|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elf-randomize.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/processor.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/compat.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /** | 
|  | * kfree_const - conditionally free memory | 
|  | * @x: pointer to the memory | 
|  | * | 
|  | * Function calls kfree only if @x is not in .rodata section. | 
|  | */ | 
|  | void kfree_const(const void *x) | 
|  | { | 
|  | if (!is_kernel_rodata((unsigned long)x)) | 
|  | kfree(x); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_const); | 
|  |  | 
|  | /** | 
|  | * kstrdup - allocate space for and copy an existing string | 
|  | * @s: the string to duplicate | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Return: newly allocated copy of @s or %NULL in case of error | 
|  | */ | 
|  | char *kstrdup(const char *s, gfp_t gfp) | 
|  | { | 
|  | size_t len; | 
|  | char *buf; | 
|  |  | 
|  | if (!s) | 
|  | return NULL; | 
|  |  | 
|  | len = strlen(s) + 1; | 
|  | buf = kmalloc_track_caller(len, gfp); | 
|  | if (buf) | 
|  | memcpy(buf, s, len); | 
|  | return buf; | 
|  | } | 
|  | EXPORT_SYMBOL(kstrdup); | 
|  |  | 
|  | /** | 
|  | * kstrdup_const - conditionally duplicate an existing const string | 
|  | * @s: the string to duplicate | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Note: Strings allocated by kstrdup_const should be freed by kfree_const. | 
|  | * | 
|  | * Return: source string if it is in .rodata section otherwise | 
|  | * fallback to kstrdup. | 
|  | */ | 
|  | const char *kstrdup_const(const char *s, gfp_t gfp) | 
|  | { | 
|  | if (is_kernel_rodata((unsigned long)s)) | 
|  | return s; | 
|  |  | 
|  | return kstrdup(s, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(kstrdup_const); | 
|  |  | 
|  | /** | 
|  | * kstrndup - allocate space for and copy an existing string | 
|  | * @s: the string to duplicate | 
|  | * @max: read at most @max chars from @s | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Note: Use kmemdup_nul() instead if the size is known exactly. | 
|  | * | 
|  | * Return: newly allocated copy of @s or %NULL in case of error | 
|  | */ | 
|  | char *kstrndup(const char *s, size_t max, gfp_t gfp) | 
|  | { | 
|  | size_t len; | 
|  | char *buf; | 
|  |  | 
|  | if (!s) | 
|  | return NULL; | 
|  |  | 
|  | len = strnlen(s, max); | 
|  | buf = kmalloc_track_caller(len+1, gfp); | 
|  | if (buf) { | 
|  | memcpy(buf, s, len); | 
|  | buf[len] = '\0'; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  | EXPORT_SYMBOL(kstrndup); | 
|  |  | 
|  | /** | 
|  | * kmemdup - duplicate region of memory | 
|  | * | 
|  | * @src: memory region to duplicate | 
|  | * @len: memory region length | 
|  | * @gfp: GFP mask to use | 
|  | * | 
|  | * Return: newly allocated copy of @src or %NULL in case of error | 
|  | */ | 
|  | void *kmemdup(const void *src, size_t len, gfp_t gfp) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kmalloc_track_caller(len, gfp); | 
|  | if (p) | 
|  | memcpy(p, src, len); | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(kmemdup); | 
|  |  | 
|  | /** | 
|  | * kmemdup_nul - Create a NUL-terminated string from unterminated data | 
|  | * @s: The data to stringify | 
|  | * @len: The size of the data | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Return: newly allocated copy of @s with NUL-termination or %NULL in | 
|  | * case of error | 
|  | */ | 
|  | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | 
|  | { | 
|  | char *buf; | 
|  |  | 
|  | if (!s) | 
|  | return NULL; | 
|  |  | 
|  | buf = kmalloc_track_caller(len + 1, gfp); | 
|  | if (buf) { | 
|  | memcpy(buf, s, len); | 
|  | buf[len] = '\0'; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  | EXPORT_SYMBOL(kmemdup_nul); | 
|  |  | 
|  | /** | 
|  | * memdup_user - duplicate memory region from user space | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure.  Result is physically | 
|  | * contiguous, to be freed by kfree(). | 
|  | */ | 
|  | void *memdup_user(const void __user *src, size_t len) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(memdup_user); | 
|  |  | 
|  | /** | 
|  | * vmemdup_user - duplicate memory region from user space | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure.  Result may be not | 
|  | * physically contiguous.  Use kvfree() to free. | 
|  | */ | 
|  | void *vmemdup_user(const void __user *src, size_t len) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kvmalloc(len, GFP_USER); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kvfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(vmemdup_user); | 
|  |  | 
|  | /** | 
|  | * strndup_user - duplicate an existing string from user space | 
|  | * @s: The string to duplicate | 
|  | * @n: Maximum number of bytes to copy, including the trailing NUL. | 
|  | * | 
|  | * Return: newly allocated copy of @s or an ERR_PTR() in case of error | 
|  | */ | 
|  | char *strndup_user(const char __user *s, long n) | 
|  | { | 
|  | char *p; | 
|  | long length; | 
|  |  | 
|  | length = strnlen_user(s, n); | 
|  |  | 
|  | if (!length) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | if (length > n) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | p = memdup_user(s, length); | 
|  |  | 
|  | if (IS_ERR(p)) | 
|  | return p; | 
|  |  | 
|  | p[length - 1] = '\0'; | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(strndup_user); | 
|  |  | 
|  | /** | 
|  | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure. | 
|  | */ | 
|  | void *memdup_user_nul(const void __user *src, size_t len) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | /* | 
|  | * Always use GFP_KERNEL, since copy_from_user() can sleep and | 
|  | * cause pagefault, which makes it pointless to use GFP_NOFS | 
|  | * or GFP_ATOMIC. | 
|  | */ | 
|  | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  | p[len] = '\0'; | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(memdup_user_nul); | 
|  |  | 
|  | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev) | 
|  | { | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | vma->vm_prev = prev; | 
|  | if (prev) { | 
|  | next = prev->vm_next; | 
|  | prev->vm_next = vma; | 
|  | } else { | 
|  | next = mm->mmap; | 
|  | mm->mmap = vma; | 
|  | } | 
|  | vma->vm_next = next; | 
|  | if (next) | 
|  | next->vm_prev = vma; | 
|  | } | 
|  |  | 
|  | void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *prev, *next; | 
|  |  | 
|  | next = vma->vm_next; | 
|  | prev = vma->vm_prev; | 
|  | if (prev) | 
|  | prev->vm_next = next; | 
|  | else | 
|  | mm->mmap = next; | 
|  | if (next) | 
|  | next->vm_prev = prev; | 
|  | } | 
|  |  | 
|  | /* Check if the vma is being used as a stack by this task */ | 
|  | int vma_is_stack_for_current(struct vm_area_struct *vma) | 
|  | { | 
|  | struct task_struct * __maybe_unused t = current; | 
|  |  | 
|  | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); | 
|  | } | 
|  |  | 
|  | #ifndef STACK_RND_MASK | 
|  | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */ | 
|  | #endif | 
|  |  | 
|  | unsigned long randomize_stack_top(unsigned long stack_top) | 
|  | { | 
|  | unsigned long random_variable = 0; | 
|  |  | 
|  | if (current->flags & PF_RANDOMIZE) { | 
|  | random_variable = get_random_long(); | 
|  | random_variable &= STACK_RND_MASK; | 
|  | random_variable <<= PAGE_SHIFT; | 
|  | } | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return PAGE_ALIGN(stack_top) + random_variable; | 
|  | #else | 
|  | return PAGE_ALIGN(stack_top) - random_variable; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT | 
|  | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
|  | { | 
|  | /* Is the current task 32bit ? */ | 
|  | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | 
|  | return randomize_page(mm->brk, SZ_32M); | 
|  |  | 
|  | return randomize_page(mm->brk, SZ_1G); | 
|  | } | 
|  |  | 
|  | unsigned long arch_mmap_rnd(void) | 
|  | { | 
|  | unsigned long rnd; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | 
|  | if (is_compat_task()) | 
|  | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | 
|  | else | 
|  | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | 
|  | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | 
|  |  | 
|  | return rnd << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static int mmap_is_legacy(struct rlimit *rlim_stack) | 
|  | { | 
|  | if (current->personality & ADDR_COMPAT_LAYOUT) | 
|  | return 1; | 
|  |  | 
|  | if (rlim_stack->rlim_cur == RLIM_INFINITY) | 
|  | return 1; | 
|  |  | 
|  | return sysctl_legacy_va_layout; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leave enough space between the mmap area and the stack to honour ulimit in | 
|  | * the face of randomisation. | 
|  | */ | 
|  | #define MIN_GAP		(SZ_128M) | 
|  | #define MAX_GAP		(STACK_TOP / 6 * 5) | 
|  |  | 
|  | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | 
|  | { | 
|  | unsigned long gap = rlim_stack->rlim_cur; | 
|  | unsigned long pad = stack_guard_gap; | 
|  |  | 
|  | /* Account for stack randomization if necessary */ | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | pad += (STACK_RND_MASK << PAGE_SHIFT); | 
|  |  | 
|  | /* Values close to RLIM_INFINITY can overflow. */ | 
|  | if (gap + pad > gap) | 
|  | gap += pad; | 
|  |  | 
|  | if (gap < MIN_GAP) | 
|  | gap = MIN_GAP; | 
|  | else if (gap > MAX_GAP) | 
|  | gap = MAX_GAP; | 
|  |  | 
|  | return PAGE_ALIGN(STACK_TOP - gap - rnd); | 
|  | } | 
|  |  | 
|  | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | 
|  | { | 
|  | unsigned long random_factor = 0UL; | 
|  |  | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | random_factor = arch_mmap_rnd(); | 
|  |  | 
|  | if (mmap_is_legacy(rlim_stack)) { | 
|  | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | 
|  | mm->get_unmapped_area = arch_get_unmapped_area; | 
|  | } else { | 
|  | mm->mmap_base = mmap_base(random_factor, rlim_stack); | 
|  | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | 
|  | } | 
|  | } | 
|  | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | 
|  | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | 
|  | { | 
|  | mm->mmap_base = TASK_UNMAPPED_BASE; | 
|  | mm->get_unmapped_area = arch_get_unmapped_area; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * __account_locked_vm - account locked pages to an mm's locked_vm | 
|  | * @mm:          mm to account against | 
|  | * @pages:       number of pages to account | 
|  | * @inc:         %true if @pages should be considered positive, %false if not | 
|  | * @task:        task used to check RLIMIT_MEMLOCK | 
|  | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | 
|  | * | 
|  | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | 
|  | * that mmap_lock is held as writer. | 
|  | * | 
|  | * Return: | 
|  | * * 0       on success | 
|  | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | 
|  | */ | 
|  | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | 
|  | struct task_struct *task, bool bypass_rlim) | 
|  | { | 
|  | unsigned long locked_vm, limit; | 
|  | int ret = 0; | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | locked_vm = mm->locked_vm; | 
|  | if (inc) { | 
|  | if (!bypass_rlim) { | 
|  | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
|  | if (locked_vm + pages > limit) | 
|  | ret = -ENOMEM; | 
|  | } | 
|  | if (!ret) | 
|  | mm->locked_vm = locked_vm + pages; | 
|  | } else { | 
|  | WARN_ON_ONCE(pages > locked_vm); | 
|  | mm->locked_vm = locked_vm - pages; | 
|  | } | 
|  |  | 
|  | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | 
|  | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | 
|  | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | 
|  | ret ? " - exceeded" : ""); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__account_locked_vm); | 
|  |  | 
|  | /** | 
|  | * account_locked_vm - account locked pages to an mm's locked_vm | 
|  | * @mm:          mm to account against, may be NULL | 
|  | * @pages:       number of pages to account | 
|  | * @inc:         %true if @pages should be considered positive, %false if not | 
|  | * | 
|  | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | 
|  | * | 
|  | * Return: | 
|  | * * 0       on success, or if mm is NULL | 
|  | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | 
|  | */ | 
|  | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pages == 0 || !mm) | 
|  | return 0; | 
|  |  | 
|  | mmap_write_lock(mm); | 
|  | ret = __account_locked_vm(mm, pages, inc, current, | 
|  | capable(CAP_IPC_LOCK)); | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(account_locked_vm); | 
|  |  | 
|  | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long pgoff) | 
|  | { | 
|  | unsigned long ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long populate; | 
|  | LIST_HEAD(uf); | 
|  |  | 
|  | ret = security_mmap_file(file, prot, flag); | 
|  | if (!ret) { | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  | ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, | 
|  | &uf); | 
|  | mmap_write_unlock(mm); | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | if (populate) | 
|  | mm_populate(ret, populate); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long vm_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long offset) | 
|  | { | 
|  | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | 
|  | return -EINVAL; | 
|  | if (unlikely(offset_in_page(offset))) | 
|  | return -EINVAL; | 
|  |  | 
|  | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_mmap); | 
|  |  | 
|  | /** | 
|  | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | 
|  | * failure, fall back to non-contiguous (vmalloc) allocation. | 
|  | * @size: size of the request. | 
|  | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | 
|  | * @node: numa node to allocate from | 
|  | * | 
|  | * Uses kmalloc to get the memory but if the allocation fails then falls back | 
|  | * to the vmalloc allocator. Use kvfree for freeing the memory. | 
|  | * | 
|  | * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. | 
|  | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | 
|  | * preferable to the vmalloc fallback, due to visible performance drawbacks. | 
|  | * | 
|  | * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not | 
|  | * fall back to vmalloc. | 
|  | * | 
|  | * Return: pointer to the allocated memory of %NULL in case of failure | 
|  | */ | 
|  | void *kvmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | gfp_t kmalloc_flags = flags; | 
|  | void *ret; | 
|  |  | 
|  | /* | 
|  | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | 
|  | * so the given set of flags has to be compatible. | 
|  | */ | 
|  | if ((flags & GFP_KERNEL) != GFP_KERNEL) | 
|  | return kmalloc_node(size, flags, node); | 
|  |  | 
|  | /* | 
|  | * We want to attempt a large physically contiguous block first because | 
|  | * it is less likely to fragment multiple larger blocks and therefore | 
|  | * contribute to a long term fragmentation less than vmalloc fallback. | 
|  | * However make sure that larger requests are not too disruptive - no | 
|  | * OOM killer and no allocation failure warnings as we have a fallback. | 
|  | */ | 
|  | if (size > PAGE_SIZE) { | 
|  | kmalloc_flags |= __GFP_NOWARN; | 
|  |  | 
|  | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) | 
|  | kmalloc_flags |= __GFP_NORETRY; | 
|  | } | 
|  |  | 
|  | ret = kmalloc_node(size, kmalloc_flags, node); | 
|  |  | 
|  | /* | 
|  | * It doesn't really make sense to fallback to vmalloc for sub page | 
|  | * requests | 
|  | */ | 
|  | if (ret || size <= PAGE_SIZE) | 
|  | return ret; | 
|  |  | 
|  | return __vmalloc_node(size, 1, flags, node, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kvmalloc_node); | 
|  |  | 
|  | /** | 
|  | * kvfree() - Free memory. | 
|  | * @addr: Pointer to allocated memory. | 
|  | * | 
|  | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). | 
|  | * It is slightly more efficient to use kfree() or vfree() if you are certain | 
|  | * that you know which one to use. | 
|  | * | 
|  | * Context: Either preemptible task context or not-NMI interrupt. | 
|  | */ | 
|  | void kvfree(const void *addr) | 
|  | { | 
|  | if (is_vmalloc_addr(addr)) | 
|  | vfree(addr); | 
|  | else | 
|  | kfree(addr); | 
|  | } | 
|  | EXPORT_SYMBOL(kvfree); | 
|  |  | 
|  | /** | 
|  | * kvfree_sensitive - Free a data object containing sensitive information. | 
|  | * @addr: address of the data object to be freed. | 
|  | * @len: length of the data object. | 
|  | * | 
|  | * Use the special memzero_explicit() function to clear the content of a | 
|  | * kvmalloc'ed object containing sensitive data to make sure that the | 
|  | * compiler won't optimize out the data clearing. | 
|  | */ | 
|  | void kvfree_sensitive(const void *addr, size_t len) | 
|  | { | 
|  | if (likely(!ZERO_OR_NULL_PTR(addr))) { | 
|  | memzero_explicit((void *)addr, len); | 
|  | kvfree(addr); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kvfree_sensitive); | 
|  |  | 
|  | static inline void *__page_rmapping(struct page *page) | 
|  | { | 
|  | unsigned long mapping; | 
|  |  | 
|  | mapping = (unsigned long)page->mapping; | 
|  | mapping &= ~PAGE_MAPPING_FLAGS; | 
|  |  | 
|  | return (void *)mapping; | 
|  | } | 
|  |  | 
|  | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | 
|  | void *page_rmapping(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  | return __page_rmapping(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if this page is mapped into pagetables. | 
|  | * For compound page it returns true if any subpage of compound page is mapped. | 
|  | */ | 
|  | bool page_mapped(struct page *page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (likely(!PageCompound(page))) | 
|  | return atomic_read(&page->_mapcount) >= 0; | 
|  | page = compound_head(page); | 
|  | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | 
|  | return true; | 
|  | if (PageHuge(page)) | 
|  | return false; | 
|  | for (i = 0; i < compound_nr(page); i++) { | 
|  | if (atomic_read(&page[i]._mapcount) >= 0) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(page_mapped); | 
|  |  | 
|  | struct anon_vma *page_anon_vma(struct page *page) | 
|  | { | 
|  | unsigned long mapping; | 
|  |  | 
|  | page = compound_head(page); | 
|  | mapping = (unsigned long)page->mapping; | 
|  | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | return NULL; | 
|  | return __page_rmapping(page); | 
|  | } | 
|  |  | 
|  | struct address_space *page_mapping(struct page *page) | 
|  | { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | page = compound_head(page); | 
|  |  | 
|  | /* This happens if someone calls flush_dcache_page on slab page */ | 
|  | if (unlikely(PageSlab(page))) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(PageSwapCache(page))) { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | return swap_address_space(entry); | 
|  | } | 
|  |  | 
|  | mapping = page->mapping; | 
|  | if ((unsigned long)mapping & PAGE_MAPPING_ANON) | 
|  | return NULL; | 
|  |  | 
|  | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | 
|  | } | 
|  | EXPORT_SYMBOL(page_mapping); | 
|  |  | 
|  | /* | 
|  | * For file cache pages, return the address_space, otherwise return NULL | 
|  | */ | 
|  | struct address_space *page_mapping_file(struct page *page) | 
|  | { | 
|  | if (unlikely(PageSwapCache(page))) | 
|  | return NULL; | 
|  | return page_mapping(page); | 
|  | } | 
|  |  | 
|  | /* Slow path of page_mapcount() for compound pages */ | 
|  | int __page_mapcount(struct page *page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = atomic_read(&page->_mapcount) + 1; | 
|  | /* | 
|  | * For file THP page->_mapcount contains total number of mapping | 
|  | * of the page: no need to look into compound_mapcount. | 
|  | */ | 
|  | if (!PageAnon(page) && !PageHuge(page)) | 
|  | return ret; | 
|  | page = compound_head(page); | 
|  | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | 
|  | if (PageDoubleMap(page)) | 
|  | ret--; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__page_mapcount); | 
|  |  | 
|  | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; | 
|  | int sysctl_overcommit_ratio __read_mostly = 50; | 
|  | unsigned long sysctl_overcommit_kbytes __read_mostly; | 
|  | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | 
|  | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | 
|  | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | 
|  |  | 
|  | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | sysctl_overcommit_kbytes = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sync_overcommit_as(struct work_struct *dummy) | 
|  | { | 
|  | percpu_counter_sync(&vm_committed_as); | 
|  | } | 
|  |  | 
|  | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | int new_policy; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The deviation of sync_overcommit_as could be big with loose policy | 
|  | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | 
|  | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | 
|  | * with the strict "NEVER", and to avoid possible race condtion (even | 
|  | * though user usually won't too frequently do the switching to policy | 
|  | * OVERCOMMIT_NEVER), the switch is done in the following order: | 
|  | *	1. changing the batch | 
|  | *	2. sync percpu count on each CPU | 
|  | *	3. switch the policy | 
|  | */ | 
|  | if (write) { | 
|  | t = *table; | 
|  | t.data = &new_policy; | 
|  | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mm_compute_batch(new_policy); | 
|  | if (new_policy == OVERCOMMIT_NEVER) | 
|  | schedule_on_each_cpu(sync_overcommit_as); | 
|  | sysctl_overcommit_memory = new_policy; | 
|  | } else { | 
|  | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | sysctl_overcommit_ratio = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | 
|  | */ | 
|  | unsigned long vm_commit_limit(void) | 
|  | { | 
|  | unsigned long allowed; | 
|  |  | 
|  | if (sysctl_overcommit_kbytes) | 
|  | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | 
|  | else | 
|  | allowed = ((totalram_pages() - hugetlb_total_pages()) | 
|  | * sysctl_overcommit_ratio / 100); | 
|  | allowed += total_swap_pages; | 
|  |  | 
|  | return allowed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure vm_committed_as in one cacheline and not cacheline shared with | 
|  | * other variables. It can be updated by several CPUs frequently. | 
|  | */ | 
|  | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | 
|  |  | 
|  | /* | 
|  | * The global memory commitment made in the system can be a metric | 
|  | * that can be used to drive ballooning decisions when Linux is hosted | 
|  | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | 
|  | * balancing memory across competing virtual machines that are hosted. | 
|  | * Several metrics drive this policy engine including the guest reported | 
|  | * memory commitment. | 
|  | * | 
|  | * The time cost of this is very low for small platforms, and for big | 
|  | * platform like a 2S/36C/72T Skylake server, in worst case where | 
|  | * vm_committed_as's spinlock is under severe contention, the time cost | 
|  | * could be about 30~40 microseconds. | 
|  | */ | 
|  | unsigned long vm_memory_committed(void) | 
|  | { | 
|  | return percpu_counter_sum_positive(&vm_committed_as); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vm_memory_committed); | 
|  |  | 
|  | /* | 
|  | * Check that a process has enough memory to allocate a new virtual | 
|  | * mapping. 0 means there is enough memory for the allocation to | 
|  | * succeed and -ENOMEM implies there is not. | 
|  | * | 
|  | * We currently support three overcommit policies, which are set via the | 
|  | * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst | 
|  | * | 
|  | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | 
|  | * Additional code 2002 Jul 20 by Robert Love. | 
|  | * | 
|  | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | 
|  | * | 
|  | * Note this is a helper function intended to be used by LSMs which | 
|  | * wish to use this logic. | 
|  | */ | 
|  | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | 
|  | { | 
|  | long allowed; | 
|  |  | 
|  | vm_acct_memory(pages); | 
|  |  | 
|  | /* | 
|  | * Sometimes we want to use more memory than we have | 
|  | */ | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | 
|  | return 0; | 
|  |  | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | 
|  | if (pages > totalram_pages() + total_swap_pages) | 
|  | goto error; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | allowed = vm_commit_limit(); | 
|  | /* | 
|  | * Reserve some for root | 
|  | */ | 
|  | if (!cap_sys_admin) | 
|  | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | /* | 
|  | * Don't let a single process grow so big a user can't recover | 
|  | */ | 
|  | if (mm) { | 
|  | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | allowed -= min_t(long, mm->total_vm / 32, reserve); | 
|  | } | 
|  |  | 
|  | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | 
|  | return 0; | 
|  | error: | 
|  | vm_unacct_memory(pages); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_cmdline() - copy the cmdline value to a buffer. | 
|  | * @task:     the task whose cmdline value to copy. | 
|  | * @buffer:   the buffer to copy to. | 
|  | * @buflen:   the length of the buffer. Larger cmdline values are truncated | 
|  | *            to this length. | 
|  | * | 
|  | * Return: the size of the cmdline field copied. Note that the copy does | 
|  | * not guarantee an ending NULL byte. | 
|  | */ | 
|  | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | 
|  | { | 
|  | int res = 0; | 
|  | unsigned int len; | 
|  | struct mm_struct *mm = get_task_mm(task); | 
|  | unsigned long arg_start, arg_end, env_start, env_end; | 
|  | if (!mm) | 
|  | goto out; | 
|  | if (!mm->arg_end) | 
|  | goto out_mm;	/* Shh! No looking before we're done */ | 
|  |  | 
|  | spin_lock(&mm->arg_lock); | 
|  | arg_start = mm->arg_start; | 
|  | arg_end = mm->arg_end; | 
|  | env_start = mm->env_start; | 
|  | env_end = mm->env_end; | 
|  | spin_unlock(&mm->arg_lock); | 
|  |  | 
|  | len = arg_end - arg_start; | 
|  |  | 
|  | if (len > buflen) | 
|  | len = buflen; | 
|  |  | 
|  | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); | 
|  |  | 
|  | /* | 
|  | * If the nul at the end of args has been overwritten, then | 
|  | * assume application is using setproctitle(3). | 
|  | */ | 
|  | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | 
|  | len = strnlen(buffer, res); | 
|  | if (len < res) { | 
|  | res = len; | 
|  | } else { | 
|  | len = env_end - env_start; | 
|  | if (len > buflen - res) | 
|  | len = buflen - res; | 
|  | res += access_process_vm(task, env_start, | 
|  | buffer+res, len, | 
|  | FOLL_FORCE); | 
|  | res = strnlen(buffer, res); | 
|  | } | 
|  | } | 
|  | out_mm: | 
|  | mmput(mm); | 
|  | out: | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int memcmp_pages(struct page *page1, struct page *page2) | 
|  | { | 
|  | char *addr1, *addr2; | 
|  | int ret; | 
|  |  | 
|  | addr1 = kmap_atomic(page1); | 
|  | addr2 = kmap_atomic(page2); | 
|  | ret = memcmp(addr1, addr2, PAGE_SIZE); | 
|  | kunmap_atomic(addr2); | 
|  | kunmap_atomic(addr1); | 
|  | return ret; | 
|  | } |