| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. |
| * Copyright 2008 Sascha Hauer, kernel@pengutronix.de |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/interrupt.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/completion.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| |
| #define DRIVER_NAME "mxc_nand" |
| |
| /* Addresses for NFC registers */ |
| #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) |
| #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) |
| #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) |
| #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) |
| #define NFC_V1_V2_CONFIG (host->regs + 0x0a) |
| #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) |
| #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) |
| #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10) |
| #define NFC_V1_V2_WRPROT (host->regs + 0x12) |
| #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) |
| #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) |
| #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) |
| #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) |
| #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) |
| #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) |
| #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) |
| #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) |
| #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) |
| #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) |
| #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) |
| #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) |
| #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) |
| |
| #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) |
| #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) |
| #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) |
| #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) |
| #define NFC_V1_V2_CONFIG1_BIG (1 << 5) |
| #define NFC_V1_V2_CONFIG1_RST (1 << 6) |
| #define NFC_V1_V2_CONFIG1_CE (1 << 7) |
| #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) |
| #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) |
| #define NFC_V2_CONFIG1_FP_INT (1 << 11) |
| |
| #define NFC_V1_V2_CONFIG2_INT (1 << 15) |
| |
| /* |
| * Operation modes for the NFC. Valid for v1, v2 and v3 |
| * type controllers. |
| */ |
| #define NFC_CMD (1 << 0) |
| #define NFC_ADDR (1 << 1) |
| #define NFC_INPUT (1 << 2) |
| #define NFC_OUTPUT (1 << 3) |
| #define NFC_ID (1 << 4) |
| #define NFC_STATUS (1 << 5) |
| |
| #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) |
| #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) |
| |
| #define NFC_V3_CONFIG1 (host->regs_axi + 0x34) |
| #define NFC_V3_CONFIG1_SP_EN (1 << 0) |
| #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) |
| |
| #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) |
| |
| #define NFC_V3_LAUNCH (host->regs_axi + 0x40) |
| |
| #define NFC_V3_WRPROT (host->regs_ip + 0x0) |
| #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) |
| #define NFC_V3_WRPROT_LOCK (1 << 1) |
| #define NFC_V3_WRPROT_UNLOCK (1 << 2) |
| #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) |
| |
| #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) |
| |
| #define NFC_V3_CONFIG2 (host->regs_ip + 0x24) |
| #define NFC_V3_CONFIG2_PS_512 (0 << 0) |
| #define NFC_V3_CONFIG2_PS_2048 (1 << 0) |
| #define NFC_V3_CONFIG2_PS_4096 (2 << 0) |
| #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) |
| #define NFC_V3_CONFIG2_ECC_EN (1 << 3) |
| #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) |
| #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) |
| #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) |
| #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) |
| #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) |
| #define NFC_V3_CONFIG2_INT_MSK (1 << 15) |
| #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) |
| #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) |
| |
| #define NFC_V3_CONFIG3 (host->regs_ip + 0x28) |
| #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) |
| #define NFC_V3_CONFIG3_FW8 (1 << 3) |
| #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) |
| #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) |
| #define NFC_V3_CONFIG3_RBB_MODE (1 << 15) |
| #define NFC_V3_CONFIG3_NO_SDMA (1 << 20) |
| |
| #define NFC_V3_IPC (host->regs_ip + 0x2C) |
| #define NFC_V3_IPC_CREQ (1 << 0) |
| #define NFC_V3_IPC_INT (1 << 31) |
| |
| #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) |
| |
| struct mxc_nand_host; |
| |
| struct mxc_nand_devtype_data { |
| void (*preset)(struct mtd_info *); |
| int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, |
| int page); |
| void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); |
| void (*send_addr)(struct mxc_nand_host *, uint16_t, int); |
| void (*send_page)(struct mtd_info *, unsigned int); |
| void (*send_read_id)(struct mxc_nand_host *); |
| uint16_t (*get_dev_status)(struct mxc_nand_host *); |
| int (*check_int)(struct mxc_nand_host *); |
| void (*irq_control)(struct mxc_nand_host *, int); |
| u32 (*get_ecc_status)(struct mxc_nand_host *); |
| const struct mtd_ooblayout_ops *ooblayout; |
| void (*select_chip)(struct nand_chip *chip, int cs); |
| int (*setup_interface)(struct nand_chip *chip, int csline, |
| const struct nand_interface_config *conf); |
| void (*enable_hwecc)(struct nand_chip *chip, bool enable); |
| |
| /* |
| * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked |
| * (CONFIG1:INT_MSK is set). To handle this the driver uses |
| * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK |
| */ |
| int irqpending_quirk; |
| int needs_ip; |
| |
| size_t regs_offset; |
| size_t spare0_offset; |
| size_t axi_offset; |
| |
| int spare_len; |
| int eccbytes; |
| int eccsize; |
| int ppb_shift; |
| }; |
| |
| struct mxc_nand_host { |
| struct nand_chip nand; |
| struct device *dev; |
| |
| void __iomem *spare0; |
| void __iomem *main_area0; |
| |
| void __iomem *base; |
| void __iomem *regs; |
| void __iomem *regs_axi; |
| void __iomem *regs_ip; |
| int status_request; |
| struct clk *clk; |
| int clk_act; |
| int irq; |
| int eccsize; |
| int used_oobsize; |
| int active_cs; |
| |
| struct completion op_completion; |
| |
| uint8_t *data_buf; |
| unsigned int buf_start; |
| |
| const struct mxc_nand_devtype_data *devtype_data; |
| }; |
| |
| static const char * const part_probes[] = { |
| "cmdlinepart", "RedBoot", "ofpart", NULL }; |
| |
| static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) |
| { |
| int i; |
| u32 *t = trg; |
| const __iomem u32 *s = src; |
| |
| for (i = 0; i < (size >> 2); i++) |
| *t++ = __raw_readl(s++); |
| } |
| |
| static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) |
| { |
| int i; |
| u16 *t = trg; |
| const __iomem u16 *s = src; |
| |
| /* We assume that src (IO) is always 32bit aligned */ |
| if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { |
| memcpy32_fromio(trg, src, size); |
| return; |
| } |
| |
| for (i = 0; i < (size >> 1); i++) |
| *t++ = __raw_readw(s++); |
| } |
| |
| static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) |
| { |
| /* __iowrite32_copy use 32bit size values so divide by 4 */ |
| __iowrite32_copy(trg, src, size / 4); |
| } |
| |
| static void memcpy16_toio(void __iomem *trg, const void *src, int size) |
| { |
| int i; |
| __iomem u16 *t = trg; |
| const u16 *s = src; |
| |
| /* We assume that trg (IO) is always 32bit aligned */ |
| if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { |
| memcpy32_toio(trg, src, size); |
| return; |
| } |
| |
| for (i = 0; i < (size >> 1); i++) |
| __raw_writew(*s++, t++); |
| } |
| |
| /* |
| * The controller splits a page into data chunks of 512 bytes + partial oob. |
| * There are writesize / 512 such chunks, the size of the partial oob parts is |
| * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then |
| * contains additionally the byte lost by rounding (if any). |
| * This function handles the needed shuffling between host->data_buf (which |
| * holds a page in natural order, i.e. writesize bytes data + oobsize bytes |
| * spare) and the NFC buffer. |
| */ |
| static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(this); |
| u16 i, oob_chunk_size; |
| u16 num_chunks = mtd->writesize / 512; |
| |
| u8 *d = buf; |
| u8 __iomem *s = host->spare0; |
| u16 sparebuf_size = host->devtype_data->spare_len; |
| |
| /* size of oob chunk for all but possibly the last one */ |
| oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; |
| |
| if (bfrom) { |
| for (i = 0; i < num_chunks - 1; i++) |
| memcpy16_fromio(d + i * oob_chunk_size, |
| s + i * sparebuf_size, |
| oob_chunk_size); |
| |
| /* the last chunk */ |
| memcpy16_fromio(d + i * oob_chunk_size, |
| s + i * sparebuf_size, |
| host->used_oobsize - i * oob_chunk_size); |
| } else { |
| for (i = 0; i < num_chunks - 1; i++) |
| memcpy16_toio(&s[i * sparebuf_size], |
| &d[i * oob_chunk_size], |
| oob_chunk_size); |
| |
| /* the last chunk */ |
| memcpy16_toio(&s[i * sparebuf_size], |
| &d[i * oob_chunk_size], |
| host->used_oobsize - i * oob_chunk_size); |
| } |
| } |
| |
| /* |
| * MXC NANDFC can only perform full page+spare or spare-only read/write. When |
| * the upper layers perform a read/write buf operation, the saved column address |
| * is used to index into the full page. So usually this function is called with |
| * column == 0 (unless no column cycle is needed indicated by column == -1) |
| */ |
| static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| /* Write out column address, if necessary */ |
| if (column != -1) { |
| host->devtype_data->send_addr(host, column & 0xff, |
| page_addr == -1); |
| if (mtd->writesize > 512) |
| /* another col addr cycle for 2k page */ |
| host->devtype_data->send_addr(host, |
| (column >> 8) & 0xff, |
| false); |
| } |
| |
| /* Write out page address, if necessary */ |
| if (page_addr != -1) { |
| /* paddr_0 - p_addr_7 */ |
| host->devtype_data->send_addr(host, (page_addr & 0xff), false); |
| |
| if (mtd->writesize > 512) { |
| if (mtd->size >= 0x10000000) { |
| /* paddr_8 - paddr_15 */ |
| host->devtype_data->send_addr(host, |
| (page_addr >> 8) & 0xff, |
| false); |
| host->devtype_data->send_addr(host, |
| (page_addr >> 16) & 0xff, |
| true); |
| } else |
| /* paddr_8 - paddr_15 */ |
| host->devtype_data->send_addr(host, |
| (page_addr >> 8) & 0xff, true); |
| } else { |
| if (nand_chip->options & NAND_ROW_ADDR_3) { |
| /* paddr_8 - paddr_15 */ |
| host->devtype_data->send_addr(host, |
| (page_addr >> 8) & 0xff, |
| false); |
| host->devtype_data->send_addr(host, |
| (page_addr >> 16) & 0xff, |
| true); |
| } else |
| /* paddr_8 - paddr_15 */ |
| host->devtype_data->send_addr(host, |
| (page_addr >> 8) & 0xff, true); |
| } |
| } |
| } |
| |
| static int check_int_v3(struct mxc_nand_host *host) |
| { |
| uint32_t tmp; |
| |
| tmp = readl(NFC_V3_IPC); |
| if (!(tmp & NFC_V3_IPC_INT)) |
| return 0; |
| |
| tmp &= ~NFC_V3_IPC_INT; |
| writel(tmp, NFC_V3_IPC); |
| |
| return 1; |
| } |
| |
| static int check_int_v1_v2(struct mxc_nand_host *host) |
| { |
| uint32_t tmp; |
| |
| tmp = readw(NFC_V1_V2_CONFIG2); |
| if (!(tmp & NFC_V1_V2_CONFIG2_INT)) |
| return 0; |
| |
| if (!host->devtype_data->irqpending_quirk) |
| writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); |
| |
| return 1; |
| } |
| |
| static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) |
| { |
| uint16_t tmp; |
| |
| tmp = readw(NFC_V1_V2_CONFIG1); |
| |
| if (activate) |
| tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; |
| else |
| tmp |= NFC_V1_V2_CONFIG1_INT_MSK; |
| |
| writew(tmp, NFC_V1_V2_CONFIG1); |
| } |
| |
| static void irq_control_v3(struct mxc_nand_host *host, int activate) |
| { |
| uint32_t tmp; |
| |
| tmp = readl(NFC_V3_CONFIG2); |
| |
| if (activate) |
| tmp &= ~NFC_V3_CONFIG2_INT_MSK; |
| else |
| tmp |= NFC_V3_CONFIG2_INT_MSK; |
| |
| writel(tmp, NFC_V3_CONFIG2); |
| } |
| |
| static void irq_control(struct mxc_nand_host *host, int activate) |
| { |
| if (host->devtype_data->irqpending_quirk) { |
| if (activate) |
| enable_irq(host->irq); |
| else |
| disable_irq_nosync(host->irq); |
| } else { |
| host->devtype_data->irq_control(host, activate); |
| } |
| } |
| |
| static u32 get_ecc_status_v1(struct mxc_nand_host *host) |
| { |
| return readw(NFC_V1_V2_ECC_STATUS_RESULT); |
| } |
| |
| static u32 get_ecc_status_v2(struct mxc_nand_host *host) |
| { |
| return readl(NFC_V1_V2_ECC_STATUS_RESULT); |
| } |
| |
| static u32 get_ecc_status_v3(struct mxc_nand_host *host) |
| { |
| return readl(NFC_V3_ECC_STATUS_RESULT); |
| } |
| |
| static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) |
| { |
| struct mxc_nand_host *host = dev_id; |
| |
| if (!host->devtype_data->check_int(host)) |
| return IRQ_NONE; |
| |
| irq_control(host, 0); |
| |
| complete(&host->op_completion); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This function polls the NANDFC to wait for the basic operation to |
| * complete by checking the INT bit of config2 register. |
| */ |
| static int wait_op_done(struct mxc_nand_host *host, int useirq) |
| { |
| int ret = 0; |
| |
| /* |
| * If operation is already complete, don't bother to setup an irq or a |
| * loop. |
| */ |
| if (host->devtype_data->check_int(host)) |
| return 0; |
| |
| if (useirq) { |
| unsigned long timeout; |
| |
| reinit_completion(&host->op_completion); |
| |
| irq_control(host, 1); |
| |
| timeout = wait_for_completion_timeout(&host->op_completion, HZ); |
| if (!timeout && !host->devtype_data->check_int(host)) { |
| dev_dbg(host->dev, "timeout waiting for irq\n"); |
| ret = -ETIMEDOUT; |
| } |
| } else { |
| int max_retries = 8000; |
| int done; |
| |
| do { |
| udelay(1); |
| |
| done = host->devtype_data->check_int(host); |
| if (done) |
| break; |
| |
| } while (--max_retries); |
| |
| if (!done) { |
| dev_dbg(host->dev, "timeout polling for completion\n"); |
| ret = -ETIMEDOUT; |
| } |
| } |
| |
| WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); |
| |
| return ret; |
| } |
| |
| static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) |
| { |
| /* fill command */ |
| writel(cmd, NFC_V3_FLASH_CMD); |
| |
| /* send out command */ |
| writel(NFC_CMD, NFC_V3_LAUNCH); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, useirq); |
| } |
| |
| /* This function issues the specified command to the NAND device and |
| * waits for completion. */ |
| static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) |
| { |
| dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); |
| |
| writew(cmd, NFC_V1_V2_FLASH_CMD); |
| writew(NFC_CMD, NFC_V1_V2_CONFIG2); |
| |
| if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { |
| int max_retries = 100; |
| /* Reset completion is indicated by NFC_CONFIG2 */ |
| /* being set to 0 */ |
| while (max_retries-- > 0) { |
| if (readw(NFC_V1_V2_CONFIG2) == 0) { |
| break; |
| } |
| udelay(1); |
| } |
| if (max_retries < 0) |
| dev_dbg(host->dev, "%s: RESET failed\n", __func__); |
| } else { |
| /* Wait for operation to complete */ |
| wait_op_done(host, useirq); |
| } |
| } |
| |
| static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) |
| { |
| /* fill address */ |
| writel(addr, NFC_V3_FLASH_ADDR0); |
| |
| /* send out address */ |
| writel(NFC_ADDR, NFC_V3_LAUNCH); |
| |
| wait_op_done(host, 0); |
| } |
| |
| /* This function sends an address (or partial address) to the |
| * NAND device. The address is used to select the source/destination for |
| * a NAND command. */ |
| static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) |
| { |
| dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); |
| |
| writew(addr, NFC_V1_V2_FLASH_ADDR); |
| writew(NFC_ADDR, NFC_V1_V2_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, islast); |
| } |
| |
| static void send_page_v3(struct mtd_info *mtd, unsigned int ops) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint32_t tmp; |
| |
| tmp = readl(NFC_V3_CONFIG1); |
| tmp &= ~(7 << 4); |
| writel(tmp, NFC_V3_CONFIG1); |
| |
| /* transfer data from NFC ram to nand */ |
| writel(ops, NFC_V3_LAUNCH); |
| |
| wait_op_done(host, false); |
| } |
| |
| static void send_page_v2(struct mtd_info *mtd, unsigned int ops) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); |
| |
| writew(ops, NFC_V1_V2_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| } |
| |
| static void send_page_v1(struct mtd_info *mtd, unsigned int ops) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| int bufs, i; |
| |
| if (mtd->writesize > 512) |
| bufs = 4; |
| else |
| bufs = 1; |
| |
| for (i = 0; i < bufs; i++) { |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); |
| |
| writew(ops, NFC_V1_V2_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| } |
| } |
| |
| static void send_read_id_v3(struct mxc_nand_host *host) |
| { |
| /* Read ID into main buffer */ |
| writel(NFC_ID, NFC_V3_LAUNCH); |
| |
| wait_op_done(host, true); |
| |
| memcpy32_fromio(host->data_buf, host->main_area0, 16); |
| } |
| |
| /* Request the NANDFC to perform a read of the NAND device ID. */ |
| static void send_read_id_v1_v2(struct mxc_nand_host *host) |
| { |
| /* NANDFC buffer 0 is used for device ID output */ |
| writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); |
| |
| writew(NFC_ID, NFC_V1_V2_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| |
| memcpy32_fromio(host->data_buf, host->main_area0, 16); |
| } |
| |
| static uint16_t get_dev_status_v3(struct mxc_nand_host *host) |
| { |
| writew(NFC_STATUS, NFC_V3_LAUNCH); |
| wait_op_done(host, true); |
| |
| return readl(NFC_V3_CONFIG1) >> 16; |
| } |
| |
| /* This function requests the NANDFC to perform a read of the |
| * NAND device status and returns the current status. */ |
| static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) |
| { |
| void __iomem *main_buf = host->main_area0; |
| uint32_t store; |
| uint16_t ret; |
| |
| writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); |
| |
| /* |
| * The device status is stored in main_area0. To |
| * prevent corruption of the buffer save the value |
| * and restore it afterwards. |
| */ |
| store = readl(main_buf); |
| |
| writew(NFC_STATUS, NFC_V1_V2_CONFIG2); |
| wait_op_done(host, true); |
| |
| ret = readw(main_buf); |
| |
| writel(store, main_buf); |
| |
| return ret; |
| } |
| |
| static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| uint16_t config1; |
| |
| if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return; |
| |
| config1 = readw(NFC_V1_V2_CONFIG1); |
| |
| if (enable) |
| config1 |= NFC_V1_V2_CONFIG1_ECC_EN; |
| else |
| config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; |
| |
| writew(config1, NFC_V1_V2_CONFIG1); |
| } |
| |
| static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| uint32_t config2; |
| |
| if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return; |
| |
| config2 = readl(NFC_V3_CONFIG2); |
| |
| if (enable) |
| config2 |= NFC_V3_CONFIG2_ECC_EN; |
| else |
| config2 &= ~NFC_V3_CONFIG2_ECC_EN; |
| |
| writel(config2, NFC_V3_CONFIG2); |
| } |
| |
| /* This functions is used by upper layer to checks if device is ready */ |
| static int mxc_nand_dev_ready(struct nand_chip *chip) |
| { |
| /* |
| * NFC handles R/B internally. Therefore, this function |
| * always returns status as ready. |
| */ |
| return 1; |
| } |
| |
| static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, |
| bool ecc, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| unsigned int bitflips_corrected = 0; |
| int no_subpages; |
| int i; |
| |
| host->devtype_data->enable_hwecc(chip, ecc); |
| |
| host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); |
| mxc_do_addr_cycle(mtd, 0, page); |
| |
| if (mtd->writesize > 512) |
| host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); |
| |
| no_subpages = mtd->writesize >> 9; |
| |
| for (i = 0; i < no_subpages; i++) { |
| uint16_t ecc_stats; |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); |
| |
| writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| |
| ecc_stats = get_ecc_status_v1(host); |
| |
| ecc_stats >>= 2; |
| |
| if (buf && ecc) { |
| switch (ecc_stats & 0x3) { |
| case 0: |
| default: |
| break; |
| case 1: |
| mtd->ecc_stats.corrected++; |
| bitflips_corrected = 1; |
| break; |
| case 2: |
| mtd->ecc_stats.failed++; |
| break; |
| } |
| } |
| } |
| |
| if (buf) |
| memcpy32_fromio(buf, host->main_area0, mtd->writesize); |
| if (oob) |
| copy_spare(mtd, true, oob); |
| |
| return bitflips_corrected; |
| } |
| |
| static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, |
| void *oob, bool ecc, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| unsigned int max_bitflips = 0; |
| u32 ecc_stat, err; |
| int no_subpages; |
| u8 ecc_bit_mask, err_limit; |
| |
| host->devtype_data->enable_hwecc(chip, ecc); |
| |
| host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); |
| mxc_do_addr_cycle(mtd, 0, page); |
| |
| if (mtd->writesize > 512) |
| host->devtype_data->send_cmd(host, |
| NAND_CMD_READSTART, true); |
| |
| host->devtype_data->send_page(mtd, NFC_OUTPUT); |
| |
| if (buf) |
| memcpy32_fromio(buf, host->main_area0, mtd->writesize); |
| if (oob) |
| copy_spare(mtd, true, oob); |
| |
| ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; |
| err_limit = (host->eccsize == 4) ? 0x4 : 0x8; |
| |
| no_subpages = mtd->writesize >> 9; |
| |
| ecc_stat = host->devtype_data->get_ecc_status(host); |
| |
| do { |
| err = ecc_stat & ecc_bit_mask; |
| if (err > err_limit) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += err; |
| max_bitflips = max_t(unsigned int, max_bitflips, err); |
| } |
| |
| ecc_stat >>= 4; |
| } while (--no_subpages); |
| |
| return max_bitflips; |
| } |
| |
| static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| void *oob_buf; |
| |
| if (oob_required) |
| oob_buf = chip->oob_poi; |
| else |
| oob_buf = NULL; |
| |
| return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); |
| } |
| |
| static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| void *oob_buf; |
| |
| if (oob_required) |
| oob_buf = chip->oob_poi; |
| else |
| oob_buf = NULL; |
| |
| return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); |
| } |
| |
| static int mxc_nand_read_oob(struct nand_chip *chip, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| |
| return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, |
| page); |
| } |
| |
| static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, |
| bool ecc, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| |
| host->devtype_data->enable_hwecc(chip, ecc); |
| |
| host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); |
| mxc_do_addr_cycle(mtd, 0, page); |
| |
| memcpy32_toio(host->main_area0, buf, mtd->writesize); |
| copy_spare(mtd, false, chip->oob_poi); |
| |
| host->devtype_data->send_page(mtd, NFC_INPUT); |
| host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); |
| mxc_do_addr_cycle(mtd, 0, page); |
| |
| return 0; |
| } |
| |
| static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| return mxc_nand_write_page(chip, buf, true, page); |
| } |
| |
| static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| return mxc_nand_write_page(chip, buf, false, page); |
| } |
| |
| static int mxc_nand_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| |
| memset(host->data_buf, 0xff, mtd->writesize); |
| |
| return mxc_nand_write_page(chip, host->data_buf, false, page); |
| } |
| |
| static u_char mxc_nand_read_byte(struct nand_chip *nand_chip) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint8_t ret; |
| |
| /* Check for status request */ |
| if (host->status_request) |
| return host->devtype_data->get_dev_status(host) & 0xFF; |
| |
| if (nand_chip->options & NAND_BUSWIDTH_16) { |
| /* only take the lower byte of each word */ |
| ret = *(uint16_t *)(host->data_buf + host->buf_start); |
| |
| host->buf_start += 2; |
| } else { |
| ret = *(uint8_t *)(host->data_buf + host->buf_start); |
| host->buf_start++; |
| } |
| |
| dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); |
| return ret; |
| } |
| |
| /* Write data of length len to buffer buf. The data to be |
| * written on NAND Flash is first copied to RAMbuffer. After the Data Input |
| * Operation by the NFC, the data is written to NAND Flash */ |
| static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand_chip); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| u16 col = host->buf_start; |
| int n = mtd->oobsize + mtd->writesize - col; |
| |
| n = min(n, len); |
| |
| memcpy(host->data_buf + col, buf, n); |
| |
| host->buf_start += n; |
| } |
| |
| /* Read the data buffer from the NAND Flash. To read the data from NAND |
| * Flash first the data output cycle is initiated by the NFC, which copies |
| * the data to RAMbuffer. This data of length len is then copied to buffer buf. |
| */ |
| static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand_chip); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| u16 col = host->buf_start; |
| int n = mtd->oobsize + mtd->writesize - col; |
| |
| n = min(n, len); |
| |
| memcpy(buf, host->data_buf + col, n); |
| |
| host->buf_start += n; |
| } |
| |
| /* This function is used by upper layer for select and |
| * deselect of the NAND chip */ |
| static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| if (chip == -1) { |
| /* Disable the NFC clock */ |
| if (host->clk_act) { |
| clk_disable_unprepare(host->clk); |
| host->clk_act = 0; |
| } |
| return; |
| } |
| |
| if (!host->clk_act) { |
| /* Enable the NFC clock */ |
| clk_prepare_enable(host->clk); |
| host->clk_act = 1; |
| } |
| } |
| |
| static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| if (chip == -1) { |
| /* Disable the NFC clock */ |
| if (host->clk_act) { |
| clk_disable_unprepare(host->clk); |
| host->clk_act = 0; |
| } |
| return; |
| } |
| |
| if (!host->clk_act) { |
| /* Enable the NFC clock */ |
| clk_prepare_enable(host->clk); |
| host->clk_act = 1; |
| } |
| |
| host->active_cs = chip; |
| writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); |
| } |
| |
| #define MXC_V1_ECCBYTES 5 |
| |
| static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| |
| if (section >= nand_chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 6; |
| oobregion->length = MXC_V1_ECCBYTES; |
| |
| return 0; |
| } |
| |
| static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| |
| if (section > nand_chip->ecc.steps) |
| return -ERANGE; |
| |
| if (!section) { |
| if (mtd->writesize <= 512) { |
| oobregion->offset = 0; |
| oobregion->length = 5; |
| } else { |
| oobregion->offset = 2; |
| oobregion->length = 4; |
| } |
| } else { |
| oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; |
| if (section < nand_chip->ecc.steps) |
| oobregion->length = (section * 16) + 6 - |
| oobregion->offset; |
| else |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { |
| .ecc = mxc_v1_ooblayout_ecc, |
| .free = mxc_v1_ooblayout_free, |
| }; |
| |
| static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; |
| |
| if (section >= nand_chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * stepsize) + 7; |
| oobregion->length = nand_chip->ecc.bytes; |
| |
| return 0; |
| } |
| |
| static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; |
| |
| if (section >= nand_chip->ecc.steps) |
| return -ERANGE; |
| |
| if (!section) { |
| if (mtd->writesize <= 512) { |
| oobregion->offset = 0; |
| oobregion->length = 5; |
| } else { |
| oobregion->offset = 2; |
| oobregion->length = 4; |
| } |
| } else { |
| oobregion->offset = section * stepsize; |
| oobregion->length = 7; |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { |
| .ecc = mxc_v2_ooblayout_ecc, |
| .free = mxc_v2_ooblayout_free, |
| }; |
| |
| /* |
| * v2 and v3 type controllers can do 4bit or 8bit ecc depending |
| * on how much oob the nand chip has. For 8bit ecc we need at least |
| * 26 bytes of oob data per 512 byte block. |
| */ |
| static int get_eccsize(struct mtd_info *mtd) |
| { |
| int oobbytes_per_512 = 0; |
| |
| oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; |
| |
| if (oobbytes_per_512 < 26) |
| return 4; |
| else |
| return 8; |
| } |
| |
| static void preset_v1(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint16_t config1 = 0; |
| |
| if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && |
| mtd->writesize) |
| config1 |= NFC_V1_V2_CONFIG1_ECC_EN; |
| |
| if (!host->devtype_data->irqpending_quirk) |
| config1 |= NFC_V1_V2_CONFIG1_INT_MSK; |
| |
| host->eccsize = 1; |
| |
| writew(config1, NFC_V1_V2_CONFIG1); |
| /* preset operation */ |
| |
| /* Unlock the internal RAM Buffer */ |
| writew(0x2, NFC_V1_V2_CONFIG); |
| |
| /* Blocks to be unlocked */ |
| writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); |
| writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); |
| |
| /* Unlock Block Command for given address range */ |
| writew(0x4, NFC_V1_V2_WRPROT); |
| } |
| |
| static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int tRC_min_ns, tRC_ps, ret; |
| unsigned long rate, rate_round; |
| const struct nand_sdr_timings *timings; |
| u16 config1; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return -ENOTSUPP; |
| |
| config1 = readw(NFC_V1_V2_CONFIG1); |
| |
| tRC_min_ns = timings->tRC_min / 1000; |
| rate = 1000000000 / tRC_min_ns; |
| |
| /* |
| * For tRC < 30ns we have to use EDO mode. In this case the controller |
| * does one access per clock cycle. Otherwise the controller does one |
| * access in two clock cycles, thus we have to double the rate to the |
| * controller. |
| */ |
| if (tRC_min_ns < 30) { |
| rate_round = clk_round_rate(host->clk, rate); |
| config1 |= NFC_V2_CONFIG1_ONE_CYCLE; |
| tRC_ps = 1000000000 / (rate_round / 1000); |
| } else { |
| rate *= 2; |
| rate_round = clk_round_rate(host->clk, rate); |
| config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; |
| tRC_ps = 1000000000 / (rate_round / 1000 / 2); |
| } |
| |
| /* |
| * The timing values compared against are from the i.MX25 Automotive |
| * datasheet, Table 50. NFC Timing Parameters |
| */ |
| if (timings->tCLS_min > tRC_ps - 1000 || |
| timings->tCLH_min > tRC_ps - 2000 || |
| timings->tCS_min > tRC_ps - 1000 || |
| timings->tCH_min > tRC_ps - 2000 || |
| timings->tWP_min > tRC_ps - 1500 || |
| timings->tALS_min > tRC_ps || |
| timings->tALH_min > tRC_ps - 3000 || |
| timings->tDS_min > tRC_ps || |
| timings->tDH_min > tRC_ps - 5000 || |
| timings->tWC_min > 2 * tRC_ps || |
| timings->tWH_min > tRC_ps - 2500 || |
| timings->tRR_min > 6 * tRC_ps || |
| timings->tRP_min > 3 * tRC_ps / 2 || |
| timings->tRC_min > 2 * tRC_ps || |
| timings->tREH_min > (tRC_ps / 2) - 2500) { |
| dev_dbg(host->dev, "Timing out of bounds\n"); |
| return -EINVAL; |
| } |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| ret = clk_set_rate(host->clk, rate); |
| if (ret) |
| return ret; |
| |
| writew(config1, NFC_V1_V2_CONFIG1); |
| |
| dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, |
| config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : |
| "normal"); |
| |
| return 0; |
| } |
| |
| static void preset_v2(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint16_t config1 = 0; |
| |
| config1 |= NFC_V2_CONFIG1_FP_INT; |
| |
| if (!host->devtype_data->irqpending_quirk) |
| config1 |= NFC_V1_V2_CONFIG1_INT_MSK; |
| |
| if (mtd->writesize) { |
| uint16_t pages_per_block = mtd->erasesize / mtd->writesize; |
| |
| if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) |
| config1 |= NFC_V1_V2_CONFIG1_ECC_EN; |
| |
| host->eccsize = get_eccsize(mtd); |
| if (host->eccsize == 4) |
| config1 |= NFC_V2_CONFIG1_ECC_MODE_4; |
| |
| config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); |
| } else { |
| host->eccsize = 1; |
| } |
| |
| writew(config1, NFC_V1_V2_CONFIG1); |
| /* preset operation */ |
| |
| /* spare area size in 16-bit half-words */ |
| writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA); |
| |
| /* Unlock the internal RAM Buffer */ |
| writew(0x2, NFC_V1_V2_CONFIG); |
| |
| /* Blocks to be unlocked */ |
| writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); |
| writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); |
| writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); |
| writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); |
| writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); |
| writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); |
| writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); |
| writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); |
| |
| /* Unlock Block Command for given address range */ |
| writew(0x4, NFC_V1_V2_WRPROT); |
| } |
| |
| static void preset_v3(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| uint32_t config2, config3; |
| int i, addr_phases; |
| |
| writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); |
| writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); |
| |
| /* Unlock the internal RAM Buffer */ |
| writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, |
| NFC_V3_WRPROT); |
| |
| /* Blocks to be unlocked */ |
| for (i = 0; i < NAND_MAX_CHIPS; i++) |
| writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); |
| |
| writel(0, NFC_V3_IPC); |
| |
| config2 = NFC_V3_CONFIG2_ONE_CYCLE | |
| NFC_V3_CONFIG2_2CMD_PHASES | |
| NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | |
| NFC_V3_CONFIG2_ST_CMD(0x70) | |
| NFC_V3_CONFIG2_INT_MSK | |
| NFC_V3_CONFIG2_NUM_ADDR_PHASE0; |
| |
| addr_phases = fls(chip->pagemask) >> 3; |
| |
| if (mtd->writesize == 2048) { |
| config2 |= NFC_V3_CONFIG2_PS_2048; |
| config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); |
| } else if (mtd->writesize == 4096) { |
| config2 |= NFC_V3_CONFIG2_PS_4096; |
| config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); |
| } else { |
| config2 |= NFC_V3_CONFIG2_PS_512; |
| config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); |
| } |
| |
| if (mtd->writesize) { |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) |
| config2 |= NFC_V3_CONFIG2_ECC_EN; |
| |
| config2 |= NFC_V3_CONFIG2_PPB( |
| ffs(mtd->erasesize / mtd->writesize) - 6, |
| host->devtype_data->ppb_shift); |
| host->eccsize = get_eccsize(mtd); |
| if (host->eccsize == 8) |
| config2 |= NFC_V3_CONFIG2_ECC_MODE_8; |
| } |
| |
| writel(config2, NFC_V3_CONFIG2); |
| |
| config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | |
| NFC_V3_CONFIG3_NO_SDMA | |
| NFC_V3_CONFIG3_RBB_MODE | |
| NFC_V3_CONFIG3_SBB(6) | /* Reset default */ |
| NFC_V3_CONFIG3_ADD_OP(0); |
| |
| if (!(chip->options & NAND_BUSWIDTH_16)) |
| config3 |= NFC_V3_CONFIG3_FW8; |
| |
| writel(config3, NFC_V3_CONFIG3); |
| |
| writel(0, NFC_V3_DELAY_LINE); |
| } |
| |
| /* Used by the upper layer to write command to NAND Flash for |
| * different operations to be carried out on NAND Flash */ |
| static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command, |
| int column, int page_addr) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand_chip); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", |
| command, column, page_addr); |
| |
| /* Reset command state information */ |
| host->status_request = false; |
| |
| /* Command pre-processing step */ |
| switch (command) { |
| case NAND_CMD_RESET: |
| host->devtype_data->preset(mtd); |
| host->devtype_data->send_cmd(host, command, false); |
| break; |
| |
| case NAND_CMD_STATUS: |
| host->buf_start = 0; |
| host->status_request = true; |
| |
| host->devtype_data->send_cmd(host, command, true); |
| WARN_ONCE(column != -1 || page_addr != -1, |
| "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", |
| command, column, page_addr); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| break; |
| |
| case NAND_CMD_READID: |
| host->devtype_data->send_cmd(host, command, true); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| host->devtype_data->send_read_id(host); |
| host->buf_start = 0; |
| break; |
| |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| host->devtype_data->send_cmd(host, command, false); |
| WARN_ONCE(column != -1, |
| "Unexpected column value (cmd=%u, col=%d)\n", |
| command, column); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| |
| break; |
| case NAND_CMD_PARAM: |
| host->devtype_data->send_cmd(host, command, false); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| host->devtype_data->send_page(mtd, NFC_OUTPUT); |
| memcpy32_fromio(host->data_buf, host->main_area0, 512); |
| host->buf_start = 0; |
| break; |
| default: |
| WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", |
| command); |
| break; |
| } |
| } |
| |
| static int mxc_nand_set_features(struct nand_chip *chip, int addr, |
| u8 *subfeature_param) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int i; |
| |
| host->buf_start = 0; |
| |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| chip->legacy.write_byte(chip, subfeature_param[i]); |
| |
| memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); |
| host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); |
| mxc_do_addr_cycle(mtd, addr, -1); |
| host->devtype_data->send_page(mtd, NFC_INPUT); |
| |
| return 0; |
| } |
| |
| static int mxc_nand_get_features(struct nand_chip *chip, int addr, |
| u8 *subfeature_param) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int i; |
| |
| host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); |
| mxc_do_addr_cycle(mtd, addr, -1); |
| host->devtype_data->send_page(mtd, NFC_OUTPUT); |
| memcpy32_fromio(host->data_buf, host->main_area0, 512); |
| host->buf_start = 0; |
| |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| *subfeature_param++ = chip->legacy.read_byte(chip); |
| |
| return 0; |
| } |
| |
| /* |
| * The generic flash bbt descriptors overlap with our ecc |
| * hardware, so define some i.MX specific ones. |
| */ |
| static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; |
| static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /* v1 + irqpending_quirk: i.MX21 */ |
| static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { |
| .preset = preset_v1, |
| .read_page = mxc_nand_read_page_v1, |
| .send_cmd = send_cmd_v1_v2, |
| .send_addr = send_addr_v1_v2, |
| .send_page = send_page_v1, |
| .send_read_id = send_read_id_v1_v2, |
| .get_dev_status = get_dev_status_v1_v2, |
| .check_int = check_int_v1_v2, |
| .irq_control = irq_control_v1_v2, |
| .get_ecc_status = get_ecc_status_v1, |
| .ooblayout = &mxc_v1_ooblayout_ops, |
| .select_chip = mxc_nand_select_chip_v1_v3, |
| .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, |
| .irqpending_quirk = 1, |
| .needs_ip = 0, |
| .regs_offset = 0xe00, |
| .spare0_offset = 0x800, |
| .spare_len = 16, |
| .eccbytes = 3, |
| .eccsize = 1, |
| }; |
| |
| /* v1 + !irqpending_quirk: i.MX27, i.MX31 */ |
| static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { |
| .preset = preset_v1, |
| .read_page = mxc_nand_read_page_v1, |
| .send_cmd = send_cmd_v1_v2, |
| .send_addr = send_addr_v1_v2, |
| .send_page = send_page_v1, |
| .send_read_id = send_read_id_v1_v2, |
| .get_dev_status = get_dev_status_v1_v2, |
| .check_int = check_int_v1_v2, |
| .irq_control = irq_control_v1_v2, |
| .get_ecc_status = get_ecc_status_v1, |
| .ooblayout = &mxc_v1_ooblayout_ops, |
| .select_chip = mxc_nand_select_chip_v1_v3, |
| .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, |
| .irqpending_quirk = 0, |
| .needs_ip = 0, |
| .regs_offset = 0xe00, |
| .spare0_offset = 0x800, |
| .axi_offset = 0, |
| .spare_len = 16, |
| .eccbytes = 3, |
| .eccsize = 1, |
| }; |
| |
| /* v21: i.MX25, i.MX35 */ |
| static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { |
| .preset = preset_v2, |
| .read_page = mxc_nand_read_page_v2_v3, |
| .send_cmd = send_cmd_v1_v2, |
| .send_addr = send_addr_v1_v2, |
| .send_page = send_page_v2, |
| .send_read_id = send_read_id_v1_v2, |
| .get_dev_status = get_dev_status_v1_v2, |
| .check_int = check_int_v1_v2, |
| .irq_control = irq_control_v1_v2, |
| .get_ecc_status = get_ecc_status_v2, |
| .ooblayout = &mxc_v2_ooblayout_ops, |
| .select_chip = mxc_nand_select_chip_v2, |
| .setup_interface = mxc_nand_v2_setup_interface, |
| .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, |
| .irqpending_quirk = 0, |
| .needs_ip = 0, |
| .regs_offset = 0x1e00, |
| .spare0_offset = 0x1000, |
| .axi_offset = 0, |
| .spare_len = 64, |
| .eccbytes = 9, |
| .eccsize = 0, |
| }; |
| |
| /* v3.2a: i.MX51 */ |
| static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { |
| .preset = preset_v3, |
| .read_page = mxc_nand_read_page_v2_v3, |
| .send_cmd = send_cmd_v3, |
| .send_addr = send_addr_v3, |
| .send_page = send_page_v3, |
| .send_read_id = send_read_id_v3, |
| .get_dev_status = get_dev_status_v3, |
| .check_int = check_int_v3, |
| .irq_control = irq_control_v3, |
| .get_ecc_status = get_ecc_status_v3, |
| .ooblayout = &mxc_v2_ooblayout_ops, |
| .select_chip = mxc_nand_select_chip_v1_v3, |
| .enable_hwecc = mxc_nand_enable_hwecc_v3, |
| .irqpending_quirk = 0, |
| .needs_ip = 1, |
| .regs_offset = 0, |
| .spare0_offset = 0x1000, |
| .axi_offset = 0x1e00, |
| .spare_len = 64, |
| .eccbytes = 0, |
| .eccsize = 0, |
| .ppb_shift = 7, |
| }; |
| |
| /* v3.2b: i.MX53 */ |
| static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { |
| .preset = preset_v3, |
| .read_page = mxc_nand_read_page_v2_v3, |
| .send_cmd = send_cmd_v3, |
| .send_addr = send_addr_v3, |
| .send_page = send_page_v3, |
| .send_read_id = send_read_id_v3, |
| .get_dev_status = get_dev_status_v3, |
| .check_int = check_int_v3, |
| .irq_control = irq_control_v3, |
| .get_ecc_status = get_ecc_status_v3, |
| .ooblayout = &mxc_v2_ooblayout_ops, |
| .select_chip = mxc_nand_select_chip_v1_v3, |
| .enable_hwecc = mxc_nand_enable_hwecc_v3, |
| .irqpending_quirk = 0, |
| .needs_ip = 1, |
| .regs_offset = 0, |
| .spare0_offset = 0x1000, |
| .axi_offset = 0x1e00, |
| .spare_len = 64, |
| .eccbytes = 0, |
| .eccsize = 0, |
| .ppb_shift = 8, |
| }; |
| |
| static inline int is_imx21_nfc(struct mxc_nand_host *host) |
| { |
| return host->devtype_data == &imx21_nand_devtype_data; |
| } |
| |
| static inline int is_imx27_nfc(struct mxc_nand_host *host) |
| { |
| return host->devtype_data == &imx27_nand_devtype_data; |
| } |
| |
| static inline int is_imx25_nfc(struct mxc_nand_host *host) |
| { |
| return host->devtype_data == &imx25_nand_devtype_data; |
| } |
| |
| static inline int is_imx51_nfc(struct mxc_nand_host *host) |
| { |
| return host->devtype_data == &imx51_nand_devtype_data; |
| } |
| |
| static inline int is_imx53_nfc(struct mxc_nand_host *host) |
| { |
| return host->devtype_data == &imx53_nand_devtype_data; |
| } |
| |
| static const struct of_device_id mxcnd_dt_ids[] = { |
| { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, }, |
| { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, }, |
| { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, }, |
| { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, }, |
| { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); |
| |
| static int mxcnd_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| struct device *dev = mtd->dev.parent; |
| |
| chip->ecc.bytes = host->devtype_data->eccbytes; |
| host->eccsize = host->devtype_data->eccsize; |
| chip->ecc.size = 512; |
| mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); |
| |
| switch (chip->ecc.engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| chip->ecc.read_page = mxc_nand_read_page; |
| chip->ecc.read_page_raw = mxc_nand_read_page_raw; |
| chip->ecc.read_oob = mxc_nand_read_oob; |
| chip->ecc.write_page = mxc_nand_write_page_ecc; |
| chip->ecc.write_page_raw = mxc_nand_write_page_raw; |
| chip->ecc.write_oob = mxc_nand_write_oob; |
| break; |
| |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) { |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| } |
| |
| /* Allocate the right size buffer now */ |
| devm_kfree(dev, (void *)host->data_buf); |
| host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize, |
| GFP_KERNEL); |
| if (!host->data_buf) |
| return -ENOMEM; |
| |
| /* Call preset again, with correct writesize chip time */ |
| host->devtype_data->preset(mtd); |
| |
| if (!chip->ecc.bytes) { |
| if (host->eccsize == 8) |
| chip->ecc.bytes = 18; |
| else if (host->eccsize == 4) |
| chip->ecc.bytes = 9; |
| } |
| |
| /* |
| * Experimentation shows that i.MX NFC can only handle up to 218 oob |
| * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() |
| * into copying invalid data to/from the spare IO buffer, as this |
| * might cause ECC data corruption when doing sub-page write to a |
| * partially written page. |
| */ |
| host->used_oobsize = min(mtd->oobsize, 218U); |
| |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| if (is_imx21_nfc(host) || is_imx27_nfc(host)) |
| chip->ecc.strength = 1; |
| else |
| chip->ecc.strength = (host->eccsize == 4) ? 4 : 8; |
| } |
| |
| return 0; |
| } |
| |
| static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_interface_config *conf) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| |
| return host->devtype_data->setup_interface(chip, chipnr, conf); |
| } |
| |
| static const struct nand_controller_ops mxcnd_controller_ops = { |
| .attach_chip = mxcnd_attach_chip, |
| .setup_interface = mxcnd_setup_interface, |
| }; |
| |
| static int mxcnd_probe(struct platform_device *pdev) |
| { |
| struct nand_chip *this; |
| struct mtd_info *mtd; |
| struct mxc_nand_host *host; |
| struct resource *res; |
| int err = 0; |
| |
| /* Allocate memory for MTD device structure and private data */ |
| host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), |
| GFP_KERNEL); |
| if (!host) |
| return -ENOMEM; |
| |
| /* allocate a temporary buffer for the nand_scan_ident() */ |
| host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); |
| if (!host->data_buf) |
| return -ENOMEM; |
| |
| host->dev = &pdev->dev; |
| /* structures must be linked */ |
| this = &host->nand; |
| mtd = nand_to_mtd(this); |
| mtd->dev.parent = &pdev->dev; |
| mtd->name = DRIVER_NAME; |
| |
| /* 50 us command delay time */ |
| this->legacy.chip_delay = 5; |
| |
| nand_set_controller_data(this, host); |
| nand_set_flash_node(this, pdev->dev.of_node); |
| this->legacy.dev_ready = mxc_nand_dev_ready; |
| this->legacy.cmdfunc = mxc_nand_command; |
| this->legacy.read_byte = mxc_nand_read_byte; |
| this->legacy.write_buf = mxc_nand_write_buf; |
| this->legacy.read_buf = mxc_nand_read_buf; |
| this->legacy.set_features = mxc_nand_set_features; |
| this->legacy.get_features = mxc_nand_get_features; |
| |
| host->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) |
| return PTR_ERR(host->clk); |
| |
| host->devtype_data = device_get_match_data(&pdev->dev); |
| |
| if (!host->devtype_data->setup_interface) |
| this->options |= NAND_KEEP_TIMINGS; |
| |
| if (host->devtype_data->needs_ip) { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| host->regs_ip = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->regs_ip)) |
| return PTR_ERR(host->regs_ip); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| } else { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| } |
| |
| host->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->base)) |
| return PTR_ERR(host->base); |
| |
| host->main_area0 = host->base; |
| |
| if (host->devtype_data->regs_offset) |
| host->regs = host->base + host->devtype_data->regs_offset; |
| host->spare0 = host->base + host->devtype_data->spare0_offset; |
| if (host->devtype_data->axi_offset) |
| host->regs_axi = host->base + host->devtype_data->axi_offset; |
| |
| this->legacy.select_chip = host->devtype_data->select_chip; |
| |
| init_completion(&host->op_completion); |
| |
| host->irq = platform_get_irq(pdev, 0); |
| if (host->irq < 0) |
| return host->irq; |
| |
| /* |
| * Use host->devtype_data->irq_control() here instead of irq_control() |
| * because we must not disable_irq_nosync without having requested the |
| * irq. |
| */ |
| host->devtype_data->irq_control(host, 0); |
| |
| err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, |
| 0, DRIVER_NAME, host); |
| if (err) |
| return err; |
| |
| err = clk_prepare_enable(host->clk); |
| if (err) |
| return err; |
| host->clk_act = 1; |
| |
| /* |
| * Now that we "own" the interrupt make sure the interrupt mask bit is |
| * cleared on i.MX21. Otherwise we can't read the interrupt status bit |
| * on this machine. |
| */ |
| if (host->devtype_data->irqpending_quirk) { |
| disable_irq_nosync(host->irq); |
| host->devtype_data->irq_control(host, 1); |
| } |
| |
| /* Scan the NAND device */ |
| this->legacy.dummy_controller.ops = &mxcnd_controller_ops; |
| err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1); |
| if (err) |
| goto escan; |
| |
| /* Register the partitions */ |
| err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); |
| if (err) |
| goto cleanup_nand; |
| |
| platform_set_drvdata(pdev, host); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(this); |
| escan: |
| if (host->clk_act) |
| clk_disable_unprepare(host->clk); |
| |
| return err; |
| } |
| |
| static int mxcnd_remove(struct platform_device *pdev) |
| { |
| struct mxc_nand_host *host = platform_get_drvdata(pdev); |
| struct nand_chip *chip = &host->nand; |
| int ret; |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| if (host->clk_act) |
| clk_disable_unprepare(host->clk); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mxcnd_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = mxcnd_dt_ids, |
| }, |
| .probe = mxcnd_probe, |
| .remove = mxcnd_remove, |
| }; |
| module_platform_driver(mxcnd_driver); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_DESCRIPTION("MXC NAND MTD driver"); |
| MODULE_LICENSE("GPL"); |