blob: 0b0a72ca5695603ef16094b853ef27f26f42f896 [file] [log] [blame]
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/mmu_context.h>
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "gc/gc_11_0_0_offset.h"
#include "gc/gc_11_0_0_sh_mask.h"
#include "oss/osssys_6_0_0_offset.h"
#include "oss/osssys_6_0_0_sh_mask.h"
#include "soc15_common.h"
#include "soc15d.h"
#include "v11_structs.h"
#include "soc21.h"
enum hqd_dequeue_request_type {
NO_ACTION = 0,
DRAIN_PIPE,
RESET_WAVES,
SAVE_WAVES
};
static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
uint32_t queue, uint32_t vmid)
{
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, mec, pipe, queue, vmid);
}
static void unlock_srbm(struct amdgpu_device *adev)
{
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
uint32_t queue_id)
{
uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(adev, mec, pipe, queue_id, 0);
}
static uint64_t get_queue_mask(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id)
{
unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
queue_id;
return 1ull << bit;
}
static void release_queue(struct amdgpu_device *adev)
{
unlock_srbm(adev);
}
static void program_sh_mem_settings_v11(struct amdgpu_device *adev, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases)
{
lock_srbm(adev, 0, 0, 0, vmid);
WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_CONFIG), sh_mem_config);
WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_BASES), sh_mem_bases);
unlock_srbm(adev);
}
static int set_pasid_vmid_mapping_v11(struct amdgpu_device *adev, unsigned int pasid,
unsigned int vmid)
{
uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT;
/* Mapping vmid to pasid also for IH block */
pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n",
vmid, pasid);
WREG32(SOC15_REG_OFFSET(OSSSYS, 0, regIH_VMID_0_LUT) + vmid, value);
return 0;
}
static int init_interrupts_v11(struct amdgpu_device *adev, uint32_t pipe_id)
{
uint32_t mec;
uint32_t pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(adev, mec, pipe, 0, 0);
WREG32(SOC15_REG_OFFSET(GC, 0, regCPC_INT_CNTL),
CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
unlock_srbm(adev);
return 0;
}
static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
unsigned int engine_id,
unsigned int queue_id)
{
uint32_t sdma_engine_reg_base = 0;
uint32_t sdma_rlc_reg_offset;
switch (engine_id) {
case 0:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
regSDMA0_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL;
break;
case 1:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
regSDMA1_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL;
break;
default:
BUG();
}
sdma_rlc_reg_offset = sdma_engine_reg_base
+ queue_id * (regSDMA0_QUEUE1_RB_CNTL - regSDMA0_QUEUE0_RB_CNTL);
pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
queue_id, sdma_rlc_reg_offset);
return sdma_rlc_reg_offset;
}
static inline struct v11_compute_mqd *get_mqd(void *mqd)
{
return (struct v11_compute_mqd *)mqd;
}
static inline struct v11_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v11_sdma_mqd *)mqd;
}
static int hqd_load_v11(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr,
uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm)
{
struct v11_compute_mqd *m;
uint32_t *mqd_hqd;
uint32_t reg, hqd_base, data;
m = get_mqd(mqd);
pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
acquire_queue(adev, pipe_id, queue_id);
/* HIQ is set during driver init period with vmid set to 0*/
if (m->cp_hqd_vmid == 0) {
uint32_t value, mec, pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
value = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS));
value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
((mec << 5) | (pipe << 3) | queue_id | 0x80));
WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS), value);
}
/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
mqd_hqd = &m->cp_mqd_base_addr_lo;
hqd_base = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR);
for (reg = hqd_base;
reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++)
WREG32(reg, mqd_hqd[reg - hqd_base]);
/* Activate doorbell logic before triggering WPTR poll. */
data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL), data);
if (wptr) {
/* Don't read wptr with get_user because the user
* context may not be accessible (if this function
* runs in a work queue). Instead trigger a one-shot
* polling read from memory in the CP. This assumes
* that wptr is GPU-accessible in the queue's VMID via
* ATC or SVM. WPTR==RPTR before starting the poll so
* the CP starts fetching new commands from the right
* place.
*
* Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
* tricky. Assume that the queue didn't overflow. The
* number of valid bits in the 32-bit RPTR depends on
* the queue size. The remaining bits are taken from
* the saved 64-bit WPTR. If the WPTR wrapped, add the
* queue size.
*/
uint32_t queue_size =
2 << REG_GET_FIELD(m->cp_hqd_pq_control,
CP_HQD_PQ_CONTROL, QUEUE_SIZE);
uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
guessed_wptr += queue_size;
guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_LO),
lower_32_bits(guessed_wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI),
upper_32_bits(guessed_wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR),
lower_32_bits((uint64_t)wptr));
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI),
upper_32_bits((uint64_t)wptr));
pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
(uint32_t)get_queue_mask(adev, pipe_id, queue_id));
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_PQ_WPTR_POLL_CNTL1),
(uint32_t)get_queue_mask(adev, pipe_id, queue_id));
}
/* Start the EOP fetcher */
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_EOP_RPTR),
REG_SET_FIELD(m->cp_hqd_eop_rptr,
CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE), data);
release_queue(adev);
return 0;
}
static int hiq_mqd_load_v11(struct amdgpu_device *adev, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t doorbell_off)
{
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
struct v11_compute_mqd *m;
uint32_t mec, pipe;
int r;
m = get_mqd(mqd);
acquire_queue(adev, pipe_id, queue_id);
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
spin_lock(&adev->gfx.kiq.ring_lock);
r = amdgpu_ring_alloc(kiq_ring, 7);
if (r) {
pr_err("Failed to alloc KIQ (%d).\n", r);
goto out_unlock;
}
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
PACKET3_MAP_QUEUES_QUEUE(queue_id) |
PACKET3_MAP_QUEUES_PIPE(pipe) |
PACKET3_MAP_QUEUES_ME((mec - 1)) |
PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
amdgpu_ring_commit(kiq_ring);
out_unlock:
spin_unlock(&adev->gfx.kiq.ring_lock);
release_queue(adev);
return r;
}
static int hqd_dump_v11(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
uint32_t i = 0, reg;
#define HQD_N_REGS 56
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32(addr); \
} while (0)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
acquire_queue(adev, pipe_id, queue_id);
for (reg = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR);
reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++)
DUMP_REG(reg);
release_queue(adev);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int hqd_sdma_load_v11(struct amdgpu_device *adev, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{
struct v11_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
unsigned long end_jiffies;
uint32_t data;
uint64_t data64;
uint64_t __user *wptr64 = (uint64_t __user *)wptr;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL,
m->sdmax_rlcx_rb_cntl & (~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK));
end_jiffies = msecs_to_jiffies(2000) + jiffies;
while (true) {
data = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS);
if (data & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL_OFFSET,
m->sdmax_rlcx_doorbell_offset);
data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_QUEUE0_DOORBELL,
ENABLE, 1);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, data);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 1);
if (read_user_wptr(mm, wptr64, data64)) {
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR,
lower_32_bits(data64));
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI,
upper_32_bits(data64));
} else {
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
}
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 0);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE, m->sdmax_rlcx_rb_base);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE_HI,
m->sdmax_rlcx_rb_base_hi);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_LO,
m->sdmax_rlcx_rb_rptr_addr_lo);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_HI,
m->sdmax_rlcx_rb_rptr_addr_hi);
data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_QUEUE0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, data);
return 0;
}
static int hqd_sdma_dump_v11(struct amdgpu_device *adev,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
engine_id, queue_id);
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (7+11+1+12+12)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = regSDMA0_QUEUE0_RB_CNTL;
reg <= regSDMA0_QUEUE0_RB_WPTR_HI; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = regSDMA0_QUEUE0_RB_RPTR_ADDR_HI;
reg <= regSDMA0_QUEUE0_DOORBELL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = regSDMA0_QUEUE0_DOORBELL_LOG;
reg <= regSDMA0_QUEUE0_DOORBELL_LOG; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = regSDMA0_QUEUE0_DOORBELL_OFFSET;
reg <= regSDMA0_QUEUE0_RB_PREEMPT; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = regSDMA0_QUEUE0_MIDCMD_DATA0;
reg <= regSDMA0_QUEUE0_MIDCMD_CNTL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static bool hqd_is_occupied_v11(struct amdgpu_device *adev, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t act;
bool retval = false;
uint32_t low, high;
acquire_queue(adev, pipe_id, queue_id);
act = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE));
if (act) {
low = lower_32_bits(queue_address >> 8);
high = upper_32_bits(queue_address >> 8);
if (low == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE)) &&
high == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE_HI)))
retval = true;
}
release_queue(adev);
return retval;
}
static bool hqd_sdma_is_occupied_v11(struct amdgpu_device *adev, void *mqd)
{
struct v11_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t sdma_rlc_rb_cntl;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL);
if (sdma_rlc_rb_cntl & SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK)
return true;
return false;
}
static int hqd_destroy_v11(struct amdgpu_device *adev, void *mqd,
enum kfd_preempt_type reset_type,
unsigned int utimeout, uint32_t pipe_id,
uint32_t queue_id)
{
enum hqd_dequeue_request_type type;
unsigned long end_jiffies;
uint32_t temp;
struct v11_compute_mqd *m = get_mqd(mqd);
acquire_queue(adev, pipe_id, queue_id);
if (m->cp_hqd_vmid == 0)
WREG32_FIELD15_PREREG(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
switch (reset_type) {
case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
type = DRAIN_PIPE;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
type = RESET_WAVES;
break;
default:
type = DRAIN_PIPE;
break;
}
WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_DEQUEUE_REQUEST), type);
end_jiffies = (utimeout * HZ / 1000) + jiffies;
while (true) {
temp = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE));
if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("cp queue pipe %d queue %d preemption failed\n",
pipe_id, queue_id);
release_queue(adev);
return -ETIME;
}
usleep_range(500, 1000);
}
release_queue(adev);
return 0;
}
static int hqd_sdma_destroy_v11(struct amdgpu_device *adev, void *mqd,
unsigned int utimeout)
{
struct v11_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t temp;
unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL);
temp = temp & ~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK;
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, temp);
while (true) {
temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS);
if (temp & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, 0);
WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL,
RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL) |
SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK);
m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR);
m->sdmax_rlcx_rb_rptr_hi =
RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI);
return 0;
}
static int wave_control_execute_v11(struct amdgpu_device *adev,
uint32_t gfx_index_val,
uint32_t sq_cmd)
{
uint32_t data = 0;
mutex_lock(&adev->grbm_idx_mutex);
WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), gfx_index_val);
WREG32(SOC15_REG_OFFSET(GC, 0, regSQ_CMD), sq_cmd);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SA_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SE_BROADCAST_WRITES, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
static void set_vm_context_page_table_base_v11(struct amdgpu_device *adev,
uint32_t vmid, uint64_t page_table_base)
{
if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
pr_err("trying to set page table base for wrong VMID %u\n",
vmid);
return;
}
/* SDMA is on gfxhub as well for gfx11 adapters */
adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
}
const struct kfd2kgd_calls gfx_v11_kfd2kgd = {
.program_sh_mem_settings = program_sh_mem_settings_v11,
.set_pasid_vmid_mapping = set_pasid_vmid_mapping_v11,
.init_interrupts = init_interrupts_v11,
.hqd_load = hqd_load_v11,
.hiq_mqd_load = hiq_mqd_load_v11,
.hqd_sdma_load = hqd_sdma_load_v11,
.hqd_dump = hqd_dump_v11,
.hqd_sdma_dump = hqd_sdma_dump_v11,
.hqd_is_occupied = hqd_is_occupied_v11,
.hqd_sdma_is_occupied = hqd_sdma_is_occupied_v11,
.hqd_destroy = hqd_destroy_v11,
.hqd_sdma_destroy = hqd_sdma_destroy_v11,
.wave_control_execute = wave_control_execute_v11,
.get_atc_vmid_pasid_mapping_info = NULL,
.set_vm_context_page_table_base = set_vm_context_page_table_base_v11,
};