, |
| }, |
| |
| /* band 6 */ |
| { |
| .freq_low = 1576000, |
| .freq_high = 1717999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x08, |
| }, |
| |
| /* band 7 */ |
| { |
| .freq_low = 1718000, |
| .freq_high = 1855999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x10, |
| }, |
| |
| /* band 8 */ |
| { |
| .freq_low = 1856000, |
| .freq_high = 2035999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x20, |
| }, |
| |
| /* band 9 */ |
| { |
| .freq_low = 2036000, |
| .freq_high = 2150000, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x40, |
| }, |
| }; |
| |
| static struct { |
| u8 reg; |
| u8 data; |
| } cx24123_regdata[] = |
| { |
| {0x00, 0x03}, /* Reset system */ |
| {0x00, 0x00}, /* Clear reset */ |
| {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */ |
| {0x04, 0x10}, /* MPEG */ |
| {0x05, 0x04}, /* MPEG */ |
| {0x06, 0x31}, /* MPEG (default) */ |
| {0x0b, 0x00}, /* Freq search start point (default) */ |
| {0x0c, 0x00}, /* Demodulator sample gain (default) */ |
| {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */ |
| {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */ |
| {0x0f, 0xfe}, /* FEC search mask (all supported codes) */ |
| {0x10, 0x01}, /* Default search inversion, no repeat (default) */ |
| {0x16, 0x00}, /* Enable reading of frequency */ |
| {0x17, 0x01}, /* Enable EsNO Ready Counter */ |
| {0x1c, 0x80}, /* Enable error counter */ |
| {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */ |
| {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */ |
| {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */ |
| {0x29, 0x00}, /* DiSEqC LNB_DC off */ |
| {0x2a, 0xb0}, /* DiSEqC Parameters (default) */ |
| {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */ |
| {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */ |
| {0x2d, 0x00}, |
| {0x2e, 0x00}, |
| {0x2f, 0x00}, |
| {0x30, 0x00}, |
| {0x31, 0x00}, |
| {0x32, 0x8c}, /* DiSEqC Parameters (default) */ |
| {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */ |
| {0x34, 0x00}, |
| {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */ |
| {0x36, 0x02}, /* DiSEqC Parameters (default) */ |
| {0x37, 0x3a}, /* DiSEqC Parameters (default) */ |
| {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */ |
| {0x44, 0x00}, /* Constellation (default) */ |
| {0x45, 0x00}, /* Symbol count (default) */ |
| {0x46, 0x0d}, /* Symbol rate estimator on (default) */ |
| {0x56, 0x41}, /* Various (default) */ |
| {0x57, 0xff}, /* Error Counter Window (default) */ |
| {0x67, 0x83}, /* Non-DCII symbol clock */ |
| }; |
| |
| static int cx24123_writereg(struct cx24123_state* state, int reg, int data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; |
| int err; |
| |
| if (debug>1) |
| printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n", |
| __FUNCTION__,reg, data); |
| |
| if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { |
| printk("%s: writereg error(err == %i, reg == 0x%02x," |
| " data == 0x%02x)\n", __FUNCTION__, err, reg, data); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_readreg(struct cx24123_state* state, u8 reg) |
| { |
| int ret; |
| u8 b0[] = { reg }; |
| u8 b1[] = { 0 }; |
| struct i2c_msg msg[] = { |
| { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, |
| { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } |
| }; |
| |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret); |
| return ret; |
| } |
| |
| if (debug>1) |
| printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret); |
| |
| return b1[0]; |
| } |
| |
| static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion) |
| { |
| u8 nom_reg = cx24123_readreg(state, 0x0e); |
| u8 auto_reg = cx24123_readreg(state, 0x10); |
| |
| switch (inversion) { |
| case INVERSION_OFF: |
| dprintk("%s: inversion off\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg & ~0x80); |
| cx24123_writereg(state, 0x10, auto_reg | 0x80); |
| break; |
| case INVERSION_ON: |
| dprintk("%s: inversion on\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x80); |
| cx24123_writereg(state, 0x10, auto_reg | 0x80); |
| break; |
| case INVERSION_AUTO: |
| dprintk("%s: inversion auto\n",__FUNCTION__); |
| cx24123_writereg(state, 0x10, auto_reg & ~0x80); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion) |
| { |
| u8 val; |
| |
| val = cx24123_readreg(state, 0x1b) >> 7; |
| |
| if (val == 0) { |
| dprintk("%s: read inversion off\n",__FUNCTION__); |
| *inversion = INVERSION_OFF; |
| } else { |
| dprintk("%s: read inversion on\n",__FUNCTION__); |
| *inversion = INVERSION_ON; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec) |
| { |
| u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07; |
| |
| if ( (fec < FEC_NONE) || (fec > FEC_AUTO) ) |
| fec = FEC_AUTO; |
| |
| switch (fec) { |
| case FEC_1_2: |
| dprintk("%s: set FEC to 1/2\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x01); |
| cx24123_writereg(state, 0x0f, 0x02); |
| break; |
| case FEC_2_3: |
| dprintk("%s: set FEC to 2/3\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x02); |
| cx24123_writereg(state, 0x0f, 0x04); |
| break; |
| case FEC_3_4: |
| dprintk("%s: set FEC to 3/4\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x03); |
| cx24123_writereg(state, 0x0f, 0x08); |
| break; |
| case FEC_4_5: |
| dprintk("%s: set FEC to 4/5\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x04); |
| cx24123_writereg(state, 0x0f, 0x10); |
| break; |
| case FEC_5_6: |
| dprintk("%s: set FEC to 5/6\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x05); |
| cx24123_writereg(state, 0x0f, 0x20); |
| break; |
| case FEC_6_7: |
| dprintk("%s: set FEC to 6/7\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x06); |
| cx24123_writereg(state, 0x0f, 0x40); |
| break; |
| case FEC_7_8: |
| dprintk("%s: set FEC to 7/8\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x07); |
| cx24123_writereg(state, 0x0f, 0x80); |
| break; |
| case FEC_AUTO: |
| dprintk("%s: set FEC to auto\n",__FUNCTION__); |
| cx24123_writereg(state, 0x0f, 0xfe); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec) |
| { |
| int ret; |
| |
| ret = cx24123_readreg (state, 0x1b); |
| if (ret < 0) |
| return ret; |
| ret = ret & 0x07; |
| |
| switch (ret) { |
| case 1: |
| *fec = FEC_1_2; |
| break; |
| case 2: |
| *fec = FEC_2_3; |
| break; |
| case 3: |
| *fec = FEC_3_4; |
| break; |
| case 4: |
| *fec = FEC_4_5; |
| break; |
| case 5: |
| *fec = FEC_5_6; |
| break; |
| case 6: |
| *fec = FEC_6_7; |
| break; |
| case 7: |
| *fec = FEC_7_8; |
| break; |
| default: |
| /* this can happen when there's no lock */ |
| *fec = FEC_NONE; |
| } |
| |
| return 0; |
| } |
| |
| /* Approximation of closest integer of log2(a/b). It actually gives the |
| lowest integer i such that 2^i >= round(a/b) */ |
| static u32 cx24123_int_log2(u32 a, u32 b) |
| { |
| u32 exp, nearest = 0; |
| u32 div = a / b; |
| if(a % b >= b / 2) ++div; |
| if(div < (1 << 31)) |
| { |
| for(exp = 1; div > exp; nearest++) |
| exp += exp; |
| } |
| return nearest; |
| } |
| |
| static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate) |
| { |
| u32 tmp, sample_rate, ratio, sample_gain; |
| u8 pll_mult; |
| |
| /* check if symbol rate is within limits */ |
| if ((srate > state->ops.info.symbol_rate_max) || |
| (srate < state->ops.info.symbol_rate_min)) |
| return -EOPNOTSUPP;; |
| |
| /* choose the sampling rate high enough for the required operation, |
| while optimizing the power consumed by the demodulator */ |
| if (srate < (XTAL*2)/2) |
| pll_mult = 2; |
| else if (srate < (XTAL*3)/2) |
| pll_mult = 3; |
| else if (srate < (XTAL*4)/2) |
| pll_mult = 4; |
| else if (srate < (XTAL*5)/2) |
| pll_mult = 5; |
| else if (srate < (XTAL*6)/2) |
| pll_mult = 6; |
| else if (srate < (XTAL*7)/2) |
| pll_mult = 7; |
| else if (srate < (XTAL*8)/2) |
| pll_mult = 8; |
| else |
| pll_mult = 9; |
| |
| |
| sample_rate = pll_mult * XTAL; |
| |
| /* |
| SYSSymbolRate[21:0] = (srate << 23) / sample_rate |
| |
| We have to use 32 bit unsigned arithmetic without precision loss. |
| The maximum srate is 45000000 or 0x02AEA540. This number has |
| only 6 clear bits on top, hence we can shift it left only 6 bits |
| at a time. Borrowed from cx24110.c |
| */ |
| |
| tmp = srate << 6; |
| ratio = tmp / sample_rate; |
| |
| tmp = (tmp % sample_rate) << 6; |
| ratio = (ratio << 6) + (tmp / sample_rate); |
| |
| tmp = (tmp % sample_rate) << 6; |
| ratio = (ratio << 6) + (tmp / sample_rate); |
| |
| tmp = (tmp % sample_rate) << 5; |
| ratio = (ratio << 5) + (tmp / sample_rate); |
| |
| |
| cx24123_writereg(state, 0x01, pll_mult * 6); |
| |
| cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f ); |
| cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff ); |
| cx24123_writereg(state, 0x0a, (ratio ) & 0xff ); |
| |
| /* also set the demodulator sample gain */ |
| sample_gain = cx24123_int_log2(sample_rate, srate); |
| tmp = cx24123_readreg(state, 0x0c) & ~0xe0; |
| cx24123_writereg(state, 0x0c, tmp | sample_gain << 5); |
| |
| dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain); |
| |
| return 0; |
| } |
| |
| /* |
| * Based on the required frequency and symbolrate, the tuner AGC has to be configured |
| * and the correct band selected. Calculate those values |
| */ |
| static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u32 ndiv = 0, adiv = 0, vco_div = 0; |
| int i = 0; |
| int pump = 2; |
| int band = 0; |
| int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]); |
| |
| /* Defaults for low freq, low rate */ |
| state->VCAarg = cx24123_AGC_vals[0].VCAprogdata; |
| state->VGAarg = cx24123_AGC_vals[0].VGAprogdata; |
| state->bandselectarg = cx24123_bandselect_vals[0].progdata; |
| vco_div = cx24123_bandselect_vals[0].VCOdivider; |
| |
| /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */ |
| for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++) |
| { |
| if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) && |
| (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) { |
| state->VCAarg = cx24123_AGC_vals[i].VCAprogdata; |
| state->VGAarg = cx24123_AGC_vals[i].VGAprogdata; |
| state->FILTune = cx24123_AGC_vals[i].FILTune; |
| } |
| } |
| |
| /* determine the band to use */ |
| if(force_band < 1 || force_band > num_bands) |
| { |
| for (i = 0; i < num_bands; i++) |
| { |
| if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) && |
| (cx24123_bandselect_vals[i].freq_high >= p->frequency) ) |
| band = i; |
| } |
| } |
| else |
| band = force_band - 1; |
| |
| state->bandselectarg = cx24123_bandselect_vals[band].progdata; |
| vco_div = cx24123_bandselect_vals[band].VCOdivider; |
| |
| /* determine the charge pump current */ |
| if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 ) |
| pump = 0x01; |
| else |
| pump = 0x02; |
| |
| /* Determine the N/A dividers for the requested lband freq (in kHz). */ |
| /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */ |
| ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff; |
| adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f; |
| |
| if (adiv == 0) |
| ndiv++; |
| |
| /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */ |
| state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv; |
| |
| return 0; |
| } |
| |
| /* |
| * Tuner data is 21 bits long, must be left-aligned in data. |
| * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip. |
| */ |
| static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| unsigned long timeout; |
| |
| dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data); |
| |
| /* align the 21 bytes into to bit23 boundary */ |
| data = data << 3; |
| |
| /* Reset the demod pll word length to 0x15 bits */ |
| cx24123_writereg(state, 0x21, 0x15); |
| |
| /* write the msb 8 bits, wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data >> 16) & 0xff); |
| while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { |
| if (time_after(jiffies, timeout)) { |
| printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* send another 8 bytes, wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data>>8) & 0xff ); |
| while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { |
| if (time_after(jiffies, timeout)) { |
| printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data) & 0xff ); |
| while ((cx24123_readreg(state, 0x20) & 0x80)) { |
| if (time_after(jiffies, timeout)) { |
| printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* Trigger the demod to configure the tuner */ |
| cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2); |
| cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd); |
| |
| return 0; |
| } |
| |
| static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| dprintk("frequency=%i\n", p->frequency); |
| |
| if (cx24123_pll_calculate(fe, p) != 0) { |
| printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__); |
| return -EINVAL; |
| } |
| |
| /* Write the new VCO/VGA */ |
| cx24123_pll_writereg(fe, p, state->VCAarg); |
| cx24123_pll_writereg(fe, p, state->VGAarg); |
| |
| /* Write the new bandselect and pll args */ |
| cx24123_pll_writereg(fe, p, state->bandselectarg); |
| cx24123_pll_writereg(fe, p, state->pllarg); |
| |
| /* set the FILTUNE voltage */ |
| val = cx24123_readreg(state, 0x28) & ~0x3; |
| cx24123_writereg(state, 0x27, state->FILTune >> 2); |
| cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3)); |
| |
| dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg, |
| state->bandselectarg,state->pllarg); |
| |
| return 0; |
| } |
| |
| static int cx24123_initfe(struct dvb_frontend* fe) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int i; |
| |
| dprintk("%s: init frontend\n",__FUNCTION__); |
| |
| /* Configure the demod to a good set of defaults */ |
| for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++) |
| cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data); |
| |
| return 0; |
| } |
| |
| static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| val = cx24123_readreg(state, 0x29) & ~0x40; |
| |
| switch (voltage) { |
| case SEC_VOLTAGE_13: |
| dprintk("%s: setting voltage 13V\n", __FUNCTION__); |
| return cx24123_writereg(state, 0x29, val | 0x80); |
| case SEC_VOLTAGE_18: |
| dprintk("%s: setting voltage 18V\n", __FUNCTION__); |
| return cx24123_writereg(state, 0x29, val & 0x7f); |
| default: |
| return -EINVAL; |
| }; |
| |
| return 0; |
| } |
| |
| /* wait for diseqc queue to become ready (or timeout) */ |
| static void cx24123_wait_for_diseqc(struct cx24123_state *state) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(200); |
| while (!(cx24123_readreg(state, 0x29) & 0x40)) { |
| if(time_after(jiffies, timeout)) { |
| printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__); |
| break; |
| } |
| msleep(10); |
| } |
| } |
| |
| static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int i, val, tone; |
| |
| dprintk("%s:\n",__FUNCTION__); |
| |
| /* stop continuous tone if enabled */ |
| tone = cx24123_readreg(state, 0x29); |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x50); |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* select tone mode */ |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); |
| |
| for (i = 0; i < cmd->msg_len; i++) |
| cx24123_writereg(state, 0x2C + i, cmd->msg[i]); |
| |
| val = cx24123_readreg(state, 0x29); |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); |
| |
| /* wait for diseqc message to finish sending */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* restart continuous tone if enabled */ |
| if (tone & 0x10) { |
| cx24123_writereg(state, 0x29, tone & ~0x40); |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int val, tone; |
| |
| dprintk("%s:\n", __FUNCTION__); |
| |
| /* stop continuous tone if enabled */ |
| tone = cx24123_readreg(state, 0x29); |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x50); |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* select tone mode */ |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4); |
| msleep(30); |
| val = cx24123_readreg(state, 0x29); |
| if (burst == SEC_MINI_A) |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00)); |
| else if (burst == SEC_MINI_B) |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08)); |
| else |
| return -EINVAL; |
| |
| cx24123_wait_for_diseqc(state); |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); |
| |
| /* restart continuous tone if enabled */ |
| if (tone & 0x10) { |
| cx24123_writereg(state, 0x29, tone & ~0x40); |
| } |
| return 0; |
| } |
| |
| static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| int sync = cx24123_readreg(state, 0x14); |
| int lock = cx24123_readreg(state, 0x20); |
| |
| *status = 0; |
| if (lock & 0x01) |
| *status |= FE_HAS_SIGNAL; |
| if (sync & 0x02) |
| *status |= FE_HAS_CARRIER; |
| if (sync & 0x04) |
| *status |= FE_HAS_VITERBI; |
| if (sync & 0x08) |
| *status |= FE_HAS_SYNC; |
| if (sync & 0x80) |
| *status |= FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| /* |
| * Configured to return the measurement of errors in blocks, because no UCBLOCKS value |
| * is available, so this value doubles up to satisfy both measurements |
| */ |
| static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| state->lastber = |
| ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) | |
| (cx24123_readreg(state, 0x1d) << 8 | |
| cx24123_readreg(state, 0x1e)); |
| |
| /* Do the signal quality processing here, it's derived from the BER. */ |
| /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */ |
| if (state->lastber < 5000) |
| state->snr = 655*100; |
| else if ( (state->lastber >= 5000) && (state->lastber < 55000) ) |
| state->snr = 655*90; |
| else if ( (state->lastber >= 55000) && (state->lastber < 150000) ) |
| state->snr = 655*80; |
| else if ( (state->lastber >= 150000) && (state->lastber < 250000) ) |
| state->snr = 655*70; |
| else if ( (state->lastber >= 250000) && (state->lastber < 450000) ) |
| state->snr = 655*65; |
| else |
| state->snr = 0; |
| |
| dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr); |
| |
| *ber = state->lastber; |
| |
| return 0; |
| } |
| |
| static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */ |
| |
| dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength); |
| |
| return 0; |
| } |
| |
| static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| *snr = state->snr; |
| |
| dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr); |
| |
| return 0; |
| } |
| |
| static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| *ucblocks = state->lastber; |
| |
| dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks); |
| |
| return 0; |
| } |
| |
| static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| dprintk("%s: set_frontend\n",__FUNCTION__); |
| |
| if (state->config->set_ts_params) |
| state->config->set_ts_params(fe, 0); |
| |
| state->currentfreq=p->frequency; |
| state->currentsymbolrate = p->u.qpsk.symbol_rate; |
| |
| cx24123_set_inversion(state, p->inversion); |
| cx24123_set_fec(state, p->u.qpsk.fec_inner); |
| cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate); |
| cx24123_pll_tune(fe, p); |
| |
| /* Enable automatic aquisition and reset cycle */ |
| cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07)); |
| cx24123_writereg(state, 0x00, 0x10); |
| cx24123_writereg(state, 0x00, 0); |
| |
| return 0; |
| } |
| |
| static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| dprintk("%s: get_frontend\n",__FUNCTION__); |
| |
| if (cx24123_get_inversion(state, &p->inversion) != 0) { |
| printk("%s: Failed to get inversion status\n",__FUNCTION__); |
| return -EREMOTEIO; |
| } |
| if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) { |
| printk("%s: Failed to get fec status\n",__FUNCTION__); |
| return -EREMOTEIO; |
| } |
| p->frequency = state->currentfreq; |
| p->u.qpsk.symbol_rate = state->currentsymbolrate; |
| |
| return 0; |
| } |
| |
| static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| val = cx24123_readreg(state, 0x29) & ~0x40; |
| |
| switch (tone) { |
| case SEC_TONE_ON: |
| dprintk("%s: setting tone on\n", __FUNCTION__); |
| return cx24123_writereg(state, 0x29, val | 0x10); |
| case SEC_TONE_OFF: |
| dprintk("%s: setting tone off\n",__FUNCTION__); |
| return cx24123_writereg(state, 0x29, val & 0xef); |
| default: |
| printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void cx24123_release(struct dvb_frontend* fe) |
| { |
| struct cx24123_state* state = fe->demodulator_priv; |
| dprintk("%s\n",__FUNCTION__); |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops cx24123_ops; |
| |
| struct dvb_frontend* cx24123_attach(const struct cx24123_config* config, |
| struct i2c_adapter* i2c) |
| { |
| struct cx24123_state* state = NULL; |
| int ret; |
| |
| dprintk("%s\n",__FUNCTION__); |
| |
| /* allocate memory for the internal state */ |
| state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL); |
| if (state == NULL) { |
| printk("Unable to kmalloc\n"); |
| goto error; |
| } |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops)); |
| state->lastber = 0; |
| state->snr = 0; |
| state->VCAarg = 0; |
| state->VGAarg = 0; |
| state->bandselectarg = 0; |
| state->pllarg = 0; |
| state->currentfreq = 0; |
| state->currentsymbolrate = 0; |
| |
| /* check if the demod is there */ |
| ret = cx24123_readreg(state, 0x00); |
| if ((ret != 0xd1) && (ret != 0xe1)) { |
| printk("Version != d1 or e1\n"); |
| goto error; |
| } |
| |
| /* create dvb_frontend */ |
| state->frontend.ops = &state->ops; |
| state->frontend.demodulator_priv = state; |
| return &state->frontend; |
| |
| error: |
| kfree(state); |
| |
| return NULL; |
| } |
| |
| static struct dvb_frontend_ops cx24123_ops = { |
| |
| .info = { |
| .name = "Conexant CX24123/CX24109", |
| .type = FE_QPSK, |
| .frequency_min = 950000, |
| .frequency_max = 2150000, |
| .frequency_stepsize = 1011, /* kHz for QPSK frontends */ |
| .frequency_tolerance = 5000, |
| .symbol_rate_min = 1000000, |
| .symbol_rate_max = 45000000, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | |
| FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_RECOVER |
| }, |
| |
| .release = cx24123_release, |
| |
| .init = cx24123_initfe, |
| .set_frontend = cx24123_set_frontend, |
| .get_frontend = cx24123_get_frontend, |
| .read_status = cx24123_read_status, |
| .read_ber = cx24123_read_ber, |
| .read_signal_strength = cx24123_read_signal_strength, |
| .read_snr = cx24123_read_snr, |
| .read_ucblocks = cx24123_read_ucblocks, |
| .diseqc_send_master_cmd = cx24123_send_diseqc_msg, |
| .diseqc_send_burst = cx24123_diseqc_send_burst, |
| .set_tone = cx24123_set_tone, |
| .set_voltage = cx24123_set_voltage, |
| }; |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); |
| |
| module_param(force_band, int, 0644); |
| MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off)."); |
| |
| MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware"); |
| MODULE_AUTHOR("Steven Toth"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(cx24123_attach); |