|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Generic pidhash and scalable, time-bounded PID allocator | 
|  | * | 
|  | * (C) 2002-2003 Nadia Yvette Chambers, IBM | 
|  | * (C) 2004 Nadia Yvette Chambers, Oracle | 
|  | * (C) 2002-2004 Ingo Molnar, Red Hat | 
|  | * | 
|  | * pid-structures are backing objects for tasks sharing a given ID to chain | 
|  | * against. There is very little to them aside from hashing them and | 
|  | * parking tasks using given ID's on a list. | 
|  | * | 
|  | * The hash is always changed with the tasklist_lock write-acquired, | 
|  | * and the hash is only accessed with the tasklist_lock at least | 
|  | * read-acquired, so there's no additional SMP locking needed here. | 
|  | * | 
|  | * We have a list of bitmap pages, which bitmaps represent the PID space. | 
|  | * Allocating and freeing PIDs is completely lockless. The worst-case | 
|  | * allocation scenario when all but one out of 1 million PIDs possible are | 
|  | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
|  | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
|  | * | 
|  | * Pid namespaces: | 
|  | *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
|  | *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
|  | *     Many thanks to Oleg Nesterov for comments and help | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/idr.h> | 
|  | #include <net/sock.h> | 
|  | #include <uapi/linux/pidfd.h> | 
|  |  | 
|  | struct pid init_struct_pid = { | 
|  | .count		= REFCOUNT_INIT(1), | 
|  | .tasks		= { | 
|  | { .first = NULL }, | 
|  | { .first = NULL }, | 
|  | { .first = NULL }, | 
|  | }, | 
|  | .level		= 0, | 
|  | .numbers	= { { | 
|  | .nr		= 0, | 
|  | .ns		= &init_pid_ns, | 
|  | }, } | 
|  | }; | 
|  |  | 
|  | int pid_max = PID_MAX_DEFAULT; | 
|  |  | 
|  | #define RESERVED_PIDS		300 | 
|  |  | 
|  | int pid_max_min = RESERVED_PIDS + 1; | 
|  | int pid_max_max = PID_MAX_LIMIT; | 
|  |  | 
|  | /* | 
|  | * PID-map pages start out as NULL, they get allocated upon | 
|  | * first use and are never deallocated. This way a low pid_max | 
|  | * value does not cause lots of bitmaps to be allocated, but | 
|  | * the scheme scales to up to 4 million PIDs, runtime. | 
|  | */ | 
|  | struct pid_namespace init_pid_ns = { | 
|  | .ns.count = REFCOUNT_INIT(2), | 
|  | .idr = IDR_INIT(init_pid_ns.idr), | 
|  | .pid_allocated = PIDNS_ADDING, | 
|  | .level = 0, | 
|  | .child_reaper = &init_task, | 
|  | .user_ns = &init_user_ns, | 
|  | .ns.inum = PROC_PID_INIT_INO, | 
|  | #ifdef CONFIG_PID_NS | 
|  | .ns.ops = &pidns_operations, | 
|  | #endif | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(init_pid_ns); | 
|  |  | 
|  | /* | 
|  | * Note: disable interrupts while the pidmap_lock is held as an | 
|  | * interrupt might come in and do read_lock(&tasklist_lock). | 
|  | * | 
|  | * If we don't disable interrupts there is a nasty deadlock between | 
|  | * detach_pid()->free_pid() and another cpu that does | 
|  | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | 
|  | * read_lock(&tasklist_lock); | 
|  | * | 
|  | * After we clean up the tasklist_lock and know there are no | 
|  | * irq handlers that take it we can leave the interrupts enabled. | 
|  | * For now it is easier to be safe than to prove it can't happen. | 
|  | */ | 
|  |  | 
|  | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
|  |  | 
|  | void put_pid(struct pid *pid) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  |  | 
|  | if (!pid) | 
|  | return; | 
|  |  | 
|  | ns = pid->numbers[pid->level].ns; | 
|  | if (refcount_dec_and_test(&pid->count)) { | 
|  | kmem_cache_free(ns->pid_cachep, pid); | 
|  | put_pid_ns(ns); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(put_pid); | 
|  |  | 
|  | static void delayed_put_pid(struct rcu_head *rhp) | 
|  | { | 
|  | struct pid *pid = container_of(rhp, struct pid, rcu); | 
|  | put_pid(pid); | 
|  | } | 
|  |  | 
|  | void free_pid(struct pid *pid) | 
|  | { | 
|  | /* We can be called with write_lock_irq(&tasklist_lock) held */ | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pidmap_lock, flags); | 
|  | for (i = 0; i <= pid->level; i++) { | 
|  | struct upid *upid = pid->numbers + i; | 
|  | struct pid_namespace *ns = upid->ns; | 
|  | switch (--ns->pid_allocated) { | 
|  | case 2: | 
|  | case 1: | 
|  | /* When all that is left in the pid namespace | 
|  | * is the reaper wake up the reaper.  The reaper | 
|  | * may be sleeping in zap_pid_ns_processes(). | 
|  | */ | 
|  | wake_up_process(ns->child_reaper); | 
|  | break; | 
|  | case PIDNS_ADDING: | 
|  | /* Handle a fork failure of the first process */ | 
|  | WARN_ON(ns->child_reaper); | 
|  | ns->pid_allocated = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | idr_remove(&ns->idr, upid->nr); | 
|  | } | 
|  | spin_unlock_irqrestore(&pidmap_lock, flags); | 
|  |  | 
|  | call_rcu(&pid->rcu, delayed_put_pid); | 
|  | } | 
|  |  | 
|  | struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, | 
|  | size_t set_tid_size) | 
|  | { | 
|  | struct pid *pid; | 
|  | enum pid_type type; | 
|  | int i, nr; | 
|  | struct pid_namespace *tmp; | 
|  | struct upid *upid; | 
|  | int retval = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * set_tid_size contains the size of the set_tid array. Starting at | 
|  | * the most nested currently active PID namespace it tells alloc_pid() | 
|  | * which PID to set for a process in that most nested PID namespace | 
|  | * up to set_tid_size PID namespaces. It does not have to set the PID | 
|  | * for a process in all nested PID namespaces but set_tid_size must | 
|  | * never be greater than the current ns->level + 1. | 
|  | */ | 
|  | if (set_tid_size > ns->level + 1) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); | 
|  | if (!pid) | 
|  | return ERR_PTR(retval); | 
|  |  | 
|  | tmp = ns; | 
|  | pid->level = ns->level; | 
|  |  | 
|  | for (i = ns->level; i >= 0; i--) { | 
|  | int tid = 0; | 
|  |  | 
|  | if (set_tid_size) { | 
|  | tid = set_tid[ns->level - i]; | 
|  |  | 
|  | retval = -EINVAL; | 
|  | if (tid < 1 || tid >= pid_max) | 
|  | goto out_free; | 
|  | /* | 
|  | * Also fail if a PID != 1 is requested and | 
|  | * no PID 1 exists. | 
|  | */ | 
|  | if (tid != 1 && !tmp->child_reaper) | 
|  | goto out_free; | 
|  | retval = -EPERM; | 
|  | if (!checkpoint_restore_ns_capable(tmp->user_ns)) | 
|  | goto out_free; | 
|  | set_tid_size--; | 
|  | } | 
|  |  | 
|  | idr_preload(GFP_KERNEL); | 
|  | spin_lock_irq(&pidmap_lock); | 
|  |  | 
|  | if (tid) { | 
|  | nr = idr_alloc(&tmp->idr, NULL, tid, | 
|  | tid + 1, GFP_ATOMIC); | 
|  | /* | 
|  | * If ENOSPC is returned it means that the PID is | 
|  | * alreay in use. Return EEXIST in that case. | 
|  | */ | 
|  | if (nr == -ENOSPC) | 
|  | nr = -EEXIST; | 
|  | } else { | 
|  | int pid_min = 1; | 
|  | /* | 
|  | * init really needs pid 1, but after reaching the | 
|  | * maximum wrap back to RESERVED_PIDS | 
|  | */ | 
|  | if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) | 
|  | pid_min = RESERVED_PIDS; | 
|  |  | 
|  | /* | 
|  | * Store a null pointer so find_pid_ns does not find | 
|  | * a partially initialized PID (see below). | 
|  | */ | 
|  | nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, | 
|  | pid_max, GFP_ATOMIC); | 
|  | } | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | idr_preload_end(); | 
|  |  | 
|  | if (nr < 0) { | 
|  | retval = (nr == -ENOSPC) ? -EAGAIN : nr; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | pid->numbers[i].nr = nr; | 
|  | pid->numbers[i].ns = tmp; | 
|  | tmp = tmp->parent; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ENOMEM is not the most obvious choice especially for the case | 
|  | * where the child subreaper has already exited and the pid | 
|  | * namespace denies the creation of any new processes. But ENOMEM | 
|  | * is what we have exposed to userspace for a long time and it is | 
|  | * documented behavior for pid namespaces. So we can't easily | 
|  | * change it even if there were an error code better suited. | 
|  | */ | 
|  | retval = -ENOMEM; | 
|  |  | 
|  | get_pid_ns(ns); | 
|  | refcount_set(&pid->count, 1); | 
|  | spin_lock_init(&pid->lock); | 
|  | for (type = 0; type < PIDTYPE_MAX; ++type) | 
|  | INIT_HLIST_HEAD(&pid->tasks[type]); | 
|  |  | 
|  | init_waitqueue_head(&pid->wait_pidfd); | 
|  | INIT_HLIST_HEAD(&pid->inodes); | 
|  |  | 
|  | upid = pid->numbers + ns->level; | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | if (!(ns->pid_allocated & PIDNS_ADDING)) | 
|  | goto out_unlock; | 
|  | for ( ; upid >= pid->numbers; --upid) { | 
|  | /* Make the PID visible to find_pid_ns. */ | 
|  | idr_replace(&upid->ns->idr, pid, upid->nr); | 
|  | upid->ns->pid_allocated++; | 
|  | } | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  |  | 
|  | return pid; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | put_pid_ns(ns); | 
|  |  | 
|  | out_free: | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | while (++i <= ns->level) { | 
|  | upid = pid->numbers + i; | 
|  | idr_remove(&upid->ns->idr, upid->nr); | 
|  | } | 
|  |  | 
|  | /* On failure to allocate the first pid, reset the state */ | 
|  | if (ns->pid_allocated == PIDNS_ADDING) | 
|  | idr_set_cursor(&ns->idr, 0); | 
|  |  | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  |  | 
|  | kmem_cache_free(ns->pid_cachep, pid); | 
|  | return ERR_PTR(retval); | 
|  | } | 
|  |  | 
|  | void disable_pid_allocation(struct pid_namespace *ns) | 
|  | { | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | ns->pid_allocated &= ~PIDNS_ADDING; | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | } | 
|  |  | 
|  | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) | 
|  | { | 
|  | return idr_find(&ns->idr, nr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_pid_ns); | 
|  |  | 
|  | struct pid *find_vpid(int nr) | 
|  | { | 
|  | return find_pid_ns(nr, task_active_pid_ns(current)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_vpid); | 
|  |  | 
|  | static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | return (type == PIDTYPE_PID) ? | 
|  | &task->thread_pid : | 
|  | &task->signal->pids[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * attach_pid() must be called with the tasklist_lock write-held. | 
|  | */ | 
|  | void attach_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid *pid = *task_pid_ptr(task, type); | 
|  | hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); | 
|  | } | 
|  |  | 
|  | static void __change_pid(struct task_struct *task, enum pid_type type, | 
|  | struct pid *new) | 
|  | { | 
|  | struct pid **pid_ptr = task_pid_ptr(task, type); | 
|  | struct pid *pid; | 
|  | int tmp; | 
|  |  | 
|  | pid = *pid_ptr; | 
|  |  | 
|  | hlist_del_rcu(&task->pid_links[type]); | 
|  | *pid_ptr = new; | 
|  |  | 
|  | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
|  | if (pid_has_task(pid, tmp)) | 
|  | return; | 
|  |  | 
|  | free_pid(pid); | 
|  | } | 
|  |  | 
|  | void detach_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | __change_pid(task, type, NULL); | 
|  | } | 
|  |  | 
|  | void change_pid(struct task_struct *task, enum pid_type type, | 
|  | struct pid *pid) | 
|  | { | 
|  | __change_pid(task, type, pid); | 
|  | attach_pid(task, type); | 
|  | } | 
|  |  | 
|  | void exchange_tids(struct task_struct *left, struct task_struct *right) | 
|  | { | 
|  | struct pid *pid1 = left->thread_pid; | 
|  | struct pid *pid2 = right->thread_pid; | 
|  | struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; | 
|  | struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; | 
|  |  | 
|  | /* Swap the single entry tid lists */ | 
|  | hlists_swap_heads_rcu(head1, head2); | 
|  |  | 
|  | /* Swap the per task_struct pid */ | 
|  | rcu_assign_pointer(left->thread_pid, pid2); | 
|  | rcu_assign_pointer(right->thread_pid, pid1); | 
|  |  | 
|  | /* Swap the cached value */ | 
|  | WRITE_ONCE(left->pid, pid_nr(pid2)); | 
|  | WRITE_ONCE(right->pid, pid_nr(pid1)); | 
|  | } | 
|  |  | 
|  | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ | 
|  | void transfer_pid(struct task_struct *old, struct task_struct *new, | 
|  | enum pid_type type) | 
|  | { | 
|  | if (type == PIDTYPE_PID) | 
|  | new->thread_pid = old->thread_pid; | 
|  | hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); | 
|  | } | 
|  |  | 
|  | struct task_struct *pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result = NULL; | 
|  | if (pid) { | 
|  | struct hlist_node *first; | 
|  | first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), | 
|  | lockdep_tasklist_lock_is_held()); | 
|  | if (first) | 
|  | result = hlist_entry(first, struct task_struct, pid_links[(type)]); | 
|  | } | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(pid_task); | 
|  |  | 
|  | /* | 
|  | * Must be called under rcu_read_lock(). | 
|  | */ | 
|  | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) | 
|  | { | 
|  | RCU_LOCKDEP_WARN(!rcu_read_lock_held(), | 
|  | "find_task_by_pid_ns() needs rcu_read_lock() protection"); | 
|  | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); | 
|  | } | 
|  |  | 
|  | struct task_struct *find_task_by_vpid(pid_t vnr) | 
|  | { | 
|  | return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); | 
|  | } | 
|  |  | 
|  | struct task_struct *find_get_task_by_vpid(pid_t nr) | 
|  | { | 
|  | struct task_struct *task; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | task = find_task_by_vpid(nr); | 
|  | if (task) | 
|  | get_task_struct(task); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return task; | 
|  | } | 
|  |  | 
|  | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid *pid; | 
|  | rcu_read_lock(); | 
|  | pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); | 
|  | rcu_read_unlock(); | 
|  | return pid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_task_pid); | 
|  |  | 
|  | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result; | 
|  | rcu_read_lock(); | 
|  | result = pid_task(pid, type); | 
|  | if (result) | 
|  | get_task_struct(result); | 
|  | rcu_read_unlock(); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_pid_task); | 
|  |  | 
|  | struct pid *find_get_pid(pid_t nr) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pid = get_pid(find_vpid(nr)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_get_pid); | 
|  |  | 
|  | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) | 
|  | { | 
|  | struct upid *upid; | 
|  | pid_t nr = 0; | 
|  |  | 
|  | if (pid && ns->level <= pid->level) { | 
|  | upid = &pid->numbers[ns->level]; | 
|  | if (upid->ns == ns) | 
|  | nr = upid->nr; | 
|  | } | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pid_nr_ns); | 
|  |  | 
|  | pid_t pid_vnr(struct pid *pid) | 
|  | { | 
|  | return pid_nr_ns(pid, task_active_pid_ns(current)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pid_vnr); | 
|  |  | 
|  | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, | 
|  | struct pid_namespace *ns) | 
|  | { | 
|  | pid_t nr = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!ns) | 
|  | ns = task_active_pid_ns(current); | 
|  | nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL(__task_pid_nr_ns); | 
|  |  | 
|  | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) | 
|  | { | 
|  | return ns_of_pid(task_pid(tsk)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_active_pid_ns); | 
|  |  | 
|  | /* | 
|  | * Used by proc to find the first pid that is greater than or equal to nr. | 
|  | * | 
|  | * If there is a pid at nr this function is exactly the same as find_pid_ns. | 
|  | */ | 
|  | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | 
|  | { | 
|  | return idr_get_next(&ns->idr, &nr); | 
|  | } | 
|  |  | 
|  | struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) | 
|  | { | 
|  | struct fd f; | 
|  | struct pid *pid; | 
|  |  | 
|  | f = fdget(fd); | 
|  | if (!f.file) | 
|  | return ERR_PTR(-EBADF); | 
|  |  | 
|  | pid = pidfd_pid(f.file); | 
|  | if (!IS_ERR(pid)) { | 
|  | get_pid(pid); | 
|  | *flags = f.file->f_flags; | 
|  | } | 
|  |  | 
|  | fdput(f); | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pidfd_create() - Create a new pid file descriptor. | 
|  | * | 
|  | * @pid:   struct pid that the pidfd will reference | 
|  | * @flags: flags to pass | 
|  | * | 
|  | * This creates a new pid file descriptor with the O_CLOEXEC flag set. | 
|  | * | 
|  | * Note, that this function can only be called after the fd table has | 
|  | * been unshared to avoid leaking the pidfd to the new process. | 
|  | * | 
|  | * Return: On success, a cloexec pidfd is returned. | 
|  | *         On error, a negative errno number will be returned. | 
|  | */ | 
|  | static int pidfd_create(struct pid *pid, unsigned int flags) | 
|  | { | 
|  | int fd; | 
|  |  | 
|  | fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), | 
|  | flags | O_RDWR | O_CLOEXEC); | 
|  | if (fd < 0) | 
|  | put_pid(pid); | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pidfd_open() - Open new pid file descriptor. | 
|  | * | 
|  | * @pid:   pid for which to retrieve a pidfd | 
|  | * @flags: flags to pass | 
|  | * | 
|  | * This creates a new pid file descriptor with the O_CLOEXEC flag set for | 
|  | * the process identified by @pid. Currently, the process identified by | 
|  | * @pid must be a thread-group leader. This restriction currently exists | 
|  | * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot | 
|  | * be used with CLONE_THREAD) and pidfd polling (only supports thread group | 
|  | * leaders). | 
|  | * | 
|  | * Return: On success, a cloexec pidfd is returned. | 
|  | *         On error, a negative errno number will be returned. | 
|  | */ | 
|  | SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) | 
|  | { | 
|  | int fd; | 
|  | struct pid *p; | 
|  |  | 
|  | if (flags & ~PIDFD_NONBLOCK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | p = find_get_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | if (pid_has_task(p, PIDTYPE_TGID)) | 
|  | fd = pidfd_create(p, flags); | 
|  | else | 
|  | fd = -EINVAL; | 
|  |  | 
|  | put_pid(p); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | void __init pid_idr_init(void) | 
|  | { | 
|  | /* Verify no one has done anything silly: */ | 
|  | BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); | 
|  |  | 
|  | /* bump default and minimum pid_max based on number of cpus */ | 
|  | pid_max = min(pid_max_max, max_t(int, pid_max, | 
|  | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | 
|  | pid_max_min = max_t(int, pid_max_min, | 
|  | PIDS_PER_CPU_MIN * num_possible_cpus()); | 
|  | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | 
|  |  | 
|  | idr_init(&init_pid_ns.idr); | 
|  |  | 
|  | init_pid_ns.pid_cachep = KMEM_CACHE(pid, | 
|  | SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); | 
|  | } | 
|  |  | 
|  | static struct file *__pidfd_fget(struct task_struct *task, int fd) | 
|  | { | 
|  | struct file *file; | 
|  | int ret; | 
|  |  | 
|  | ret = down_read_killable(&task->signal->exec_update_lock); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) | 
|  | file = fget_task(task, fd); | 
|  | else | 
|  | file = ERR_PTR(-EPERM); | 
|  |  | 
|  | up_read(&task->signal->exec_update_lock); | 
|  |  | 
|  | return file ?: ERR_PTR(-EBADF); | 
|  | } | 
|  |  | 
|  | static int pidfd_getfd(struct pid *pid, int fd) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct file *file; | 
|  | int ret; | 
|  |  | 
|  | task = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!task) | 
|  | return -ESRCH; | 
|  |  | 
|  | file = __pidfd_fget(task, fd); | 
|  | put_task_struct(task); | 
|  | if (IS_ERR(file)) | 
|  | return PTR_ERR(file); | 
|  |  | 
|  | ret = receive_fd(file, O_CLOEXEC); | 
|  | fput(file); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_pidfd_getfd() - Get a file descriptor from another process | 
|  | * | 
|  | * @pidfd:	the pidfd file descriptor of the process | 
|  | * @fd:		the file descriptor number to get | 
|  | * @flags:	flags on how to get the fd (reserved) | 
|  | * | 
|  | * This syscall gets a copy of a file descriptor from another process | 
|  | * based on the pidfd, and file descriptor number. It requires that | 
|  | * the calling process has the ability to ptrace the process represented | 
|  | * by the pidfd. The process which is having its file descriptor copied | 
|  | * is otherwise unaffected. | 
|  | * | 
|  | * Return: On success, a cloexec file descriptor is returned. | 
|  | *         On error, a negative errno number will be returned. | 
|  | */ | 
|  | SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct fd f; | 
|  | int ret; | 
|  |  | 
|  | /* flags is currently unused - make sure it's unset */ | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | f = fdget(pidfd); | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | pid = pidfd_pid(f.file); | 
|  | if (IS_ERR(pid)) | 
|  | ret = PTR_ERR(pid); | 
|  | else | 
|  | ret = pidfd_getfd(pid, fd); | 
|  |  | 
|  | fdput(f); | 
|  | return ret; | 
|  | } |