| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * Authors: Jérôme Glisse <jglisse@redhat.com> |
| */ |
| /* |
| * Refer to include/linux/hmm.h for information about heterogeneous memory |
| * management or HMM for short. |
| */ |
| #include <linux/mm.h> |
| #include <linux/hmm.h> |
| #include <linux/init.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mmzone.h> |
| #include <linux/pagemap.h> |
| #include <linux/swapops.h> |
| #include <linux/hugetlb.h> |
| #include <linux/memremap.h> |
| #include <linux/jump_label.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/memory_hotplug.h> |
| |
| #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) |
| |
| #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) |
| /* |
| * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h |
| */ |
| DEFINE_STATIC_KEY_FALSE(device_private_key); |
| EXPORT_SYMBOL(device_private_key); |
| #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ |
| |
| |
| #if IS_ENABLED(CONFIG_HMM_MIRROR) |
| static const struct mmu_notifier_ops hmm_mmu_notifier_ops; |
| |
| /* |
| * struct hmm - HMM per mm struct |
| * |
| * @mm: mm struct this HMM struct is bound to |
| * @lock: lock protecting ranges list |
| * @sequence: we track updates to the CPU page table with a sequence number |
| * @ranges: list of range being snapshotted |
| * @mirrors: list of mirrors for this mm |
| * @mmu_notifier: mmu notifier to track updates to CPU page table |
| * @mirrors_sem: read/write semaphore protecting the mirrors list |
| */ |
| struct hmm { |
| struct mm_struct *mm; |
| spinlock_t lock; |
| atomic_t sequence; |
| struct list_head ranges; |
| struct list_head mirrors; |
| struct mmu_notifier mmu_notifier; |
| struct rw_semaphore mirrors_sem; |
| }; |
| |
| /* |
| * hmm_register - register HMM against an mm (HMM internal) |
| * |
| * @mm: mm struct to attach to |
| * |
| * This is not intended to be used directly by device drivers. It allocates an |
| * HMM struct if mm does not have one, and initializes it. |
| */ |
| static struct hmm *hmm_register(struct mm_struct *mm) |
| { |
| struct hmm *hmm = READ_ONCE(mm->hmm); |
| bool cleanup = false; |
| |
| /* |
| * The hmm struct can only be freed once the mm_struct goes away, |
| * hence we should always have pre-allocated an new hmm struct |
| * above. |
| */ |
| if (hmm) |
| return hmm; |
| |
| hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); |
| if (!hmm) |
| return NULL; |
| INIT_LIST_HEAD(&hmm->mirrors); |
| init_rwsem(&hmm->mirrors_sem); |
| atomic_set(&hmm->sequence, 0); |
| hmm->mmu_notifier.ops = NULL; |
| INIT_LIST_HEAD(&hmm->ranges); |
| spin_lock_init(&hmm->lock); |
| hmm->mm = mm; |
| |
| /* |
| * We should only get here if hold the mmap_sem in write mode ie on |
| * registration of first mirror through hmm_mirror_register() |
| */ |
| hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; |
| if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) { |
| kfree(hmm); |
| return NULL; |
| } |
| |
| spin_lock(&mm->page_table_lock); |
| if (!mm->hmm) |
| mm->hmm = hmm; |
| else |
| cleanup = true; |
| spin_unlock(&mm->page_table_lock); |
| |
| if (cleanup) { |
| mmu_notifier_unregister(&hmm->mmu_notifier, mm); |
| kfree(hmm); |
| } |
| |
| return mm->hmm; |
| } |
| |
| void hmm_mm_destroy(struct mm_struct *mm) |
| { |
| kfree(mm->hmm); |
| } |
| |
| static void hmm_invalidate_range(struct hmm *hmm, |
| enum hmm_update_type action, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct hmm_mirror *mirror; |
| struct hmm_range *range; |
| |
| spin_lock(&hmm->lock); |
| list_for_each_entry(range, &hmm->ranges, list) { |
| unsigned long addr, idx, npages; |
| |
| if (end < range->start || start >= range->end) |
| continue; |
| |
| range->valid = false; |
| addr = max(start, range->start); |
| idx = (addr - range->start) >> PAGE_SHIFT; |
| npages = (min(range->end, end) - addr) >> PAGE_SHIFT; |
| memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages); |
| } |
| spin_unlock(&hmm->lock); |
| |
| down_read(&hmm->mirrors_sem); |
| list_for_each_entry(mirror, &hmm->mirrors, list) |
| mirror->ops->sync_cpu_device_pagetables(mirror, action, |
| start, end); |
| up_read(&hmm->mirrors_sem); |
| } |
| |
| static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm) |
| { |
| struct hmm_mirror *mirror; |
| struct hmm *hmm = mm->hmm; |
| |
| down_write(&hmm->mirrors_sem); |
| mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, |
| list); |
| while (mirror) { |
| list_del_init(&mirror->list); |
| if (mirror->ops->release) { |
| /* |
| * Drop mirrors_sem so callback can wait on any pending |
| * work that might itself trigger mmu_notifier callback |
| * and thus would deadlock with us. |
| */ |
| up_write(&hmm->mirrors_sem); |
| mirror->ops->release(mirror); |
| down_write(&hmm->mirrors_sem); |
| } |
| mirror = list_first_entry_or_null(&hmm->mirrors, |
| struct hmm_mirror, list); |
| } |
| up_write(&hmm->mirrors_sem); |
| } |
| |
| static void hmm_invalidate_range_start(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct hmm *hmm = mm->hmm; |
| |
| VM_BUG_ON(!hmm); |
| |
| atomic_inc(&hmm->sequence); |
| } |
| |
| static void hmm_invalidate_range_end(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct hmm *hmm = mm->hmm; |
| |
| VM_BUG_ON(!hmm); |
| |
| hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end); |
| } |
| |
| static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { |
| .release = hmm_release, |
| .invalidate_range_start = hmm_invalidate_range_start, |
| .invalidate_range_end = hmm_invalidate_range_end, |
| }; |
| |
| /* |
| * hmm_mirror_register() - register a mirror against an mm |
| * |
| * @mirror: new mirror struct to register |
| * @mm: mm to register against |
| * |
| * To start mirroring a process address space, the device driver must register |
| * an HMM mirror struct. |
| * |
| * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! |
| */ |
| int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) |
| { |
| /* Sanity check */ |
| if (!mm || !mirror || !mirror->ops) |
| return -EINVAL; |
| |
| again: |
| mirror->hmm = hmm_register(mm); |
| if (!mirror->hmm) |
| return -ENOMEM; |
| |
| down_write(&mirror->hmm->mirrors_sem); |
| if (mirror->hmm->mm == NULL) { |
| /* |
| * A racing hmm_mirror_unregister() is about to destroy the hmm |
| * struct. Try again to allocate a new one. |
| */ |
| up_write(&mirror->hmm->mirrors_sem); |
| mirror->hmm = NULL; |
| goto again; |
| } else { |
| list_add(&mirror->list, &mirror->hmm->mirrors); |
| up_write(&mirror->hmm->mirrors_sem); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(hmm_mirror_register); |
| |
| /* |
| * hmm_mirror_unregister() - unregister a mirror |
| * |
| * @mirror: new mirror struct to register |
| * |
| * Stop mirroring a process address space, and cleanup. |
| */ |
| void hmm_mirror_unregister(struct hmm_mirror *mirror) |
| { |
| bool should_unregister = false; |
| struct mm_struct *mm; |
| struct hmm *hmm; |
| |
| if (mirror->hmm == NULL) |
| return; |
| |
| hmm = mirror->hmm; |
| down_write(&hmm->mirrors_sem); |
| list_del_init(&mirror->list); |
| should_unregister = list_empty(&hmm->mirrors); |
| mirror->hmm = NULL; |
| mm = hmm->mm; |
| hmm->mm = NULL; |
| up_write(&hmm->mirrors_sem); |
| |
| if (!should_unregister || mm == NULL) |
| return; |
| |
| spin_lock(&mm->page_table_lock); |
| if (mm->hmm == hmm) |
| mm->hmm = NULL; |
| spin_unlock(&mm->page_table_lock); |
| |
| mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm); |
| kfree(hmm); |
| } |
| EXPORT_SYMBOL(hmm_mirror_unregister); |
| |
| struct hmm_vma_walk { |
| struct hmm_range *range; |
| unsigned long last; |
| bool fault; |
| bool block; |
| bool write; |
| }; |
| |
| static int hmm_vma_do_fault(struct mm_walk *walk, |
| unsigned long addr, |
| uint64_t *pfn) |
| { |
| unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE; |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| int r; |
| |
| flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; |
| flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0; |
| r = handle_mm_fault(vma, addr, flags); |
| if (r & VM_FAULT_RETRY) |
| return -EBUSY; |
| if (r & VM_FAULT_ERROR) { |
| *pfn = HMM_PFN_ERROR; |
| return -EFAULT; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| static int hmm_pfns_bad(unsigned long addr, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| uint64_t *pfns = range->pfns; |
| unsigned long i; |
| |
| i = (addr - range->start) >> PAGE_SHIFT; |
| for (; addr < end; addr += PAGE_SIZE, i++) |
| pfns[i] = HMM_PFN_ERROR; |
| |
| return 0; |
| } |
| |
| /* |
| * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s) |
| * @start: range virtual start address (inclusive) |
| * @end: range virtual end address (exclusive) |
| * @walk: mm_walk structure |
| * Returns: 0 on success, -EAGAIN after page fault, or page fault error |
| * |
| * This function will be called whenever pmd_none() or pte_none() returns true, |
| * or whenever there is no page directory covering the virtual address range. |
| */ |
| static int hmm_vma_walk_hole(unsigned long addr, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| uint64_t *pfns = range->pfns; |
| unsigned long i; |
| |
| hmm_vma_walk->last = addr; |
| i = (addr - range->start) >> PAGE_SHIFT; |
| for (; addr < end; addr += PAGE_SIZE, i++) { |
| pfns[i] = 0; |
| if (hmm_vma_walk->fault) { |
| int ret; |
| |
| ret = hmm_vma_do_fault(walk, addr, &pfns[i]); |
| if (ret != -EAGAIN) |
| return ret; |
| } |
| } |
| |
| return hmm_vma_walk->fault ? -EAGAIN : 0; |
| } |
| |
| static int hmm_vma_walk_pmd(pmd_t *pmdp, |
| unsigned long start, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| struct vm_area_struct *vma = walk->vma; |
| uint64_t *pfns = range->pfns; |
| unsigned long addr = start, i; |
| bool write_fault; |
| pte_t *ptep; |
| |
| i = (addr - range->start) >> PAGE_SHIFT; |
| write_fault = hmm_vma_walk->fault & hmm_vma_walk->write; |
| |
| again: |
| if (pmd_none(*pmdp)) |
| return hmm_vma_walk_hole(start, end, walk); |
| |
| if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB) |
| return hmm_pfns_bad(start, end, walk); |
| |
| if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) { |
| unsigned long pfn; |
| uint64_t flag = 0; |
| pmd_t pmd; |
| |
| /* |
| * No need to take pmd_lock here, even if some other threads |
| * is splitting the huge pmd we will get that event through |
| * mmu_notifier callback. |
| * |
| * So just read pmd value and check again its a transparent |
| * huge or device mapping one and compute corresponding pfn |
| * values. |
| */ |
| pmd = pmd_read_atomic(pmdp); |
| barrier(); |
| if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) |
| goto again; |
| if (pmd_protnone(pmd)) |
| return hmm_vma_walk_hole(start, end, walk); |
| |
| if (write_fault && !pmd_write(pmd)) |
| return hmm_vma_walk_hole(start, end, walk); |
| |
| pfn = pmd_pfn(pmd) + pte_index(addr); |
| flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0; |
| for (; addr < end; addr += PAGE_SIZE, i++, pfn++) |
| pfns[i] = hmm_pfn_from_pfn(pfn) | flag; |
| return 0; |
| } |
| |
| if (pmd_bad(*pmdp)) |
| return hmm_pfns_bad(start, end, walk); |
| |
| ptep = pte_offset_map(pmdp, addr); |
| for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { |
| pte_t pte = *ptep; |
| |
| pfns[i] = 0; |
| |
| if (pte_none(pte)) { |
| pfns[i] = 0; |
| if (hmm_vma_walk->fault) |
| goto fault; |
| continue; |
| } |
| |
| if (!pte_present(pte)) { |
| swp_entry_t entry = pte_to_swp_entry(pte); |
| |
| if (!non_swap_entry(entry)) { |
| if (hmm_vma_walk->fault) |
| goto fault; |
| continue; |
| } |
| |
| /* |
| * This is a special swap entry, ignore migration, use |
| * device and report anything else as error. |
| */ |
| if (is_device_private_entry(entry)) { |
| pfns[i] = hmm_pfn_from_pfn(swp_offset(entry)); |
| if (is_write_device_private_entry(entry)) { |
| pfns[i] |= HMM_PFN_WRITE; |
| } else if (write_fault) |
| goto fault; |
| pfns[i] |= HMM_PFN_DEVICE_PRIVATE; |
| } else if (is_migration_entry(entry)) { |
| if (hmm_vma_walk->fault) { |
| pte_unmap(ptep); |
| hmm_vma_walk->last = addr; |
| migration_entry_wait(vma->vm_mm, |
| pmdp, addr); |
| return -EAGAIN; |
| } |
| continue; |
| } else { |
| /* Report error for everything else */ |
| pfns[i] = HMM_PFN_ERROR; |
| } |
| continue; |
| } |
| |
| if (write_fault && !pte_write(pte)) |
| goto fault; |
| |
| pfns[i] = hmm_pfn_from_pfn(pte_pfn(pte)); |
| pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0; |
| continue; |
| |
| fault: |
| pte_unmap(ptep); |
| /* Fault any virtual address we were asked to fault */ |
| return hmm_vma_walk_hole(start, end, walk); |
| } |
| pte_unmap(ptep - 1); |
| |
| return 0; |
| } |
| |
| static void hmm_pfns_clear(uint64_t *pfns, |
| unsigned long addr, |
| unsigned long end) |
| { |
| for (; addr < end; addr += PAGE_SIZE, pfns++) |
| *pfns = 0; |
| } |
| |
| static void hmm_pfns_special(struct hmm_range *range) |
| { |
| unsigned long addr = range->start, i = 0; |
| |
| for (; addr < range->end; addr += PAGE_SIZE, i++) |
| range->pfns[i] = HMM_PFN_SPECIAL; |
| } |
| |
| /* |
| * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses |
| * @range: range being snapshotted |
| * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid |
| * vma permission, 0 success |
| * |
| * This snapshots the CPU page table for a range of virtual addresses. Snapshot |
| * validity is tracked by range struct. See hmm_vma_range_done() for further |
| * information. |
| * |
| * The range struct is initialized here. It tracks the CPU page table, but only |
| * if the function returns success (0), in which case the caller must then call |
| * hmm_vma_range_done() to stop CPU page table update tracking on this range. |
| * |
| * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS |
| * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED ! |
| */ |
| int hmm_vma_get_pfns(struct hmm_range *range) |
| { |
| struct vm_area_struct *vma = range->vma; |
| struct hmm_vma_walk hmm_vma_walk; |
| struct mm_walk mm_walk; |
| struct hmm *hmm; |
| |
| /* Sanity check, this really should not happen ! */ |
| if (range->start < vma->vm_start || range->start >= vma->vm_end) |
| return -EINVAL; |
| if (range->end < vma->vm_start || range->end > vma->vm_end) |
| return -EINVAL; |
| |
| hmm = hmm_register(vma->vm_mm); |
| if (!hmm) |
| return -ENOMEM; |
| /* Caller must have registered a mirror, via hmm_mirror_register() ! */ |
| if (!hmm->mmu_notifier.ops) |
| return -EINVAL; |
| |
| /* FIXME support hugetlb fs */ |
| if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) { |
| hmm_pfns_special(range); |
| return -EINVAL; |
| } |
| |
| if (!(vma->vm_flags & VM_READ)) { |
| /* |
| * If vma do not allow read access, then assume that it does |
| * not allow write access, either. Architecture that allow |
| * write without read access are not supported by HMM, because |
| * operations such has atomic access would not work. |
| */ |
| hmm_pfns_clear(range->pfns, range->start, range->end); |
| return -EPERM; |
| } |
| |
| /* Initialize range to track CPU page table update */ |
| spin_lock(&hmm->lock); |
| range->valid = true; |
| list_add_rcu(&range->list, &hmm->ranges); |
| spin_unlock(&hmm->lock); |
| |
| hmm_vma_walk.fault = false; |
| hmm_vma_walk.range = range; |
| mm_walk.private = &hmm_vma_walk; |
| |
| mm_walk.vma = vma; |
| mm_walk.mm = vma->vm_mm; |
| mm_walk.pte_entry = NULL; |
| mm_walk.test_walk = NULL; |
| mm_walk.hugetlb_entry = NULL; |
| mm_walk.pmd_entry = hmm_vma_walk_pmd; |
| mm_walk.pte_hole = hmm_vma_walk_hole; |
| |
| walk_page_range(range->start, range->end, &mm_walk); |
| return 0; |
| } |
| EXPORT_SYMBOL(hmm_vma_get_pfns); |
| |
| /* |
| * hmm_vma_range_done() - stop tracking change to CPU page table over a range |
| * @range: range being tracked |
| * Returns: false if range data has been invalidated, true otherwise |
| * |
| * Range struct is used to track updates to the CPU page table after a call to |
| * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done |
| * using the data, or wants to lock updates to the data it got from those |
| * functions, it must call the hmm_vma_range_done() function, which will then |
| * stop tracking CPU page table updates. |
| * |
| * Note that device driver must still implement general CPU page table update |
| * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using |
| * the mmu_notifier API directly. |
| * |
| * CPU page table update tracking done through hmm_range is only temporary and |
| * to be used while trying to duplicate CPU page table contents for a range of |
| * virtual addresses. |
| * |
| * There are two ways to use this : |
| * again: |
| * hmm_vma_get_pfns(range); or hmm_vma_fault(...); |
| * trans = device_build_page_table_update_transaction(pfns); |
| * device_page_table_lock(); |
| * if (!hmm_vma_range_done(range)) { |
| * device_page_table_unlock(); |
| * goto again; |
| * } |
| * device_commit_transaction(trans); |
| * device_page_table_unlock(); |
| * |
| * Or: |
| * hmm_vma_get_pfns(range); or hmm_vma_fault(...); |
| * device_page_table_lock(); |
| * hmm_vma_range_done(range); |
| * device_update_page_table(range->pfns); |
| * device_page_table_unlock(); |
| */ |
| bool hmm_vma_range_done(struct hmm_range *range) |
| { |
| unsigned long npages = (range->end - range->start) >> PAGE_SHIFT; |
| struct hmm *hmm; |
| |
| if (range->end <= range->start) { |
| BUG(); |
| return false; |
| } |
| |
| hmm = hmm_register(range->vma->vm_mm); |
| if (!hmm) { |
| memset(range->pfns, 0, sizeof(*range->pfns) * npages); |
| return false; |
| } |
| |
| spin_lock(&hmm->lock); |
| list_del_rcu(&range->list); |
| spin_unlock(&hmm->lock); |
| |
| return range->valid; |
| } |
| EXPORT_SYMBOL(hmm_vma_range_done); |
| |
| /* |
| * hmm_vma_fault() - try to fault some address in a virtual address range |
| * @range: range being faulted |
| * @write: is it a write fault |
| * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) |
| * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop) |
| * |
| * This is similar to a regular CPU page fault except that it will not trigger |
| * any memory migration if the memory being faulted is not accessible by CPUs. |
| * |
| * On error, for one virtual address in the range, the function will mark the |
| * corresponding HMM pfn entry with an error flag. |
| * |
| * Expected use pattern: |
| * retry: |
| * down_read(&mm->mmap_sem); |
| * // Find vma and address device wants to fault, initialize hmm_pfn_t |
| * // array accordingly |
| * ret = hmm_vma_fault(range, write, block); |
| * switch (ret) { |
| * case -EAGAIN: |
| * hmm_vma_range_done(range); |
| * // You might want to rate limit or yield to play nicely, you may |
| * // also commit any valid pfn in the array assuming that you are |
| * // getting true from hmm_vma_range_monitor_end() |
| * goto retry; |
| * case 0: |
| * break; |
| * case -ENOMEM: |
| * case -EINVAL: |
| * case -EPERM: |
| * default: |
| * // Handle error ! |
| * up_read(&mm->mmap_sem) |
| * return; |
| * } |
| * // Take device driver lock that serialize device page table update |
| * driver_lock_device_page_table_update(); |
| * hmm_vma_range_done(range); |
| * // Commit pfns we got from hmm_vma_fault() |
| * driver_unlock_device_page_table_update(); |
| * up_read(&mm->mmap_sem) |
| * |
| * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0) |
| * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION ! |
| * |
| * YOU HAVE BEEN WARNED ! |
| */ |
| int hmm_vma_fault(struct hmm_range *range, bool write, bool block) |
| { |
| struct vm_area_struct *vma = range->vma; |
| unsigned long start = range->start; |
| struct hmm_vma_walk hmm_vma_walk; |
| struct mm_walk mm_walk; |
| struct hmm *hmm; |
| int ret; |
| |
| /* Sanity check, this really should not happen ! */ |
| if (range->start < vma->vm_start || range->start >= vma->vm_end) |
| return -EINVAL; |
| if (range->end < vma->vm_start || range->end > vma->vm_end) |
| return -EINVAL; |
| |
| hmm = hmm_register(vma->vm_mm); |
| if (!hmm) { |
| hmm_pfns_clear(range->pfns, range->start, range->end); |
| return -ENOMEM; |
| } |
| /* Caller must have registered a mirror using hmm_mirror_register() */ |
| if (!hmm->mmu_notifier.ops) |
| return -EINVAL; |
| |
| /* FIXME support hugetlb fs */ |
| if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) { |
| hmm_pfns_special(range); |
| return -EINVAL; |
| } |
| |
| if (!(vma->vm_flags & VM_READ)) { |
| /* |
| * If vma do not allow read access, then assume that it does |
| * not allow write access, either. Architecture that allow |
| * write without read access are not supported by HMM, because |
| * operations such has atomic access would not work. |
| */ |
| hmm_pfns_clear(range->pfns, range->start, range->end); |
| return -EPERM; |
| } |
| |
| /* Initialize range to track CPU page table update */ |
| spin_lock(&hmm->lock); |
| range->valid = true; |
| list_add_rcu(&range->list, &hmm->ranges); |
| spin_unlock(&hmm->lock); |
| |
| hmm_vma_walk.fault = true; |
| hmm_vma_walk.write = write; |
| hmm_vma_walk.block = block; |
| hmm_vma_walk.range = range; |
| mm_walk.private = &hmm_vma_walk; |
| hmm_vma_walk.last = range->start; |
| |
| mm_walk.vma = vma; |
| mm_walk.mm = vma->vm_mm; |
| mm_walk.pte_entry = NULL; |
| mm_walk.test_walk = NULL; |
| mm_walk.hugetlb_entry = NULL; |
| mm_walk.pmd_entry = hmm_vma_walk_pmd; |
| mm_walk.pte_hole = hmm_vma_walk_hole; |
| |
| do { |
| ret = walk_page_range(start, range->end, &mm_walk); |
| start = hmm_vma_walk.last; |
| } while (ret == -EAGAIN); |
| |
| if (ret) { |
| unsigned long i; |
| |
| i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; |
| hmm_pfns_clear(&range->pfns[i], hmm_vma_walk.last, range->end); |
| hmm_vma_range_done(range); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(hmm_vma_fault); |
| #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ |
| |
| |
| #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) |
| struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| struct page *page; |
| |
| page = alloc_page_vma(GFP_HIGHUSER, vma, addr); |
| if (!page) |
| return NULL; |
| lock_page(page); |
| return page; |
| } |
| EXPORT_SYMBOL(hmm_vma_alloc_locked_page); |
| |
| |
| static void hmm_devmem_ref_release(struct percpu_ref *ref) |
| { |
| struct hmm_devmem *devmem; |
| |
| devmem = container_of(ref, struct hmm_devmem, ref); |
| complete(&devmem->completion); |
| } |
| |
| static void hmm_devmem_ref_exit(void *data) |
| { |
| struct percpu_ref *ref = data; |
| struct hmm_devmem *devmem; |
| |
| devmem = container_of(ref, struct hmm_devmem, ref); |
| percpu_ref_exit(ref); |
| devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data); |
| } |
| |
| static void hmm_devmem_ref_kill(void *data) |
| { |
| struct percpu_ref *ref = data; |
| struct hmm_devmem *devmem; |
| |
| devmem = container_of(ref, struct hmm_devmem, ref); |
| percpu_ref_kill(ref); |
| wait_for_completion(&devmem->completion); |
| devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data); |
| } |
| |
| static int hmm_devmem_fault(struct vm_area_struct *vma, |
| unsigned long addr, |
| const struct page *page, |
| unsigned int flags, |
| pmd_t *pmdp) |
| { |
| struct hmm_devmem *devmem = page->pgmap->data; |
| |
| return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); |
| } |
| |
| static void hmm_devmem_free(struct page *page, void *data) |
| { |
| struct hmm_devmem *devmem = data; |
| |
| devmem->ops->free(devmem, page); |
| } |
| |
| static DEFINE_MUTEX(hmm_devmem_lock); |
| static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL); |
| |
| static void hmm_devmem_radix_release(struct resource *resource) |
| { |
| resource_size_t key, align_start, align_size; |
| |
| align_start = resource->start & ~(PA_SECTION_SIZE - 1); |
| align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE); |
| |
| mutex_lock(&hmm_devmem_lock); |
| for (key = resource->start; |
| key <= resource->end; |
| key += PA_SECTION_SIZE) |
| radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT); |
| mutex_unlock(&hmm_devmem_lock); |
| } |
| |
| static void hmm_devmem_release(struct device *dev, void *data) |
| { |
| struct hmm_devmem *devmem = data; |
| struct resource *resource = devmem->resource; |
| unsigned long start_pfn, npages; |
| struct zone *zone; |
| struct page *page; |
| |
| if (percpu_ref_tryget_live(&devmem->ref)) { |
| dev_WARN(dev, "%s: page mapping is still live!\n", __func__); |
| percpu_ref_put(&devmem->ref); |
| } |
| |
| /* pages are dead and unused, undo the arch mapping */ |
| start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT; |
| npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT; |
| |
| page = pfn_to_page(start_pfn); |
| zone = page_zone(page); |
| |
| mem_hotplug_begin(); |
| if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) |
| __remove_pages(zone, start_pfn, npages, NULL); |
| else |
| arch_remove_memory(start_pfn << PAGE_SHIFT, |
| npages << PAGE_SHIFT, NULL); |
| mem_hotplug_done(); |
| |
| hmm_devmem_radix_release(resource); |
| } |
| |
| static struct hmm_devmem *hmm_devmem_find(resource_size_t phys) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT); |
| } |
| |
| static int hmm_devmem_pages_create(struct hmm_devmem *devmem) |
| { |
| resource_size_t key, align_start, align_size, align_end; |
| struct device *device = devmem->device; |
| int ret, nid, is_ram; |
| unsigned long pfn; |
| |
| align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1); |
| align_size = ALIGN(devmem->resource->start + |
| resource_size(devmem->resource), |
| PA_SECTION_SIZE) - align_start; |
| |
| is_ram = region_intersects(align_start, align_size, |
| IORESOURCE_SYSTEM_RAM, |
| IORES_DESC_NONE); |
| if (is_ram == REGION_MIXED) { |
| WARN_ONCE(1, "%s attempted on mixed region %pr\n", |
| __func__, devmem->resource); |
| return -ENXIO; |
| } |
| if (is_ram == REGION_INTERSECTS) |
| return -ENXIO; |
| |
| if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY) |
| devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; |
| else |
| devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; |
| |
| devmem->pagemap.res = *devmem->resource; |
| devmem->pagemap.page_fault = hmm_devmem_fault; |
| devmem->pagemap.page_free = hmm_devmem_free; |
| devmem->pagemap.dev = devmem->device; |
| devmem->pagemap.ref = &devmem->ref; |
| devmem->pagemap.data = devmem; |
| |
| mutex_lock(&hmm_devmem_lock); |
| align_end = align_start + align_size - 1; |
| for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) { |
| struct hmm_devmem *dup; |
| |
| rcu_read_lock(); |
| dup = hmm_devmem_find(key); |
| rcu_read_unlock(); |
| if (dup) { |
| dev_err(device, "%s: collides with mapping for %s\n", |
| __func__, dev_name(dup->device)); |
| mutex_unlock(&hmm_devmem_lock); |
| ret = -EBUSY; |
| goto error; |
| } |
| ret = radix_tree_insert(&hmm_devmem_radix, |
| key >> PA_SECTION_SHIFT, |
| devmem); |
| if (ret) { |
| dev_err(device, "%s: failed: %d\n", __func__, ret); |
| mutex_unlock(&hmm_devmem_lock); |
| goto error_radix; |
| } |
| } |
| mutex_unlock(&hmm_devmem_lock); |
| |
| nid = dev_to_node(device); |
| if (nid < 0) |
| nid = numa_mem_id(); |
| |
| mem_hotplug_begin(); |
| /* |
| * For device private memory we call add_pages() as we only need to |
| * allocate and initialize struct page for the device memory. More- |
| * over the device memory is un-accessible thus we do not want to |
| * create a linear mapping for the memory like arch_add_memory() |
| * would do. |
| * |
| * For device public memory, which is accesible by the CPU, we do |
| * want the linear mapping and thus use arch_add_memory(). |
| */ |
| if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC) |
| ret = arch_add_memory(nid, align_start, align_size, NULL, |
| false); |
| else |
| ret = add_pages(nid, align_start >> PAGE_SHIFT, |
| align_size >> PAGE_SHIFT, NULL, false); |
| if (ret) { |
| mem_hotplug_done(); |
| goto error_add_memory; |
| } |
| move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], |
| align_start >> PAGE_SHIFT, |
| align_size >> PAGE_SHIFT, NULL); |
| mem_hotplug_done(); |
| |
| for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| page->pgmap = &devmem->pagemap; |
| } |
| return 0; |
| |
| error_add_memory: |
| untrack_pfn(NULL, PHYS_PFN(align_start), align_size); |
| error_radix: |
| hmm_devmem_radix_release(devmem->resource); |
| error: |
| return ret; |
| } |
| |
| static int hmm_devmem_match(struct device *dev, void *data, void *match_data) |
| { |
| struct hmm_devmem *devmem = data; |
| |
| return devmem->resource == match_data; |
| } |
| |
| static void hmm_devmem_pages_remove(struct hmm_devmem *devmem) |
| { |
| devres_release(devmem->device, &hmm_devmem_release, |
| &hmm_devmem_match, devmem->resource); |
| } |
| |
| /* |
| * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory |
| * |
| * @ops: memory event device driver callback (see struct hmm_devmem_ops) |
| * @device: device struct to bind the resource too |
| * @size: size in bytes of the device memory to add |
| * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise |
| * |
| * This function first finds an empty range of physical address big enough to |
| * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which |
| * in turn allocates struct pages. It does not do anything beyond that; all |
| * events affecting the memory will go through the various callbacks provided |
| * by hmm_devmem_ops struct. |
| * |
| * Device driver should call this function during device initialization and |
| * is then responsible of memory management. HMM only provides helpers. |
| */ |
| struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, |
| struct device *device, |
| unsigned long size) |
| { |
| struct hmm_devmem *devmem; |
| resource_size_t addr; |
| int ret; |
| |
| static_branch_enable(&device_private_key); |
| |
| devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), |
| GFP_KERNEL, dev_to_node(device)); |
| if (!devmem) |
| return ERR_PTR(-ENOMEM); |
| |
| init_completion(&devmem->completion); |
| devmem->pfn_first = -1UL; |
| devmem->pfn_last = -1UL; |
| devmem->resource = NULL; |
| devmem->device = device; |
| devmem->ops = ops; |
| |
| ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, |
| 0, GFP_KERNEL); |
| if (ret) |
| goto error_percpu_ref; |
| |
| ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); |
| if (ret) |
| goto error_devm_add_action; |
| |
| size = ALIGN(size, PA_SECTION_SIZE); |
| addr = min((unsigned long)iomem_resource.end, |
| (1UL << MAX_PHYSMEM_BITS) - 1); |
| addr = addr - size + 1UL; |
| |
| /* |
| * FIXME add a new helper to quickly walk resource tree and find free |
| * range |
| * |
| * FIXME what about ioport_resource resource ? |
| */ |
| for (; addr > size && addr >= iomem_resource.start; addr -= size) { |
| ret = region_intersects(addr, size, 0, IORES_DESC_NONE); |
| if (ret != REGION_DISJOINT) |
| continue; |
| |
| devmem->resource = devm_request_mem_region(device, addr, size, |
| dev_name(device)); |
| if (!devmem->resource) { |
| ret = -ENOMEM; |
| goto error_no_resource; |
| } |
| break; |
| } |
| if (!devmem->resource) { |
| ret = -ERANGE; |
| goto error_no_resource; |
| } |
| |
| devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; |
| devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; |
| devmem->pfn_last = devmem->pfn_first + |
| (resource_size(devmem->resource) >> PAGE_SHIFT); |
| |
| ret = hmm_devmem_pages_create(devmem); |
| if (ret) |
| goto error_pages; |
| |
| devres_add(device, devmem); |
| |
| ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); |
| if (ret) { |
| hmm_devmem_remove(devmem); |
| return ERR_PTR(ret); |
| } |
| |
| return devmem; |
| |
| error_pages: |
| devm_release_mem_region(device, devmem->resource->start, |
| resource_size(devmem->resource)); |
| error_no_resource: |
| error_devm_add_action: |
| hmm_devmem_ref_kill(&devmem->ref); |
| hmm_devmem_ref_exit(&devmem->ref); |
| error_percpu_ref: |
| devres_free(devmem); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(hmm_devmem_add); |
| |
| struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, |
| struct device *device, |
| struct resource *res) |
| { |
| struct hmm_devmem *devmem; |
| int ret; |
| |
| if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) |
| return ERR_PTR(-EINVAL); |
| |
| static_branch_enable(&device_private_key); |
| |
| devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), |
| GFP_KERNEL, dev_to_node(device)); |
| if (!devmem) |
| return ERR_PTR(-ENOMEM); |
| |
| init_completion(&devmem->completion); |
| devmem->pfn_first = -1UL; |
| devmem->pfn_last = -1UL; |
| devmem->resource = res; |
| devmem->device = device; |
| devmem->ops = ops; |
| |
| ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, |
| 0, GFP_KERNEL); |
| if (ret) |
| goto error_percpu_ref; |
| |
| ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); |
| if (ret) |
| goto error_devm_add_action; |
| |
| |
| devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; |
| devmem->pfn_last = devmem->pfn_first + |
| (resource_size(devmem->resource) >> PAGE_SHIFT); |
| |
| ret = hmm_devmem_pages_create(devmem); |
| if (ret) |
| goto error_devm_add_action; |
| |
| devres_add(device, devmem); |
| |
| ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); |
| if (ret) { |
| hmm_devmem_remove(devmem); |
| return ERR_PTR(ret); |
| } |
| |
| return devmem; |
| |
| error_devm_add_action: |
| hmm_devmem_ref_kill(&devmem->ref); |
| hmm_devmem_ref_exit(&devmem->ref); |
| error_percpu_ref: |
| devres_free(devmem); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(hmm_devmem_add_resource); |
| |
| /* |
| * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE) |
| * |
| * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory |
| * |
| * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf |
| * of the device driver. It will free struct page and remove the resource that |
| * reserved the physical address range for this device memory. |
| */ |
| void hmm_devmem_remove(struct hmm_devmem *devmem) |
| { |
| resource_size_t start, size; |
| struct device *device; |
| bool cdm = false; |
| |
| if (!devmem) |
| return; |
| |
| device = devmem->device; |
| start = devmem->resource->start; |
| size = resource_size(devmem->resource); |
| |
| cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY; |
| hmm_devmem_ref_kill(&devmem->ref); |
| hmm_devmem_ref_exit(&devmem->ref); |
| hmm_devmem_pages_remove(devmem); |
| |
| if (!cdm) |
| devm_release_mem_region(device, start, size); |
| } |
| EXPORT_SYMBOL(hmm_devmem_remove); |
| |
| /* |
| * A device driver that wants to handle multiple devices memory through a |
| * single fake device can use hmm_device to do so. This is purely a helper |
| * and it is not needed to make use of any HMM functionality. |
| */ |
| #define HMM_DEVICE_MAX 256 |
| |
| static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); |
| static DEFINE_SPINLOCK(hmm_device_lock); |
| static struct class *hmm_device_class; |
| static dev_t hmm_device_devt; |
| |
| static void hmm_device_release(struct device *device) |
| { |
| struct hmm_device *hmm_device; |
| |
| hmm_device = container_of(device, struct hmm_device, device); |
| spin_lock(&hmm_device_lock); |
| clear_bit(hmm_device->minor, hmm_device_mask); |
| spin_unlock(&hmm_device_lock); |
| |
| kfree(hmm_device); |
| } |
| |
| struct hmm_device *hmm_device_new(void *drvdata) |
| { |
| struct hmm_device *hmm_device; |
| |
| hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); |
| if (!hmm_device) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock(&hmm_device_lock); |
| hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); |
| if (hmm_device->minor >= HMM_DEVICE_MAX) { |
| spin_unlock(&hmm_device_lock); |
| kfree(hmm_device); |
| return ERR_PTR(-EBUSY); |
| } |
| set_bit(hmm_device->minor, hmm_device_mask); |
| spin_unlock(&hmm_device_lock); |
| |
| dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); |
| hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), |
| hmm_device->minor); |
| hmm_device->device.release = hmm_device_release; |
| dev_set_drvdata(&hmm_device->device, drvdata); |
| hmm_device->device.class = hmm_device_class; |
| device_initialize(&hmm_device->device); |
| |
| return hmm_device; |
| } |
| EXPORT_SYMBOL(hmm_device_new); |
| |
| void hmm_device_put(struct hmm_device *hmm_device) |
| { |
| put_device(&hmm_device->device); |
| } |
| EXPORT_SYMBOL(hmm_device_put); |
| |
| static int __init hmm_init(void) |
| { |
| int ret; |
| |
| ret = alloc_chrdev_region(&hmm_device_devt, 0, |
| HMM_DEVICE_MAX, |
| "hmm_device"); |
| if (ret) |
| return ret; |
| |
| hmm_device_class = class_create(THIS_MODULE, "hmm_device"); |
| if (IS_ERR(hmm_device_class)) { |
| unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); |
| return PTR_ERR(hmm_device_class); |
| } |
| return 0; |
| } |
| |
| device_initcall(hmm_init); |
| #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ |