| /* |
| * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_error.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_quota.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_trace.h" |
| |
| kmem_zone_t *xfs_trans_zone; |
| |
| |
| /* |
| * Various log reservation values. |
| * |
| * These are based on the size of the file system block because that is what |
| * most transactions manipulate. Each adds in an additional 128 bytes per |
| * item logged to try to account for the overhead of the transaction mechanism. |
| * |
| * Note: Most of the reservations underestimate the number of allocation |
| * groups into which they could free extents in the xfs_bmap_finish() call. |
| * This is because the number in the worst case is quite high and quite |
| * unusual. In order to fix this we need to change xfs_bmap_finish() to free |
| * extents in only a single AG at a time. This will require changes to the |
| * EFI code as well, however, so that the EFI for the extents not freed is |
| * logged again in each transaction. See SGI PV #261917. |
| * |
| * Reservation functions here avoid a huge stack in xfs_trans_init due to |
| * register overflow from temporaries in the calculations. |
| */ |
| |
| |
| /* |
| * In a write transaction we can allocate a maximum of 2 |
| * extents. This gives: |
| * the inode getting the new extents: inode size |
| * the inode's bmap btree: max depth * block size |
| * the agfs of the ags from which the extents are allocated: 2 * sector |
| * the superblock free block counter: sector size |
| * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size |
| * And the bmap_finish transaction can free bmap blocks in a join: |
| * the agfs of the ags containing the blocks: 2 * sector size |
| * the agfls of the ags containing the blocks: 2 * sector size |
| * the super block free block counter: sector size |
| * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_write_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + |
| 2 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 2) + |
| 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 2))), |
| (2 * mp->m_sb.sb_sectsize + |
| 2 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 2) + |
| 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); |
| } |
| |
| /* |
| * In truncating a file we free up to two extents at once. We can modify: |
| * the inode being truncated: inode size |
| * the inode's bmap btree: (max depth + 1) * block size |
| * And the bmap_finish transaction can free the blocks and bmap blocks: |
| * the agf for each of the ags: 4 * sector size |
| * the agfl for each of the ags: 4 * sector size |
| * the super block to reflect the freed blocks: sector size |
| * worst case split in allocation btrees per extent assuming 4 extents: |
| * 4 exts * 2 trees * (2 * max depth - 1) * block size |
| * the inode btree: max depth * blocksize |
| * the allocation btrees: 2 trees * (max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_itruncate_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) + |
| 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), |
| (4 * mp->m_sb.sb_sectsize + |
| 4 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 4) + |
| 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) + |
| 128 * 5 + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); |
| } |
| |
| /* |
| * In renaming a files we can modify: |
| * the four inodes involved: 4 * inode size |
| * the two directory btrees: 2 * (max depth + v2) * dir block size |
| * the two directory bmap btrees: 2 * max depth * block size |
| * And the bmap_finish transaction can free dir and bmap blocks (two sets |
| * of bmap blocks) giving: |
| * the agf for the ags in which the blocks live: 3 * sector size |
| * the agfl for the ags in which the blocks live: 3 * sector size |
| * the superblock for the free block count: sector size |
| * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_rename_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((4 * mp->m_sb.sb_inodesize + |
| 2 * XFS_DIROP_LOG_RES(mp) + |
| 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))), |
| (3 * mp->m_sb.sb_sectsize + |
| 3 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 3) + |
| 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3)))); |
| } |
| |
| /* |
| * For creating a link to an inode: |
| * the parent directory inode: inode size |
| * the linked inode: inode size |
| * the directory btree could split: (max depth + v2) * dir block size |
| * the directory bmap btree could join or split: (max depth + v2) * blocksize |
| * And the bmap_finish transaction can free some bmap blocks giving: |
| * the agf for the ag in which the blocks live: sector size |
| * the agfl for the ag in which the blocks live: sector size |
| * the superblock for the free block count: sector size |
| * the allocation btrees: 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_link_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_inodesize + |
| XFS_DIROP_LOG_RES(mp) + |
| 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), |
| (mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); |
| } |
| |
| /* |
| * For removing a directory entry we can modify: |
| * the parent directory inode: inode size |
| * the removed inode: inode size |
| * the directory btree could join: (max depth + v2) * dir block size |
| * the directory bmap btree could join or split: (max depth + v2) * blocksize |
| * And the bmap_finish transaction can free the dir and bmap blocks giving: |
| * the agf for the ag in which the blocks live: 2 * sector size |
| * the agfl for the ag in which the blocks live: 2 * sector size |
| * the superblock for the free block count: sector size |
| * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_remove_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_inodesize + |
| XFS_DIROP_LOG_RES(mp) + |
| 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), |
| (2 * mp->m_sb.sb_sectsize + |
| 2 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 2) + |
| 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); |
| } |
| |
| /* |
| * For symlink we can modify: |
| * the parent directory inode: inode size |
| * the new inode: inode size |
| * the inode btree entry: 1 block |
| * the directory btree: (max depth + v2) * dir block size |
| * the directory inode's bmap btree: (max depth + v2) * block size |
| * the blocks for the symlink: 1 kB |
| * Or in the first xact we allocate some inodes giving: |
| * the agi and agf of the ag getting the new inodes: 2 * sectorsize |
| * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize |
| * the inode btree: max depth * blocksize |
| * the allocation btrees: 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_symlink_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_inodesize + |
| XFS_FSB_TO_B(mp, 1) + |
| XFS_DIROP_LOG_RES(mp) + |
| 1024 + |
| 128 * (4 + XFS_DIROP_LOG_COUNT(mp))), |
| (2 * mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + |
| XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); |
| } |
| |
| /* |
| * For create we can modify: |
| * the parent directory inode: inode size |
| * the new inode: inode size |
| * the inode btree entry: block size |
| * the superblock for the nlink flag: sector size |
| * the directory btree: (max depth + v2) * dir block size |
| * the directory inode's bmap btree: (max depth + v2) * block size |
| * Or in the first xact we allocate some inodes giving: |
| * the agi and agf of the ag getting the new inodes: 2 * sectorsize |
| * the superblock for the nlink flag: sector size |
| * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize |
| * the inode btree: max depth * blocksize |
| * the allocation btrees: 2 trees * (max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_create_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, 1) + |
| XFS_DIROP_LOG_RES(mp) + |
| 128 * (3 + XFS_DIROP_LOG_COUNT(mp))), |
| (3 * mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + |
| XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); |
| } |
| |
| /* |
| * Making a new directory is the same as creating a new file. |
| */ |
| STATIC uint |
| xfs_calc_mkdir_reservation( |
| struct xfs_mount *mp) |
| { |
| return xfs_calc_create_reservation(mp); |
| } |
| |
| /* |
| * In freeing an inode we can modify: |
| * the inode being freed: inode size |
| * the super block free inode counter: sector size |
| * the agi hash list and counters: sector size |
| * the inode btree entry: block size |
| * the on disk inode before ours in the agi hash list: inode cluster size |
| * the inode btree: max depth * blocksize |
| * the allocation btrees: 2 trees * (max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_ifree_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, 1) + |
| MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), |
| XFS_INODE_CLUSTER_SIZE(mp)) + |
| 128 * 5 + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)); |
| } |
| |
| /* |
| * When only changing the inode we log the inode and possibly the superblock |
| * We also add a bit of slop for the transaction stuff. |
| */ |
| STATIC uint |
| xfs_calc_ichange_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_sectsize + |
| 512; |
| |
| } |
| |
| /* |
| * Growing the data section of the filesystem. |
| * superblock |
| * agi and agf |
| * allocation btrees |
| */ |
| STATIC uint |
| xfs_calc_growdata_reservation( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_sectsize * 3 + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); |
| } |
| |
| /* |
| * Growing the rt section of the filesystem. |
| * In the first set of transactions (ALLOC) we allocate space to the |
| * bitmap or summary files. |
| * superblock: sector size |
| * agf of the ag from which the extent is allocated: sector size |
| * bmap btree for bitmap/summary inode: max depth * blocksize |
| * bitmap/summary inode: inode size |
| * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize |
| */ |
| STATIC uint |
| xfs_calc_growrtalloc_reservation( |
| struct xfs_mount *mp) |
| { |
| return 2 * mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + |
| mp->m_sb.sb_inodesize + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)); |
| } |
| |
| /* |
| * Growing the rt section of the filesystem. |
| * In the second set of transactions (ZERO) we zero the new metadata blocks. |
| * one bitmap/summary block: blocksize |
| */ |
| STATIC uint |
| xfs_calc_growrtzero_reservation( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_blocksize + 128; |
| } |
| |
| /* |
| * Growing the rt section of the filesystem. |
| * In the third set of transactions (FREE) we update metadata without |
| * allocating any new blocks. |
| * superblock: sector size |
| * bitmap inode: inode size |
| * summary inode: inode size |
| * one bitmap block: blocksize |
| * summary blocks: new summary size |
| */ |
| STATIC uint |
| xfs_calc_growrtfree_reservation( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_sectsize + |
| 2 * mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_blocksize + |
| mp->m_rsumsize + |
| 128 * 5; |
| } |
| |
| /* |
| * Logging the inode modification timestamp on a synchronous write. |
| * inode |
| */ |
| STATIC uint |
| xfs_calc_swrite_reservation( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_inodesize + 128; |
| } |
| |
| /* |
| * Logging the inode mode bits when writing a setuid/setgid file |
| * inode |
| */ |
| STATIC uint |
| xfs_calc_writeid_reservation(xfs_mount_t *mp) |
| { |
| return mp->m_sb.sb_inodesize + 128; |
| } |
| |
| /* |
| * Converting the inode from non-attributed to attributed. |
| * the inode being converted: inode size |
| * agf block and superblock (for block allocation) |
| * the new block (directory sized) |
| * bmap blocks for the new directory block |
| * allocation btrees |
| */ |
| STATIC uint |
| xfs_calc_addafork_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_sectsize * 2 + |
| mp->m_dirblksize + |
| XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) + |
| XFS_ALLOCFREE_LOG_RES(mp, 1) + |
| 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 + |
| XFS_ALLOCFREE_LOG_COUNT(mp, 1)); |
| } |
| |
| /* |
| * Removing the attribute fork of a file |
| * the inode being truncated: inode size |
| * the inode's bmap btree: max depth * block size |
| * And the bmap_finish transaction can free the blocks and bmap blocks: |
| * the agf for each of the ags: 4 * sector size |
| * the agfl for each of the ags: 4 * sector size |
| * the super block to reflect the freed blocks: sector size |
| * worst case split in allocation btrees per extent assuming 4 extents: |
| * 4 exts * 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_attrinval_reservation( |
| struct xfs_mount *mp) |
| { |
| return MAX((mp->m_sb.sb_inodesize + |
| XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + |
| 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))), |
| (4 * mp->m_sb.sb_sectsize + |
| 4 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 4) + |
| 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)))); |
| } |
| |
| /* |
| * Setting an attribute. |
| * the inode getting the attribute |
| * the superblock for allocations |
| * the agfs extents are allocated from |
| * the attribute btree * max depth |
| * the inode allocation btree |
| * Since attribute transaction space is dependent on the size of the attribute, |
| * the calculation is done partially at mount time and partially at runtime. |
| */ |
| STATIC uint |
| xfs_calc_attrset_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| mp->m_sb.sb_inodesize + |
| mp->m_sb.sb_sectsize + |
| XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + |
| 128 * (2 + XFS_DA_NODE_MAXDEPTH); |
| } |
| |
| /* |
| * Removing an attribute. |
| * the inode: inode size |
| * the attribute btree could join: max depth * block size |
| * the inode bmap btree could join or split: max depth * block size |
| * And the bmap_finish transaction can free the attr blocks freed giving: |
| * the agf for the ag in which the blocks live: 2 * sector size |
| * the agfl for the ag in which the blocks live: 2 * sector size |
| * the superblock for the free block count: sector size |
| * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size |
| */ |
| STATIC uint |
| xfs_calc_attrrm_reservation( |
| struct xfs_mount *mp) |
| { |
| return XFS_DQUOT_LOGRES(mp) + |
| MAX((mp->m_sb.sb_inodesize + |
| XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + |
| XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + |
| 128 * (1 + XFS_DA_NODE_MAXDEPTH + |
| XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), |
| (2 * mp->m_sb.sb_sectsize + |
| 2 * mp->m_sb.sb_sectsize + |
| mp->m_sb.sb_sectsize + |
| XFS_ALLOCFREE_LOG_RES(mp, 2) + |
| 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); |
| } |
| |
| /* |
| * Clearing a bad agino number in an agi hash bucket. |
| */ |
| STATIC uint |
| xfs_calc_clear_agi_bucket_reservation( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_sectsize + 128; |
| } |
| |
| /* |
| * Initialize the precomputed transaction reservation values |
| * in the mount structure. |
| */ |
| void |
| xfs_trans_init( |
| struct xfs_mount *mp) |
| { |
| struct xfs_trans_reservations *resp = &mp->m_reservations; |
| |
| resp->tr_write = xfs_calc_write_reservation(mp); |
| resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); |
| resp->tr_rename = xfs_calc_rename_reservation(mp); |
| resp->tr_link = xfs_calc_link_reservation(mp); |
| resp->tr_remove = xfs_calc_remove_reservation(mp); |
| resp->tr_symlink = xfs_calc_symlink_reservation(mp); |
| resp->tr_create = xfs_calc_create_reservation(mp); |
| resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); |
| resp->tr_ifree = xfs_calc_ifree_reservation(mp); |
| resp->tr_ichange = xfs_calc_ichange_reservation(mp); |
| resp->tr_growdata = xfs_calc_growdata_reservation(mp); |
| resp->tr_swrite = xfs_calc_swrite_reservation(mp); |
| resp->tr_writeid = xfs_calc_writeid_reservation(mp); |
| resp->tr_addafork = xfs_calc_addafork_reservation(mp); |
| resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); |
| resp->tr_attrset = xfs_calc_attrset_reservation(mp); |
| resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); |
| resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); |
| resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); |
| resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); |
| resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); |
| } |
| |
| /* |
| * This routine is called to allocate a transaction structure. |
| * The type parameter indicates the type of the transaction. These |
| * are enumerated in xfs_trans.h. |
| * |
| * Dynamically allocate the transaction structure from the transaction |
| * zone, initialize it, and return it to the caller. |
| */ |
| xfs_trans_t * |
| xfs_trans_alloc( |
| xfs_mount_t *mp, |
| uint type) |
| { |
| xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); |
| return _xfs_trans_alloc(mp, type, KM_SLEEP); |
| } |
| |
| xfs_trans_t * |
| _xfs_trans_alloc( |
| xfs_mount_t *mp, |
| uint type, |
| uint memflags) |
| { |
| xfs_trans_t *tp; |
| |
| atomic_inc(&mp->m_active_trans); |
| |
| tp = kmem_zone_zalloc(xfs_trans_zone, memflags); |
| tp->t_magic = XFS_TRANS_MAGIC; |
| tp->t_type = type; |
| tp->t_mountp = mp; |
| tp->t_items_free = XFS_LIC_NUM_SLOTS; |
| xfs_lic_init(&(tp->t_items)); |
| INIT_LIST_HEAD(&tp->t_busy); |
| return tp; |
| } |
| |
| /* |
| * Free the transaction structure. If there is more clean up |
| * to do when the structure is freed, add it here. |
| */ |
| STATIC void |
| xfs_trans_free( |
| struct xfs_trans *tp) |
| { |
| struct xfs_busy_extent *busyp, *n; |
| |
| list_for_each_entry_safe(busyp, n, &tp->t_busy, list) |
| xfs_alloc_busy_clear(tp->t_mountp, busyp); |
| |
| atomic_dec(&tp->t_mountp->m_active_trans); |
| xfs_trans_free_dqinfo(tp); |
| kmem_zone_free(xfs_trans_zone, tp); |
| } |
| |
| /* |
| * This is called to create a new transaction which will share the |
| * permanent log reservation of the given transaction. The remaining |
| * unused block and rt extent reservations are also inherited. This |
| * implies that the original transaction is no longer allowed to allocate |
| * blocks. Locks and log items, however, are no inherited. They must |
| * be added to the new transaction explicitly. |
| */ |
| xfs_trans_t * |
| xfs_trans_dup( |
| xfs_trans_t *tp) |
| { |
| xfs_trans_t *ntp; |
| |
| ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); |
| |
| /* |
| * Initialize the new transaction structure. |
| */ |
| ntp->t_magic = XFS_TRANS_MAGIC; |
| ntp->t_type = tp->t_type; |
| ntp->t_mountp = tp->t_mountp; |
| ntp->t_items_free = XFS_LIC_NUM_SLOTS; |
| xfs_lic_init(&(ntp->t_items)); |
| INIT_LIST_HEAD(&ntp->t_busy); |
| |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| ASSERT(tp->t_ticket != NULL); |
| |
| ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); |
| ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); |
| ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; |
| tp->t_blk_res = tp->t_blk_res_used; |
| ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; |
| tp->t_rtx_res = tp->t_rtx_res_used; |
| ntp->t_pflags = tp->t_pflags; |
| |
| xfs_trans_dup_dqinfo(tp, ntp); |
| |
| atomic_inc(&tp->t_mountp->m_active_trans); |
| return ntp; |
| } |
| |
| /* |
| * This is called to reserve free disk blocks and log space for the |
| * given transaction. This must be done before allocating any resources |
| * within the transaction. |
| * |
| * This will return ENOSPC if there are not enough blocks available. |
| * It will sleep waiting for available log space. |
| * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which |
| * is used by long running transactions. If any one of the reservations |
| * fails then they will all be backed out. |
| * |
| * This does not do quota reservations. That typically is done by the |
| * caller afterwards. |
| */ |
| int |
| xfs_trans_reserve( |
| xfs_trans_t *tp, |
| uint blocks, |
| uint logspace, |
| uint rtextents, |
| uint flags, |
| uint logcount) |
| { |
| int log_flags; |
| int error = 0; |
| int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; |
| |
| /* Mark this thread as being in a transaction */ |
| current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| |
| /* |
| * Attempt to reserve the needed disk blocks by decrementing |
| * the number needed from the number available. This will |
| * fail if the count would go below zero. |
| */ |
| if (blocks > 0) { |
| error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS, |
| -((int64_t)blocks), rsvd); |
| if (error != 0) { |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| return (XFS_ERROR(ENOSPC)); |
| } |
| tp->t_blk_res += blocks; |
| } |
| |
| /* |
| * Reserve the log space needed for this transaction. |
| */ |
| if (logspace > 0) { |
| ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); |
| ASSERT((tp->t_log_count == 0) || |
| (tp->t_log_count == logcount)); |
| if (flags & XFS_TRANS_PERM_LOG_RES) { |
| log_flags = XFS_LOG_PERM_RESERV; |
| tp->t_flags |= XFS_TRANS_PERM_LOG_RES; |
| } else { |
| ASSERT(tp->t_ticket == NULL); |
| ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); |
| log_flags = 0; |
| } |
| |
| error = xfs_log_reserve(tp->t_mountp, logspace, logcount, |
| &tp->t_ticket, |
| XFS_TRANSACTION, log_flags, tp->t_type); |
| if (error) { |
| goto undo_blocks; |
| } |
| tp->t_log_res = logspace; |
| tp->t_log_count = logcount; |
| } |
| |
| /* |
| * Attempt to reserve the needed realtime extents by decrementing |
| * the number needed from the number available. This will |
| * fail if the count would go below zero. |
| */ |
| if (rtextents > 0) { |
| error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, |
| -((int64_t)rtextents), rsvd); |
| if (error) { |
| error = XFS_ERROR(ENOSPC); |
| goto undo_log; |
| } |
| tp->t_rtx_res += rtextents; |
| } |
| |
| return 0; |
| |
| /* |
| * Error cases jump to one of these labels to undo any |
| * reservations which have already been performed. |
| */ |
| undo_log: |
| if (logspace > 0) { |
| if (flags & XFS_TRANS_PERM_LOG_RES) { |
| log_flags = XFS_LOG_REL_PERM_RESERV; |
| } else { |
| log_flags = 0; |
| } |
| xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); |
| tp->t_ticket = NULL; |
| tp->t_log_res = 0; |
| tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; |
| } |
| |
| undo_blocks: |
| if (blocks > 0) { |
| (void) xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS, |
| (int64_t)blocks, rsvd); |
| tp->t_blk_res = 0; |
| } |
| |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| |
| return error; |
| } |
| |
| /* |
| * Record the indicated change to the given field for application |
| * to the file system's superblock when the transaction commits. |
| * For now, just store the change in the transaction structure. |
| * |
| * Mark the transaction structure to indicate that the superblock |
| * needs to be updated before committing. |
| * |
| * Because we may not be keeping track of allocated/free inodes and |
| * used filesystem blocks in the superblock, we do not mark the |
| * superblock dirty in this transaction if we modify these fields. |
| * We still need to update the transaction deltas so that they get |
| * applied to the incore superblock, but we don't want them to |
| * cause the superblock to get locked and logged if these are the |
| * only fields in the superblock that the transaction modifies. |
| */ |
| void |
| xfs_trans_mod_sb( |
| xfs_trans_t *tp, |
| uint field, |
| int64_t delta) |
| { |
| uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); |
| xfs_mount_t *mp = tp->t_mountp; |
| |
| switch (field) { |
| case XFS_TRANS_SB_ICOUNT: |
| tp->t_icount_delta += delta; |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_IFREE: |
| tp->t_ifree_delta += delta; |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_FDBLOCKS: |
| /* |
| * Track the number of blocks allocated in the |
| * transaction. Make sure it does not exceed the |
| * number reserved. |
| */ |
| if (delta < 0) { |
| tp->t_blk_res_used += (uint)-delta; |
| ASSERT(tp->t_blk_res_used <= tp->t_blk_res); |
| } |
| tp->t_fdblocks_delta += delta; |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_RES_FDBLOCKS: |
| /* |
| * The allocation has already been applied to the |
| * in-core superblock's counter. This should only |
| * be applied to the on-disk superblock. |
| */ |
| ASSERT(delta < 0); |
| tp->t_res_fdblocks_delta += delta; |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_FREXTENTS: |
| /* |
| * Track the number of blocks allocated in the |
| * transaction. Make sure it does not exceed the |
| * number reserved. |
| */ |
| if (delta < 0) { |
| tp->t_rtx_res_used += (uint)-delta; |
| ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); |
| } |
| tp->t_frextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_RES_FREXTENTS: |
| /* |
| * The allocation has already been applied to the |
| * in-core superblock's counter. This should only |
| * be applied to the on-disk superblock. |
| */ |
| ASSERT(delta < 0); |
| tp->t_res_frextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_DBLOCKS: |
| ASSERT(delta > 0); |
| tp->t_dblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_AGCOUNT: |
| ASSERT(delta > 0); |
| tp->t_agcount_delta += delta; |
| break; |
| case XFS_TRANS_SB_IMAXPCT: |
| tp->t_imaxpct_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTSIZE: |
| tp->t_rextsize_delta += delta; |
| break; |
| case XFS_TRANS_SB_RBMBLOCKS: |
| tp->t_rbmblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_RBLOCKS: |
| tp->t_rblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTENTS: |
| tp->t_rextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTSLOG: |
| tp->t_rextslog_delta += delta; |
| break; |
| default: |
| ASSERT(0); |
| return; |
| } |
| |
| tp->t_flags |= flags; |
| } |
| |
| /* |
| * xfs_trans_apply_sb_deltas() is called from the commit code |
| * to bring the superblock buffer into the current transaction |
| * and modify it as requested by earlier calls to xfs_trans_mod_sb(). |
| * |
| * For now we just look at each field allowed to change and change |
| * it if necessary. |
| */ |
| STATIC void |
| xfs_trans_apply_sb_deltas( |
| xfs_trans_t *tp) |
| { |
| xfs_dsb_t *sbp; |
| xfs_buf_t *bp; |
| int whole = 0; |
| |
| bp = xfs_trans_getsb(tp, tp->t_mountp, 0); |
| sbp = XFS_BUF_TO_SBP(bp); |
| |
| /* |
| * Check that superblock mods match the mods made to AGF counters. |
| */ |
| ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == |
| (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + |
| tp->t_ag_btree_delta)); |
| |
| /* |
| * Only update the superblock counters if we are logging them |
| */ |
| if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { |
| if (tp->t_icount_delta) |
| be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); |
| if (tp->t_ifree_delta) |
| be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); |
| if (tp->t_fdblocks_delta) |
| be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); |
| if (tp->t_res_fdblocks_delta) |
| be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); |
| } |
| |
| if (tp->t_frextents_delta) |
| be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); |
| if (tp->t_res_frextents_delta) |
| be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); |
| |
| if (tp->t_dblocks_delta) { |
| be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_agcount_delta) { |
| be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); |
| whole = 1; |
| } |
| if (tp->t_imaxpct_delta) { |
| sbp->sb_imax_pct += tp->t_imaxpct_delta; |
| whole = 1; |
| } |
| if (tp->t_rextsize_delta) { |
| be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); |
| whole = 1; |
| } |
| if (tp->t_rbmblocks_delta) { |
| be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_rblocks_delta) { |
| be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_rextents_delta) { |
| be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); |
| whole = 1; |
| } |
| if (tp->t_rextslog_delta) { |
| sbp->sb_rextslog += tp->t_rextslog_delta; |
| whole = 1; |
| } |
| |
| if (whole) |
| /* |
| * Log the whole thing, the fields are noncontiguous. |
| */ |
| xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); |
| else |
| /* |
| * Since all the modifiable fields are contiguous, we |
| * can get away with this. |
| */ |
| xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), |
| offsetof(xfs_dsb_t, sb_frextents) + |
| sizeof(sbp->sb_frextents) - 1); |
| } |
| |
| /* |
| * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations |
| * and apply superblock counter changes to the in-core superblock. The |
| * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT |
| * applied to the in-core superblock. The idea is that that has already been |
| * done. |
| * |
| * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). |
| * However, we have to ensure that we only modify each superblock field only |
| * once because the application of the delta values may not be atomic. That can |
| * lead to ENOSPC races occurring if we have two separate modifcations of the |
| * free space counter to put back the entire reservation and then take away |
| * what we used. |
| * |
| * If we are not logging superblock counters, then the inode allocated/free and |
| * used block counts are not updated in the on disk superblock. In this case, |
| * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we |
| * still need to update the incore superblock with the changes. |
| */ |
| void |
| xfs_trans_unreserve_and_mod_sb( |
| xfs_trans_t *tp) |
| { |
| xfs_mod_sb_t msb[14]; /* If you add cases, add entries */ |
| xfs_mod_sb_t *msbp; |
| xfs_mount_t *mp = tp->t_mountp; |
| /* REFERENCED */ |
| int error; |
| int rsvd; |
| int64_t blkdelta = 0; |
| int64_t rtxdelta = 0; |
| |
| msbp = msb; |
| rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; |
| |
| /* calculate free blocks delta */ |
| if (tp->t_blk_res > 0) |
| blkdelta = tp->t_blk_res; |
| |
| if ((tp->t_fdblocks_delta != 0) && |
| (xfs_sb_version_haslazysbcount(&mp->m_sb) || |
| (tp->t_flags & XFS_TRANS_SB_DIRTY))) |
| blkdelta += tp->t_fdblocks_delta; |
| |
| if (blkdelta != 0) { |
| msbp->msb_field = XFS_SBS_FDBLOCKS; |
| msbp->msb_delta = blkdelta; |
| msbp++; |
| } |
| |
| /* calculate free realtime extents delta */ |
| if (tp->t_rtx_res > 0) |
| rtxdelta = tp->t_rtx_res; |
| |
| if ((tp->t_frextents_delta != 0) && |
| (tp->t_flags & XFS_TRANS_SB_DIRTY)) |
| rtxdelta += tp->t_frextents_delta; |
| |
| if (rtxdelta != 0) { |
| msbp->msb_field = XFS_SBS_FREXTENTS; |
| msbp->msb_delta = rtxdelta; |
| msbp++; |
| } |
| |
| /* apply remaining deltas */ |
| |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb) || |
| (tp->t_flags & XFS_TRANS_SB_DIRTY)) { |
| if (tp->t_icount_delta != 0) { |
| msbp->msb_field = XFS_SBS_ICOUNT; |
| msbp->msb_delta = tp->t_icount_delta; |
| msbp++; |
| } |
| if (tp->t_ifree_delta != 0) { |
| msbp->msb_field = XFS_SBS_IFREE; |
| msbp->msb_delta = tp->t_ifree_delta; |
| msbp++; |
| } |
| } |
| |
| if (tp->t_flags & XFS_TRANS_SB_DIRTY) { |
| if (tp->t_dblocks_delta != 0) { |
| msbp->msb_field = XFS_SBS_DBLOCKS; |
| msbp->msb_delta = tp->t_dblocks_delta; |
| msbp++; |
| } |
| if (tp->t_agcount_delta != 0) { |
| msbp->msb_field = XFS_SBS_AGCOUNT; |
| msbp->msb_delta = tp->t_agcount_delta; |
| msbp++; |
| } |
| if (tp->t_imaxpct_delta != 0) { |
| msbp->msb_field = XFS_SBS_IMAX_PCT; |
| msbp->msb_delta = tp->t_imaxpct_delta; |
| msbp++; |
| } |
| if (tp->t_rextsize_delta != 0) { |
| msbp->msb_field = XFS_SBS_REXTSIZE; |
| msbp->msb_delta = tp->t_rextsize_delta; |
| msbp++; |
| } |
| if (tp->t_rbmblocks_delta != 0) { |
| msbp->msb_field = XFS_SBS_RBMBLOCKS; |
| msbp->msb_delta = tp->t_rbmblocks_delta; |
| msbp++; |
| } |
| if (tp->t_rblocks_delta != 0) { |
| msbp->msb_field = XFS_SBS_RBLOCKS; |
| msbp->msb_delta = tp->t_rblocks_delta; |
| msbp++; |
| } |
| if (tp->t_rextents_delta != 0) { |
| msbp->msb_field = XFS_SBS_REXTENTS; |
| msbp->msb_delta = tp->t_rextents_delta; |
| msbp++; |
| } |
| if (tp->t_rextslog_delta != 0) { |
| msbp->msb_field = XFS_SBS_REXTSLOG; |
| msbp->msb_delta = tp->t_rextslog_delta; |
| msbp++; |
| } |
| } |
| |
| /* |
| * If we need to change anything, do it. |
| */ |
| if (msbp > msb) { |
| error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, |
| (uint)(msbp - msb), rsvd); |
| ASSERT(error == 0); |
| } |
| } |
| |
| /* |
| * Total up the number of log iovecs needed to commit this |
| * transaction. The transaction itself needs one for the |
| * transaction header. Ask each dirty item in turn how many |
| * it needs to get the total. |
| */ |
| static uint |
| xfs_trans_count_vecs( |
| struct xfs_trans *tp) |
| { |
| int nvecs; |
| xfs_log_item_desc_t *lidp; |
| |
| nvecs = 1; |
| lidp = xfs_trans_first_item(tp); |
| ASSERT(lidp != NULL); |
| |
| /* In the non-debug case we need to start bailing out if we |
| * didn't find a log_item here, return zero and let trans_commit |
| * deal with it. |
| */ |
| if (lidp == NULL) |
| return 0; |
| |
| while (lidp != NULL) { |
| /* |
| * Skip items which aren't dirty in this transaction. |
| */ |
| if (!(lidp->lid_flags & XFS_LID_DIRTY)) { |
| lidp = xfs_trans_next_item(tp, lidp); |
| continue; |
| } |
| lidp->lid_size = IOP_SIZE(lidp->lid_item); |
| nvecs += lidp->lid_size; |
| lidp = xfs_trans_next_item(tp, lidp); |
| } |
| |
| return nvecs; |
| } |
| |
| /* |
| * Fill in the vector with pointers to data to be logged |
| * by this transaction. The transaction header takes |
| * the first vector, and then each dirty item takes the |
| * number of vectors it indicated it needed in xfs_trans_count_vecs(). |
| * |
| * As each item fills in the entries it needs, also pin the item |
| * so that it cannot be flushed out until the log write completes. |
| */ |
| static void |
| xfs_trans_fill_vecs( |
| struct xfs_trans *tp, |
| struct xfs_log_iovec *log_vector) |
| { |
| xfs_log_item_desc_t *lidp; |
| struct xfs_log_iovec *vecp; |
| uint nitems; |
| |
| /* |
| * Skip over the entry for the transaction header, we'll |
| * fill that in at the end. |
| */ |
| vecp = log_vector + 1; |
| |
| nitems = 0; |
| lidp = xfs_trans_first_item(tp); |
| ASSERT(lidp); |
| while (lidp) { |
| /* Skip items which aren't dirty in this transaction. */ |
| if (!(lidp->lid_flags & XFS_LID_DIRTY)) { |
| lidp = xfs_trans_next_item(tp, lidp); |
| continue; |
| } |
| |
| /* |
| * The item may be marked dirty but not log anything. This can |
| * be used to get called when a transaction is committed. |
| */ |
| if (lidp->lid_size) |
| nitems++; |
| IOP_FORMAT(lidp->lid_item, vecp); |
| vecp += lidp->lid_size; |
| IOP_PIN(lidp->lid_item); |
| lidp = xfs_trans_next_item(tp, lidp); |
| } |
| |
| /* |
| * Now that we've counted the number of items in this transaction, fill |
| * in the transaction header. Note that the transaction header does not |
| * have a log item. |
| */ |
| tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; |
| tp->t_header.th_type = tp->t_type; |
| tp->t_header.th_num_items = nitems; |
| log_vector->i_addr = (xfs_caddr_t)&tp->t_header; |
| log_vector->i_len = sizeof(xfs_trans_header_t); |
| log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; |
| } |
| |
| /* |
| * The committed item processing consists of calling the committed routine of |
| * each logged item, updating the item's position in the AIL if necessary, and |
| * unpinning each item. If the committed routine returns -1, then do nothing |
| * further with the item because it may have been freed. |
| * |
| * Since items are unlocked when they are copied to the incore log, it is |
| * possible for two transactions to be completing and manipulating the same |
| * item simultaneously. The AIL lock will protect the lsn field of each item. |
| * The value of this field can never go backwards. |
| * |
| * We unpin the items after repositioning them in the AIL, because otherwise |
| * they could be immediately flushed and we'd have to race with the flusher |
| * trying to pull the item from the AIL as we add it. |
| */ |
| void |
| xfs_trans_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t commit_lsn, |
| int aborted) |
| { |
| xfs_lsn_t item_lsn; |
| struct xfs_ail *ailp; |
| |
| if (aborted) |
| lip->li_flags |= XFS_LI_ABORTED; |
| item_lsn = IOP_COMMITTED(lip, commit_lsn); |
| |
| /* If the committed routine returns -1, item has been freed. */ |
| if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) |
| return; |
| |
| /* |
| * If the returned lsn is greater than what it contained before, update |
| * the location of the item in the AIL. If it is not, then do nothing. |
| * Items can never move backwards in the AIL. |
| * |
| * While the new lsn should usually be greater, it is possible that a |
| * later transaction completing simultaneously with an earlier one |
| * using the same item could complete first with a higher lsn. This |
| * would cause the earlier transaction to fail the test below. |
| */ |
| ailp = lip->li_ailp; |
| spin_lock(&ailp->xa_lock); |
| if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { |
| /* |
| * This will set the item's lsn to item_lsn and update the |
| * position of the item in the AIL. |
| * |
| * xfs_trans_ail_update() drops the AIL lock. |
| */ |
| xfs_trans_ail_update(ailp, lip, item_lsn); |
| } else { |
| spin_unlock(&ailp->xa_lock); |
| } |
| |
| /* |
| * Now that we've repositioned the item in the AIL, unpin it so it can |
| * be flushed. Pass information about buffer stale state down from the |
| * log item flags, if anyone else stales the buffer we do not want to |
| * pay any attention to it. |
| */ |
| IOP_UNPIN(lip); |
| } |
| |
| /* |
| * This is typically called by the LM when a transaction has been fully |
| * committed to disk. It needs to unpin the items which have |
| * been logged by the transaction and update their positions |
| * in the AIL if necessary. |
| * |
| * This also gets called when the transactions didn't get written out |
| * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. |
| */ |
| STATIC void |
| xfs_trans_committed( |
| struct xfs_trans *tp, |
| int abortflag) |
| { |
| xfs_log_item_desc_t *lidp; |
| xfs_log_item_chunk_t *licp; |
| xfs_log_item_chunk_t *next_licp; |
| |
| /* Call the transaction's completion callback if there is one. */ |
| if (tp->t_callback != NULL) |
| tp->t_callback(tp, tp->t_callarg); |
| |
| for (lidp = xfs_trans_first_item(tp); |
| lidp != NULL; |
| lidp = xfs_trans_next_item(tp, lidp)) { |
| xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag); |
| } |
| |
| /* free the item chunks, ignoring the embedded chunk */ |
| for (licp = tp->t_items.lic_next; licp != NULL; licp = next_licp) { |
| next_licp = licp->lic_next; |
| kmem_free(licp); |
| } |
| |
| xfs_trans_free(tp); |
| } |
| |
| /* |
| * Called from the trans_commit code when we notice that |
| * the filesystem is in the middle of a forced shutdown. |
| */ |
| STATIC void |
| xfs_trans_uncommit( |
| struct xfs_trans *tp, |
| uint flags) |
| { |
| xfs_log_item_desc_t *lidp; |
| |
| for (lidp = xfs_trans_first_item(tp); |
| lidp != NULL; |
| lidp = xfs_trans_next_item(tp, lidp)) { |
| /* |
| * Unpin all but those that aren't dirty. |
| */ |
| if (lidp->lid_flags & XFS_LID_DIRTY) |
| IOP_UNPIN_REMOVE(lidp->lid_item, tp); |
| } |
| |
| xfs_trans_unreserve_and_mod_sb(tp); |
| xfs_trans_unreserve_and_mod_dquots(tp); |
| |
| xfs_trans_free_items(tp, NULLCOMMITLSN, flags); |
| xfs_trans_free(tp); |
| } |
| |
| /* |
| * Format the transaction direct to the iclog. This isolates the physical |
| * transaction commit operation from the logical operation and hence allows |
| * other methods to be introduced without affecting the existing commit path. |
| */ |
| static int |
| xfs_trans_commit_iclog( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_lsn_t *commit_lsn, |
| int flags) |
| { |
| int shutdown; |
| int error; |
| int log_flags = 0; |
| struct xlog_in_core *commit_iclog; |
| #define XFS_TRANS_LOGVEC_COUNT 16 |
| struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; |
| struct xfs_log_iovec *log_vector; |
| uint nvec; |
| |
| |
| /* |
| * Ask each log item how many log_vector entries it will |
| * need so we can figure out how many to allocate. |
| * Try to avoid the kmem_alloc() call in the common case |
| * by using a vector from the stack when it fits. |
| */ |
| nvec = xfs_trans_count_vecs(tp); |
| if (nvec == 0) { |
| return ENOMEM; /* triggers a shutdown! */ |
| } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { |
| log_vector = log_vector_fast; |
| } else { |
| log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * |
| sizeof(xfs_log_iovec_t), |
| KM_SLEEP); |
| } |
| |
| /* |
| * Fill in the log_vector and pin the logged items, and |
| * then write the transaction to the log. |
| */ |
| xfs_trans_fill_vecs(tp, log_vector); |
| |
| if (flags & XFS_TRANS_RELEASE_LOG_RES) |
| log_flags = XFS_LOG_REL_PERM_RESERV; |
| |
| error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); |
| |
| /* |
| * The transaction is committed incore here, and can go out to disk |
| * at any time after this call. However, all the items associated |
| * with the transaction are still locked and pinned in memory. |
| */ |
| *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); |
| |
| tp->t_commit_lsn = *commit_lsn; |
| trace_xfs_trans_commit_lsn(tp); |
| |
| if (nvec > XFS_TRANS_LOGVEC_COUNT) |
| kmem_free(log_vector); |
| |
| /* |
| * If we got a log write error. Unpin the logitems that we |
| * had pinned, clean up, free trans structure, and return error. |
| */ |
| if (error || *commit_lsn == -1) { |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); |
| return XFS_ERROR(EIO); |
| } |
| |
| /* |
| * Once the transaction has committed, unused |
| * reservations need to be released and changes to |
| * the superblock need to be reflected in the in-core |
| * version. Do that now. |
| */ |
| xfs_trans_unreserve_and_mod_sb(tp); |
| |
| /* |
| * Tell the LM to call the transaction completion routine |
| * when the log write with LSN commit_lsn completes (e.g. |
| * when the transaction commit really hits the on-disk log). |
| * After this call we cannot reference tp, because the call |
| * can happen at any time and the call will free the transaction |
| * structure pointed to by tp. The only case where we call |
| * the completion routine (xfs_trans_committed) directly is |
| * if the log is turned off on a debug kernel or we're |
| * running in simulation mode (the log is explicitly turned |
| * off). |
| */ |
| tp->t_logcb.cb_func = (void(*)(void*, int))xfs_trans_committed; |
| tp->t_logcb.cb_arg = tp; |
| |
| /* |
| * We need to pass the iclog buffer which was used for the |
| * transaction commit record into this function, and attach |
| * the callback to it. The callback must be attached before |
| * the items are unlocked to avoid racing with other threads |
| * waiting for an item to unlock. |
| */ |
| shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); |
| |
| /* |
| * Mark this thread as no longer being in a transaction |
| */ |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| |
| /* |
| * Once all the items of the transaction have been copied |
| * to the in core log and the callback is attached, the |
| * items can be unlocked. |
| * |
| * This will free descriptors pointing to items which were |
| * not logged since there is nothing more to do with them. |
| * For items which were logged, we will keep pointers to them |
| * so they can be unpinned after the transaction commits to disk. |
| * This will also stamp each modified meta-data item with |
| * the commit lsn of this transaction for dependency tracking |
| * purposes. |
| */ |
| xfs_trans_unlock_items(tp, *commit_lsn); |
| |
| /* |
| * If we detected a log error earlier, finish committing |
| * the transaction now (unpin log items, etc). |
| * |
| * Order is critical here, to avoid using the transaction |
| * pointer after its been freed (by xfs_trans_committed |
| * either here now, or as a callback). We cannot do this |
| * step inside xfs_log_notify as was done earlier because |
| * of this issue. |
| */ |
| if (shutdown) |
| xfs_trans_committed(tp, XFS_LI_ABORTED); |
| |
| /* |
| * Now that the xfs_trans_committed callback has been attached, |
| * and the items are released we can finally allow the iclog to |
| * go to disk. |
| */ |
| return xfs_log_release_iclog(mp, commit_iclog); |
| } |
| |
| /* |
| * Walk the log items and allocate log vector structures for |
| * each item large enough to fit all the vectors they require. |
| * Note that this format differs from the old log vector format in |
| * that there is no transaction header in these log vectors. |
| */ |
| STATIC struct xfs_log_vec * |
| xfs_trans_alloc_log_vecs( |
| xfs_trans_t *tp) |
| { |
| xfs_log_item_desc_t *lidp; |
| struct xfs_log_vec *lv = NULL; |
| struct xfs_log_vec *ret_lv = NULL; |
| |
| lidp = xfs_trans_first_item(tp); |
| |
| /* Bail out if we didn't find a log item. */ |
| if (!lidp) { |
| ASSERT(0); |
| return NULL; |
| } |
| |
| while (lidp != NULL) { |
| struct xfs_log_vec *new_lv; |
| |
| /* Skip items which aren't dirty in this transaction. */ |
| if (!(lidp->lid_flags & XFS_LID_DIRTY)) { |
| lidp = xfs_trans_next_item(tp, lidp); |
| continue; |
| } |
| |
| /* Skip items that do not have any vectors for writing */ |
| lidp->lid_size = IOP_SIZE(lidp->lid_item); |
| if (!lidp->lid_size) { |
| lidp = xfs_trans_next_item(tp, lidp); |
| continue; |
| } |
| |
| new_lv = kmem_zalloc(sizeof(*new_lv) + |
| lidp->lid_size * sizeof(struct xfs_log_iovec), |
| KM_SLEEP); |
| |
| /* The allocated iovec region lies beyond the log vector. */ |
| new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; |
| new_lv->lv_niovecs = lidp->lid_size; |
| new_lv->lv_item = lidp->lid_item; |
| if (!ret_lv) |
| ret_lv = new_lv; |
| else |
| lv->lv_next = new_lv; |
| lv = new_lv; |
| lidp = xfs_trans_next_item(tp, lidp); |
| } |
| |
| return ret_lv; |
| } |
| |
| static int |
| xfs_trans_commit_cil( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_lsn_t *commit_lsn, |
| int flags) |
| { |
| struct xfs_log_vec *log_vector; |
| int error; |
| |
| /* |
| * Get each log item to allocate a vector structure for |
| * the log item to to pass to the log write code. The |
| * CIL commit code will format the vector and save it away. |
| */ |
| log_vector = xfs_trans_alloc_log_vecs(tp); |
| if (!log_vector) |
| return ENOMEM; |
| |
| error = xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags); |
| if (error) |
| return error; |
| |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| |
| /* xfs_trans_free_items() unlocks them first */ |
| xfs_trans_free_items(tp, *commit_lsn, 0); |
| xfs_trans_free(tp); |
| return 0; |
| } |
| |
| /* |
| * xfs_trans_commit |
| * |
| * Commit the given transaction to the log a/synchronously. |
| * |
| * XFS disk error handling mechanism is not based on a typical |
| * transaction abort mechanism. Logically after the filesystem |
| * gets marked 'SHUTDOWN', we can't let any new transactions |
| * be durable - ie. committed to disk - because some metadata might |
| * be inconsistent. In such cases, this returns an error, and the |
| * caller may assume that all locked objects joined to the transaction |
| * have already been unlocked as if the commit had succeeded. |
| * Do not reference the transaction structure after this call. |
| */ |
| int |
| _xfs_trans_commit( |
| struct xfs_trans *tp, |
| uint flags, |
| int *log_flushed) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| xfs_lsn_t commit_lsn = -1; |
| int error = 0; |
| int log_flags = 0; |
| int sync = tp->t_flags & XFS_TRANS_SYNC; |
| |
| /* |
| * Determine whether this commit is releasing a permanent |
| * log reservation or not. |
| */ |
| if (flags & XFS_TRANS_RELEASE_LOG_RES) { |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| log_flags = XFS_LOG_REL_PERM_RESERV; |
| } |
| |
| /* |
| * If there is nothing to be logged by the transaction, |
| * then unlock all of the items associated with the |
| * transaction and free the transaction structure. |
| * Also make sure to return any reserved blocks to |
| * the free pool. |
| */ |
| if (!(tp->t_flags & XFS_TRANS_DIRTY)) |
| goto out_unreserve; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| error = XFS_ERROR(EIO); |
| goto out_unreserve; |
| } |
| |
| ASSERT(tp->t_ticket != NULL); |
| |
| /* |
| * If we need to update the superblock, then do it now. |
| */ |
| if (tp->t_flags & XFS_TRANS_SB_DIRTY) |
| xfs_trans_apply_sb_deltas(tp); |
| xfs_trans_apply_dquot_deltas(tp); |
| |
| if (mp->m_flags & XFS_MOUNT_DELAYLOG) |
| error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags); |
| else |
| error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); |
| |
| if (error == ENOMEM) { |
| xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); |
| error = XFS_ERROR(EIO); |
| goto out_unreserve; |
| } |
| |
| /* |
| * If the transaction needs to be synchronous, then force the |
| * log out now and wait for it. |
| */ |
| if (sync) { |
| if (!error) { |
| error = _xfs_log_force_lsn(mp, commit_lsn, |
| XFS_LOG_SYNC, log_flushed); |
| } |
| XFS_STATS_INC(xs_trans_sync); |
| } else { |
| XFS_STATS_INC(xs_trans_async); |
| } |
| |
| return error; |
| |
| out_unreserve: |
| xfs_trans_unreserve_and_mod_sb(tp); |
| |
| /* |
| * It is indeed possible for the transaction to be not dirty but |
| * the dqinfo portion to be. All that means is that we have some |
| * (non-persistent) quota reservations that need to be unreserved. |
| */ |
| xfs_trans_unreserve_and_mod_dquots(tp); |
| if (tp->t_ticket) { |
| commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); |
| if (commit_lsn == -1 && !error) |
| error = XFS_ERROR(EIO); |
| } |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); |
| xfs_trans_free(tp); |
| |
| XFS_STATS_INC(xs_trans_empty); |
| return error; |
| } |
| |
| /* |
| * Unlock all of the transaction's items and free the transaction. |
| * The transaction must not have modified any of its items, because |
| * there is no way to restore them to their previous state. |
| * |
| * If the transaction has made a log reservation, make sure to release |
| * it as well. |
| */ |
| void |
| xfs_trans_cancel( |
| xfs_trans_t *tp, |
| int flags) |
| { |
| int log_flags; |
| #ifdef DEBUG |
| xfs_log_item_chunk_t *licp; |
| xfs_log_item_desc_t *lidp; |
| xfs_log_item_t *lip; |
| int i; |
| #endif |
| xfs_mount_t *mp = tp->t_mountp; |
| |
| /* |
| * See if the caller is being too lazy to figure out if |
| * the transaction really needs an abort. |
| */ |
| if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) |
| flags &= ~XFS_TRANS_ABORT; |
| /* |
| * See if the caller is relying on us to shut down the |
| * filesystem. This happens in paths where we detect |
| * corruption and decide to give up. |
| */ |
| if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { |
| XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| } |
| #ifdef DEBUG |
| if (!(flags & XFS_TRANS_ABORT)) { |
| licp = &(tp->t_items); |
| while (licp != NULL) { |
| lidp = licp->lic_descs; |
| for (i = 0; i < licp->lic_unused; i++, lidp++) { |
| if (xfs_lic_isfree(licp, i)) { |
| continue; |
| } |
| |
| lip = lidp->lid_item; |
| if (!XFS_FORCED_SHUTDOWN(mp)) |
| ASSERT(!(lip->li_type == XFS_LI_EFD)); |
| } |
| licp = licp->lic_next; |
| } |
| } |
| #endif |
| xfs_trans_unreserve_and_mod_sb(tp); |
| xfs_trans_unreserve_and_mod_dquots(tp); |
| |
| if (tp->t_ticket) { |
| if (flags & XFS_TRANS_RELEASE_LOG_RES) { |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| log_flags = XFS_LOG_REL_PERM_RESERV; |
| } else { |
| log_flags = 0; |
| } |
| xfs_log_done(mp, tp->t_ticket, NULL, log_flags); |
| } |
| |
| /* mark this thread as no longer being in a transaction */ |
| current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); |
| |
| xfs_trans_free_items(tp, NULLCOMMITLSN, flags); |
| xfs_trans_free(tp); |
| } |
| |
| /* |
| * Roll from one trans in the sequence of PERMANENT transactions to |
| * the next: permanent transactions are only flushed out when |
| * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon |
| * as possible to let chunks of it go to the log. So we commit the |
| * chunk we've been working on and get a new transaction to continue. |
| */ |
| int |
| xfs_trans_roll( |
| struct xfs_trans **tpp, |
| struct xfs_inode *dp) |
| { |
| struct xfs_trans *trans; |
| unsigned int logres, count; |
| int error; |
| |
| /* |
| * Ensure that the inode is always logged. |
| */ |
| trans = *tpp; |
| xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); |
| |
| /* |
| * Copy the critical parameters from one trans to the next. |
| */ |
| logres = trans->t_log_res; |
| count = trans->t_log_count; |
| *tpp = xfs_trans_dup(trans); |
| |
| /* |
| * Commit the current transaction. |
| * If this commit failed, then it'd just unlock those items that |
| * are not marked ihold. That also means that a filesystem shutdown |
| * is in progress. The caller takes the responsibility to cancel |
| * the duplicate transaction that gets returned. |
| */ |
| error = xfs_trans_commit(trans, 0); |
| if (error) |
| return (error); |
| |
| trans = *tpp; |
| |
| /* |
| * transaction commit worked ok so we can drop the extra ticket |
| * reference that we gained in xfs_trans_dup() |
| */ |
| xfs_log_ticket_put(trans->t_ticket); |
| |
| |
| /* |
| * Reserve space in the log for th next transaction. |
| * This also pushes items in the "AIL", the list of logged items, |
| * out to disk if they are taking up space at the tail of the log |
| * that we want to use. This requires that either nothing be locked |
| * across this call, or that anything that is locked be logged in |
| * the prior and the next transactions. |
| */ |
| error = xfs_trans_reserve(trans, 0, logres, 0, |
| XFS_TRANS_PERM_LOG_RES, count); |
| /* |
| * Ensure that the inode is in the new transaction and locked. |
| */ |
| if (error) |
| return error; |
| |
| xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(trans, dp); |
| return 0; |
| } |