blob: 4acfac73ca9ac154290a7130f8ed2d612a1a3d50 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* MHI Endpoint bus stack
*
* Copyright (C) 2022 Linaro Ltd.
* Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/mhi_ep.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include "internal.h"
#define M0_WAIT_DELAY_MS 100
#define M0_WAIT_COUNT 100
static DEFINE_IDA(mhi_ep_cntrl_ida);
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
static int mhi_ep_destroy_device(struct device *dev, void *data);
static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
struct mhi_ring_element *el, bool bei)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
union mhi_ep_ring_ctx *ctx;
struct mhi_ep_ring *ring;
int ret;
mutex_lock(&mhi_cntrl->event_lock);
ring = &mhi_cntrl->mhi_event[ring_idx].ring;
ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
if (!ring->started) {
ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
if (ret) {
dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
goto err_unlock;
}
}
/* Add element to the event ring */
ret = mhi_ep_ring_add_element(ring, el);
if (ret) {
dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
goto err_unlock;
}
mutex_unlock(&mhi_cntrl->event_lock);
/*
* As per the MHI specification, section 4.3, Interrupt moderation:
*
* 1. If BEI flag is not set, cancel any pending intmodt work if started
* for the event ring and raise IRQ immediately.
*
* 2. If both BEI and intmodt are set, and if no IRQ is pending for the
* same event ring, start the IRQ delayed work as per the value of
* intmodt. If previous IRQ is pending, then do nothing as the pending
* IRQ is enough for the host to process the current event ring element.
*
* 3. If BEI is set and intmodt is not set, no need to raise IRQ.
*/
if (!bei) {
if (READ_ONCE(ring->irq_pending))
cancel_delayed_work(&ring->intmodt_work);
mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
} else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
WRITE_ONCE(ring->irq_pending, true);
schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
}
return 0;
err_unlock:
mutex_unlock(&mhi_cntrl->event_lock);
return ret;
}
static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
{
struct mhi_ring_element *event;
int ret;
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
if (!event)
return -ENOMEM;
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
return ret;
}
int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
{
struct mhi_ring_element *event;
int ret;
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
if (!event)
return -ENOMEM;
event->dword[0] = MHI_SC_EV_DWORD0(state);
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
return ret;
}
int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
{
struct mhi_ring_element *event;
int ret;
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
if (!event)
return -ENOMEM;
event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
return ret;
}
static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
{
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
struct mhi_ring_element *event;
int ret;
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
if (!event)
return -ENOMEM;
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
event->dword[0] = MHI_CC_EV_DWORD0(code);
event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
return ret;
}
static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
{
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
struct mhi_result result = {};
struct mhi_ep_chan *mhi_chan;
struct mhi_ep_ring *ch_ring;
u32 tmp, ch_id;
int ret;
ch_id = MHI_TRE_GET_CMD_CHID(el);
/* Check if the channel is supported by the controller */
if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
return -ENODEV;
}
mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
switch (MHI_TRE_GET_CMD_TYPE(el)) {
case MHI_PKT_TYPE_START_CHAN_CMD:
dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
mutex_lock(&mhi_chan->lock);
/* Initialize and configure the corresponding channel ring */
if (!ch_ring->started) {
ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
if (ret) {
dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
MHI_EV_CC_UNDEFINED_ERR);
if (ret)
dev_err(dev, "Error sending completion event: %d\n", ret);
goto err_unlock;
}
mhi_chan->rd_offset = ch_ring->rd_offset;
}
/* Set channel state to RUNNING */
mhi_chan->state = MHI_CH_STATE_RUNNING;
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
if (ret) {
dev_err(dev, "Error sending command completion event (%u)\n",
MHI_EV_CC_SUCCESS);
goto err_unlock;
}
mutex_unlock(&mhi_chan->lock);
/*
* Create MHI device only during UL channel start. Since the MHI
* channels operate in a pair, we'll associate both UL and DL
* channels to the same device.
*
* We also need to check for mhi_dev != NULL because, the host
* will issue START_CHAN command during resume and we don't
* destroy the device during suspend.
*/
if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
ret = mhi_ep_create_device(mhi_cntrl, ch_id);
if (ret) {
dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
mhi_ep_handle_syserr(mhi_cntrl);
return ret;
}
}
/* Finally, enable DB for the channel */
mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
break;
case MHI_PKT_TYPE_STOP_CHAN_CMD:
dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
if (!ch_ring->started) {
dev_err(dev, "Channel (%u) not opened\n", ch_id);
return -ENODEV;
}
mutex_lock(&mhi_chan->lock);
/* Disable DB for the channel */
mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
/* Send channel disconnect status to client drivers */
if (mhi_chan->xfer_cb) {
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
}
/* Set channel state to STOP */
mhi_chan->state = MHI_CH_STATE_STOP;
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
if (ret) {
dev_err(dev, "Error sending command completion event (%u)\n",
MHI_EV_CC_SUCCESS);
goto err_unlock;
}
mutex_unlock(&mhi_chan->lock);
break;
case MHI_PKT_TYPE_RESET_CHAN_CMD:
dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
if (!ch_ring->started) {
dev_err(dev, "Channel (%u) not opened\n", ch_id);
return -ENODEV;
}
mutex_lock(&mhi_chan->lock);
/* Stop and reset the transfer ring */
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
/* Send channel disconnect status to client driver */
if (mhi_chan->xfer_cb) {
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
}
/* Set channel state to DISABLED */
mhi_chan->state = MHI_CH_STATE_DISABLED;
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
if (ret) {
dev_err(dev, "Error sending command completion event (%u)\n",
MHI_EV_CC_SUCCESS);
goto err_unlock;
}
mutex_unlock(&mhi_chan->lock);
break;
default:
dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
MHI_TRE_GET_CMD_TYPE(el), ch_id);
return -EINVAL;
}
return 0;
err_unlock:
mutex_unlock(&mhi_chan->lock);
return ret;
}
bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
{
struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
mhi_dev->ul_chan;
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
return !!(mhi_chan->rd_offset == ring->wr_offset);
}
EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
{
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
struct mhi_result result = {};
int ret;
if (mhi_chan->xfer_cb) {
result.buf_addr = buf_info->cb_buf;
result.dir = mhi_chan->dir;
result.bytes_xferd = buf_info->size;
mhi_chan->xfer_cb(mhi_dev, &result);
}
/*
* The host will split the data packet into multiple TREs if it can't fit
* the packet in a single TRE. In that case, CHAIN flag will be set by the
* host for all TREs except the last one.
*/
if (buf_info->code != MHI_EV_CC_OVERFLOW) {
if (MHI_TRE_DATA_GET_CHAIN(el)) {
/*
* IEOB (Interrupt on End of Block) flag will be set by the host if
* it expects the completion event for all TREs of a TD.
*/
if (MHI_TRE_DATA_GET_IEOB(el)) {
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
MHI_TRE_DATA_GET_LEN(el),
MHI_EV_CC_EOB);
if (ret < 0) {
dev_err(&mhi_chan->mhi_dev->dev,
"Error sending transfer compl. event\n");
goto err_free_tre_buf;
}
}
} else {
/*
* IEOT (Interrupt on End of Transfer) flag will be set by the host
* for the last TRE of the TD and expects the completion event for
* the same.
*/
if (MHI_TRE_DATA_GET_IEOT(el)) {
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
MHI_TRE_DATA_GET_LEN(el),
MHI_EV_CC_EOT);
if (ret < 0) {
dev_err(&mhi_chan->mhi_dev->dev,
"Error sending transfer compl. event\n");
goto err_free_tre_buf;
}
}
}
}
mhi_ep_ring_inc_index(ring);
err_free_tre_buf:
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
}
static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_ring *ring)
{
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
struct device *dev = &mhi_cntrl->mhi_dev->dev;
size_t tr_len, read_offset, write_offset;
struct mhi_ep_buf_info buf_info = {};
u32 len = MHI_EP_DEFAULT_MTU;
struct mhi_ring_element *el;
bool tr_done = false;
void *buf_addr;
u32 buf_left;
int ret;
buf_left = len;
do {
/* Don't process the transfer ring if the channel is not in RUNNING state */
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
dev_err(dev, "Channel not available\n");
return -ENODEV;
}
el = &ring->ring_cache[mhi_chan->rd_offset];
/* Check if there is data pending to be read from previous read operation */
if (mhi_chan->tre_bytes_left) {
dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
tr_len = min(buf_left, mhi_chan->tre_bytes_left);
} else {
mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
mhi_chan->tre_bytes_left = mhi_chan->tre_size;
tr_len = min(buf_left, mhi_chan->tre_size);
}
read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
write_offset = len - buf_left;
buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
if (!buf_addr)
return -ENOMEM;
buf_info.host_addr = mhi_chan->tre_loc + read_offset;
buf_info.dev_addr = buf_addr + write_offset;
buf_info.size = tr_len;
buf_info.cb = mhi_ep_read_completion;
buf_info.cb_buf = buf_addr;
buf_info.mhi_dev = mhi_chan->mhi_dev;
if (mhi_chan->tre_bytes_left - tr_len)
buf_info.code = MHI_EV_CC_OVERFLOW;
dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
if (ret < 0) {
dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
goto err_free_buf_addr;
}
buf_left -= tr_len;
mhi_chan->tre_bytes_left -= tr_len;
if (!mhi_chan->tre_bytes_left) {
if (MHI_TRE_DATA_GET_IEOT(el))
tr_done = true;
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
}
} while (buf_left && !tr_done);
return 0;
err_free_buf_addr:
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
return ret;
}
static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
{
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
struct mhi_result result = {};
struct mhi_ep_chan *mhi_chan;
int ret;
mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
/*
* Bail out if transfer callback is not registered for the channel.
* This is most likely due to the client driver not loaded at this point.
*/
if (!mhi_chan->xfer_cb) {
dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
return -ENODEV;
}
if (ring->ch_id % 2) {
/* DL channel */
result.dir = mhi_chan->dir;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
} else {
/* UL channel */
do {
ret = mhi_ep_read_channel(mhi_cntrl, ring);
if (ret < 0) {
dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
return ret;
}
/* Read until the ring becomes empty */
} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
}
return 0;
}
static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
{
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
struct device *dev = &mhi_dev->dev;
struct mhi_result result = {};
int ret;
if (mhi_chan->xfer_cb) {
result.buf_addr = buf_info->cb_buf;
result.dir = mhi_chan->dir;
result.bytes_xferd = buf_info->size;
mhi_chan->xfer_cb(mhi_dev, &result);
}
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
buf_info->code);
if (ret) {
dev_err(dev, "Error sending transfer completion event\n");
return;
}
mhi_ep_ring_inc_index(ring);
}
/* TODO: Handle partially formed TDs */
int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
{
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
struct device *dev = &mhi_chan->mhi_dev->dev;
struct mhi_ep_buf_info buf_info = {};
struct mhi_ring_element *el;
u32 buf_left, read_offset;
struct mhi_ep_ring *ring;
size_t tr_len;
u32 tre_len;
int ret;
buf_left = skb->len;
ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
mutex_lock(&mhi_chan->lock);
do {
/* Don't process the transfer ring if the channel is not in RUNNING state */
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
dev_err(dev, "Channel not available\n");
ret = -ENODEV;
goto err_exit;
}
if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
dev_err(dev, "TRE not available!\n");
ret = -ENOSPC;
goto err_exit;
}
el = &ring->ring_cache[mhi_chan->rd_offset];
tre_len = MHI_TRE_DATA_GET_LEN(el);
tr_len = min(buf_left, tre_len);
read_offset = skb->len - buf_left;
buf_info.dev_addr = skb->data + read_offset;
buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
buf_info.size = tr_len;
buf_info.cb = mhi_ep_skb_completion;
buf_info.cb_buf = skb;
buf_info.mhi_dev = mhi_dev;
/*
* For all TREs queued by the host for DL channel, only the EOT flag will be set.
* If the packet doesn't fit into a single TRE, send the OVERFLOW event to
* the host so that the host can adjust the packet boundary to next TREs. Else send
* the EOT event to the host indicating the packet boundary.
*/
if (buf_left - tr_len)
buf_info.code = MHI_EV_CC_OVERFLOW;
else
buf_info.code = MHI_EV_CC_EOT;
dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
if (ret < 0) {
dev_err(dev, "Error writing to the channel\n");
goto err_exit;
}
buf_left -= tr_len;
/*
* Update the read offset cached in mhi_chan. Actual read offset
* will be updated by the completion handler.
*/
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
} while (buf_left);
mutex_unlock(&mhi_chan->lock);
return 0;
err_exit:
mutex_unlock(&mhi_chan->lock);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
{
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret;
/* Update the number of event rings (NER) programmed by the host */
mhi_ep_mmio_update_ner(mhi_cntrl);
dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
/* Get the channel context base pointer from host */
mhi_ep_mmio_get_chc_base(mhi_cntrl);
/* Allocate and map memory for caching host channel context */
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
&mhi_cntrl->ch_ctx_cache_phys,
(void __iomem **) &mhi_cntrl->ch_ctx_cache,
ch_ctx_host_size);
if (ret) {
dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
return ret;
}
/* Get the event context base pointer from host */
mhi_ep_mmio_get_erc_base(mhi_cntrl);
/* Allocate and map memory for caching host event context */
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
&mhi_cntrl->ev_ctx_cache_phys,
(void __iomem **) &mhi_cntrl->ev_ctx_cache,
ev_ctx_host_size);
if (ret) {
dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
goto err_ch_ctx;
}
/* Get the command context base pointer from host */
mhi_ep_mmio_get_crc_base(mhi_cntrl);
/* Allocate and map memory for caching host command context */
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
&mhi_cntrl->cmd_ctx_cache_phys,
(void __iomem **) &mhi_cntrl->cmd_ctx_cache,
cmd_ctx_host_size);
if (ret) {
dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
goto err_ev_ctx;
}
/* Initialize command ring */
ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
if (ret) {
dev_err(dev, "Failed to start the command ring\n");
goto err_cmd_ctx;
}
return ret;
err_cmd_ctx:
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
err_ev_ctx:
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
err_ch_ctx:
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
return ret;
}
static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
{
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
}
static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
{
/*
* Doorbell interrupts are enabled when the corresponding channel gets started.
* Enabling all interrupts here triggers spurious irqs as some of the interrupts
* associated with hw channels always get triggered.
*/
mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
}
static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
enum mhi_state state;
bool mhi_reset;
u32 count = 0;
int ret;
/* Wait for Host to set the M0 state */
do {
msleep(M0_WAIT_DELAY_MS);
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
if (mhi_reset) {
/* Clear the MHI reset if host is in reset state */
mhi_ep_mmio_clear_reset(mhi_cntrl);
dev_info(dev, "Detected Host reset while waiting for M0\n");
}
count++;
} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
if (state != MHI_STATE_M0) {
dev_err(dev, "Host failed to enter M0\n");
return -ETIMEDOUT;
}
ret = mhi_ep_cache_host_cfg(mhi_cntrl);
if (ret) {
dev_err(dev, "Failed to cache host config\n");
return ret;
}
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
/* Enable all interrupts now */
mhi_ep_enable_int(mhi_cntrl);
return 0;
}
static void mhi_ep_cmd_ring_worker(struct work_struct *work)
{
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
struct mhi_ring_element *el;
int ret;
/* Update the write offset for the ring */
ret = mhi_ep_update_wr_offset(ring);
if (ret) {
dev_err(dev, "Error updating write offset for ring\n");
return;
}
/* Sanity check to make sure there are elements in the ring */
if (ring->rd_offset == ring->wr_offset)
return;
/*
* Process command ring element till write offset. In case of an error, just try to
* process next element.
*/
while (ring->rd_offset != ring->wr_offset) {
el = &ring->ring_cache[ring->rd_offset];
ret = mhi_ep_process_cmd_ring(ring, el);
if (ret && ret != -ENODEV)
dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
mhi_ep_ring_inc_index(ring);
}
}
static void mhi_ep_ch_ring_worker(struct work_struct *work)
{
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
struct device *dev = &mhi_cntrl->mhi_dev->dev;
struct mhi_ep_ring_item *itr, *tmp;
struct mhi_ep_ring *ring;
struct mhi_ep_chan *chan;
unsigned long flags;
LIST_HEAD(head);
int ret;
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
/* Process each queued channel ring. In case of an error, just process next element. */
list_for_each_entry_safe(itr, tmp, &head, node) {
list_del(&itr->node);
ring = itr->ring;
chan = &mhi_cntrl->mhi_chan[ring->ch_id];
mutex_lock(&chan->lock);
/*
* The ring could've stopped while we waited to grab the (chan->lock), so do
* a sanity check before going further.
*/
if (!ring->started) {
mutex_unlock(&chan->lock);
kfree(itr);
continue;
}
/* Update the write offset for the ring */
ret = mhi_ep_update_wr_offset(ring);
if (ret) {
dev_err(dev, "Error updating write offset for ring\n");
mutex_unlock(&chan->lock);
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
continue;
}
/* Sanity check to make sure there are elements in the ring */
if (chan->rd_offset == ring->wr_offset) {
mutex_unlock(&chan->lock);
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
continue;
}
dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
ret = mhi_ep_process_ch_ring(ring);
if (ret) {
dev_err(dev, "Error processing ring for channel (%u): %d\n",
ring->ch_id, ret);
mutex_unlock(&chan->lock);
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
continue;
}
mutex_unlock(&chan->lock);
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
}
}
static void mhi_ep_state_worker(struct work_struct *work)
{
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
struct device *dev = &mhi_cntrl->mhi_dev->dev;
struct mhi_ep_state_transition *itr, *tmp;
unsigned long flags;
LIST_HEAD(head);
int ret;
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
list_for_each_entry_safe(itr, tmp, &head, node) {
list_del(&itr->node);
dev_dbg(dev, "Handling MHI state transition to %s\n",
mhi_state_str(itr->state));
switch (itr->state) {
case MHI_STATE_M0:
ret = mhi_ep_set_m0_state(mhi_cntrl);
if (ret)
dev_err(dev, "Failed to transition to M0 state\n");
break;
case MHI_STATE_M3:
ret = mhi_ep_set_m3_state(mhi_cntrl);
if (ret)
dev_err(dev, "Failed to transition to M3 state\n");
break;
default:
dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
break;
}
kfree(itr);
}
}
static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
u32 ch_idx)
{
struct mhi_ep_ring_item *item;
struct mhi_ep_ring *ring;
bool work = !!ch_int;
LIST_HEAD(head);
u32 i;
/* First add the ring items to a local list */
for_each_set_bit(i, &ch_int, 32) {
/* Channel index varies for each register: 0, 32, 64, 96 */
u32 ch_id = ch_idx + i;
ring = &mhi_cntrl->mhi_chan[ch_id].ring;
item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
if (!item)
return;
item->ring = ring;
list_add_tail(&item->node, &head);
}
/* Now, splice the local list into ch_db_list and queue the work item */
if (work) {
spin_lock(&mhi_cntrl->list_lock);
list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
spin_unlock(&mhi_cntrl->list_lock);
queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
}
}
/*
* Channel interrupt statuses are contained in 4 registers each of 32bit length.
* For checking all interrupts, we need to loop through each registers and then
* check for bits set.
*/
static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
{
u32 ch_int, ch_idx, i;
/* Bail out if there is no channel doorbell interrupt */
if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
return;
for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
ch_idx = i * MHI_MASK_CH_LEN;
/* Only process channel interrupt if the mask is enabled */
ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
if (ch_int) {
mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
mhi_cntrl->chdb[i].status);
}
}
}
static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
enum mhi_state state)
{
struct mhi_ep_state_transition *item;
item = kzalloc(sizeof(*item), GFP_ATOMIC);
if (!item)
return;
item->state = state;
spin_lock(&mhi_cntrl->list_lock);
list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
spin_unlock(&mhi_cntrl->list_lock);
queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
}
/*
* Interrupt handler that services interrupts raised by the host writing to
* MHICTRL and Command ring doorbell (CRDB) registers for state change and
* channel interrupts.
*/
static irqreturn_t mhi_ep_irq(int irq, void *data)
{
struct mhi_ep_cntrl *mhi_cntrl = data;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
enum mhi_state state;
u32 int_value;
bool mhi_reset;
/* Acknowledge the ctrl interrupt */
int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
/* Check for ctrl interrupt */
if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
dev_dbg(dev, "Processing ctrl interrupt\n");
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
if (mhi_reset) {
dev_info(dev, "Host triggered MHI reset!\n");
disable_irq_nosync(mhi_cntrl->irq);
schedule_work(&mhi_cntrl->reset_work);
return IRQ_HANDLED;
}
mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
}
/* Check for command doorbell interrupt */
if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
dev_dbg(dev, "Processing command doorbell interrupt\n");
queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
}
/* Check for channel interrupts */
mhi_ep_check_channel_interrupt(mhi_cntrl);
return IRQ_HANDLED;
}
static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
{
struct mhi_ep_ring *ch_ring, *ev_ring;
struct mhi_result result = {};
struct mhi_ep_chan *mhi_chan;
int i;
/* Stop all the channels */
for (i = 0; i < mhi_cntrl->max_chan; i++) {
mhi_chan = &mhi_cntrl->mhi_chan[i];
if (!mhi_chan->ring.started)
continue;
mutex_lock(&mhi_chan->lock);
/* Send channel disconnect status to client drivers */
if (mhi_chan->xfer_cb) {
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
}
mhi_chan->state = MHI_CH_STATE_DISABLED;
mutex_unlock(&mhi_chan->lock);
}
flush_workqueue(mhi_cntrl->wq);
/* Destroy devices associated with all channels */
device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
/* Stop and reset the transfer rings */
for (i = 0; i < mhi_cntrl->max_chan; i++) {
mhi_chan = &mhi_cntrl->mhi_chan[i];
if (!mhi_chan->ring.started)
continue;
ch_ring = &mhi_cntrl->mhi_chan[i].ring;
mutex_lock(&mhi_chan->lock);
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
mutex_unlock(&mhi_chan->lock);
}
/* Stop and reset the event rings */
for (i = 0; i < mhi_cntrl->event_rings; i++) {
ev_ring = &mhi_cntrl->mhi_event[i].ring;
if (!ev_ring->started)
continue;
mutex_lock(&mhi_cntrl->event_lock);
mhi_ep_ring_reset(mhi_cntrl, ev_ring);
mutex_unlock(&mhi_cntrl->event_lock);
}
/* Stop and reset the command ring */
mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
mhi_ep_free_host_cfg(mhi_cntrl);
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
mhi_cntrl->enabled = false;
}
static void mhi_ep_reset_worker(struct work_struct *work)
{
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
enum mhi_state cur_state;
mhi_ep_power_down(mhi_cntrl);
mutex_lock(&mhi_cntrl->state_lock);
/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
mhi_ep_mmio_reset(mhi_cntrl);
cur_state = mhi_cntrl->mhi_state;
/*
* Only proceed further if the reset is due to SYS_ERR. The host will
* issue reset during shutdown also and we don't need to do re-init in
* that case.
*/
if (cur_state == MHI_STATE_SYS_ERR)
mhi_ep_power_up(mhi_cntrl);
mutex_unlock(&mhi_cntrl->state_lock);
}
/*
* We don't need to do anything special other than setting the MHI SYS_ERR
* state. The host will reset all contexts and issue MHI RESET so that we
* could also recover from error state.
*/
void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret;
ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
if (ret)
return;
/* Signal host that the device went to SYS_ERR state */
ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
if (ret)
dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
}
int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret, i;
/*
* Mask all interrupts until the state machine is ready. Interrupts will
* be enabled later with mhi_ep_enable().
*/
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
mhi_ep_mmio_init(mhi_cntrl);
mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
sizeof(*mhi_cntrl->mhi_event),
GFP_KERNEL);
if (!mhi_cntrl->mhi_event)
return -ENOMEM;
/* Initialize command, channel and event rings */
mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
for (i = 0; i < mhi_cntrl->max_chan; i++)
mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
for (i = 0; i < mhi_cntrl->event_rings; i++)
mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
mhi_cntrl->mhi_state = MHI_STATE_RESET;
/* Set AMSS EE before signaling ready state */
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
/* All set, notify the host that we are ready */
ret = mhi_ep_set_ready_state(mhi_cntrl);
if (ret)
goto err_free_event;
dev_dbg(dev, "READY state notification sent to the host\n");
ret = mhi_ep_enable(mhi_cntrl);
if (ret) {
dev_err(dev, "Failed to enable MHI endpoint\n");
goto err_free_event;
}
enable_irq(mhi_cntrl->irq);
mhi_cntrl->enabled = true;
return 0;
err_free_event:
kfree(mhi_cntrl->mhi_event);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_ep_power_up);
void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
{
if (mhi_cntrl->enabled) {
mhi_ep_abort_transfer(mhi_cntrl);
kfree(mhi_cntrl->mhi_event);
disable_irq(mhi_cntrl->irq);
}
}
EXPORT_SYMBOL_GPL(mhi_ep_power_down);
void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
{
struct mhi_ep_chan *mhi_chan;
u32 tmp;
int i;
for (i = 0; i < mhi_cntrl->max_chan; i++) {
mhi_chan = &mhi_cntrl->mhi_chan[i];
if (!mhi_chan->mhi_dev)
continue;
mutex_lock(&mhi_chan->lock);
/* Skip if the channel is not currently running */
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
mutex_unlock(&mhi_chan->lock);
continue;
}
dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
/* Set channel state to SUSPENDED */
mhi_chan->state = MHI_CH_STATE_SUSPENDED;
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
mutex_unlock(&mhi_chan->lock);
}
}
void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
{
struct mhi_ep_chan *mhi_chan;
u32 tmp;
int i;
for (i = 0; i < mhi_cntrl->max_chan; i++) {
mhi_chan = &mhi_cntrl->mhi_chan[i];
if (!mhi_chan->mhi_dev)
continue;
mutex_lock(&mhi_chan->lock);
/* Skip if the channel is not currently suspended */
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
mutex_unlock(&mhi_chan->lock);
continue;
}
dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
/* Set channel state to RUNNING */
mhi_chan->state = MHI_CH_STATE_RUNNING;
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
mutex_unlock(&mhi_chan->lock);
}
}
static void mhi_ep_release_device(struct device *dev)
{
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
mhi_dev->mhi_cntrl->mhi_dev = NULL;
/*
* We need to set the mhi_chan->mhi_dev to NULL here since the MHI
* devices for the channels will only get created in mhi_ep_create_device()
* if the mhi_dev associated with it is NULL.
*/
if (mhi_dev->ul_chan)
mhi_dev->ul_chan->mhi_dev = NULL;
if (mhi_dev->dl_chan)
mhi_dev->dl_chan->mhi_dev = NULL;
kfree(mhi_dev);
}
static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
enum mhi_device_type dev_type)
{
struct mhi_ep_device *mhi_dev;
struct device *dev;
mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
if (!mhi_dev)
return ERR_PTR(-ENOMEM);
dev = &mhi_dev->dev;
device_initialize(dev);
dev->bus = &mhi_ep_bus_type;
dev->release = mhi_ep_release_device;
/* Controller device is always allocated first */
if (dev_type == MHI_DEVICE_CONTROLLER)
/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
dev->parent = mhi_cntrl->cntrl_dev;
else
/* for MHI client devices, parent is the MHI controller device */
dev->parent = &mhi_cntrl->mhi_dev->dev;
mhi_dev->mhi_cntrl = mhi_cntrl;
mhi_dev->dev_type = dev_type;
return mhi_dev;
}
/*
* MHI channels are always defined in pairs with UL as the even numbered
* channel and DL as odd numbered one. This function gets UL channel (primary)
* as the ch_id and always looks after the next entry in channel list for
* the corresponding DL channel (secondary).
*/
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
{
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
struct device *dev = mhi_cntrl->cntrl_dev;
struct mhi_ep_device *mhi_dev;
int ret;
/* Check if the channel name is same for both UL and DL */
if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
mhi_chan->name, mhi_chan[1].name);
return -EINVAL;
}
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
if (IS_ERR(mhi_dev))
return PTR_ERR(mhi_dev);
/* Configure primary channel */
mhi_dev->ul_chan = mhi_chan;
get_device(&mhi_dev->dev);
mhi_chan->mhi_dev = mhi_dev;
/* Configure secondary channel as well */
mhi_chan++;
mhi_dev->dl_chan = mhi_chan;
get_device(&mhi_dev->dev);
mhi_chan->mhi_dev = mhi_dev;
/* Channel name is same for both UL and DL */
mhi_dev->name = mhi_chan->name;
ret = dev_set_name(&mhi_dev->dev, "%s_%s",
dev_name(&mhi_cntrl->mhi_dev->dev),
mhi_dev->name);
if (ret) {
put_device(&mhi_dev->dev);
return ret;
}
ret = device_add(&mhi_dev->dev);
if (ret)
put_device(&mhi_dev->dev);
return ret;
}
static int mhi_ep_destroy_device(struct device *dev, void *data)
{
struct mhi_ep_device *mhi_dev;
struct mhi_ep_cntrl *mhi_cntrl;
struct mhi_ep_chan *ul_chan, *dl_chan;
if (dev->bus != &mhi_ep_bus_type)
return 0;
mhi_dev = to_mhi_ep_device(dev);
mhi_cntrl = mhi_dev->mhi_cntrl;
/* Only destroy devices created for channels */
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
return 0;
ul_chan = mhi_dev->ul_chan;
dl_chan = mhi_dev->dl_chan;
if (ul_chan)
put_device(&ul_chan->mhi_dev->dev);
if (dl_chan)
put_device(&dl_chan->mhi_dev->dev);
dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
mhi_dev->name);
/* Notify the client and remove the device from MHI bus */
device_del(dev);
put_device(dev);
return 0;
}
static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
const struct mhi_ep_cntrl_config *config)
{
const struct mhi_ep_channel_config *ch_cfg;
struct device *dev = mhi_cntrl->cntrl_dev;
u32 chan, i;
int ret = -EINVAL;
mhi_cntrl->max_chan = config->max_channels;
/*
* Allocate max_channels supported by the MHI endpoint and populate
* only the defined channels
*/
mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
GFP_KERNEL);
if (!mhi_cntrl->mhi_chan)
return -ENOMEM;
for (i = 0; i < config->num_channels; i++) {
struct mhi_ep_chan *mhi_chan;
ch_cfg = &config->ch_cfg[i];
chan = ch_cfg->num;
if (chan >= mhi_cntrl->max_chan) {
dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
chan, mhi_cntrl->max_chan);
goto error_chan_cfg;
}
/* Bi-directional and direction less channels are not supported */
if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
ch_cfg->dir, chan);
goto error_chan_cfg;
}
mhi_chan = &mhi_cntrl->mhi_chan[chan];
mhi_chan->name = ch_cfg->name;
mhi_chan->chan = chan;
mhi_chan->dir = ch_cfg->dir;
mutex_init(&mhi_chan->lock);
}
return 0;
error_chan_cfg:
kfree(mhi_cntrl->mhi_chan);
return ret;
}
/*
* Allocate channel and command rings here. Event rings will be allocated
* in mhi_ep_power_up() as the config comes from the host.
*/
int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
const struct mhi_ep_cntrl_config *config)
{
struct mhi_ep_device *mhi_dev;
int ret;
if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
return -EINVAL;
if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
!mhi_cntrl->read_async || !mhi_cntrl->write_async)
return -EINVAL;
ret = mhi_ep_chan_init(mhi_cntrl, config);
if (ret)
return ret;
mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
if (!mhi_cntrl->mhi_cmd) {
ret = -ENOMEM;
goto err_free_ch;
}
mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
sizeof(struct mhi_ring_element), 0,
0, NULL);
if (!mhi_cntrl->ev_ring_el_cache) {
ret = -ENOMEM;
goto err_free_cmd;
}
mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
0, NULL);
if (!mhi_cntrl->tre_buf_cache) {
ret = -ENOMEM;
goto err_destroy_ev_ring_el_cache;
}
mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
sizeof(struct mhi_ep_ring_item), 0,
0, NULL);
if (!mhi_cntrl->ring_item_cache) {
ret = -ENOMEM;
goto err_destroy_tre_buf_cache;
}
INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
if (!mhi_cntrl->wq) {
ret = -ENOMEM;
goto err_destroy_ring_item_cache;
}
INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
spin_lock_init(&mhi_cntrl->list_lock);
mutex_init(&mhi_cntrl->state_lock);
mutex_init(&mhi_cntrl->event_lock);
/* Set MHI version and AMSS EE before enumeration */
mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
/* Set controller index */
ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
if (ret < 0)
goto err_destroy_wq;
mhi_cntrl->index = ret;
irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
"doorbell_irq", mhi_cntrl);
if (ret) {
dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
goto err_ida_free;
}
/* Allocate the controller device */
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
if (IS_ERR(mhi_dev)) {
dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
ret = PTR_ERR(mhi_dev);
goto err_free_irq;
}
ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
if (ret)
goto err_put_dev;
mhi_dev->name = dev_name(&mhi_dev->dev);
mhi_cntrl->mhi_dev = mhi_dev;
ret = device_add(&mhi_dev->dev);
if (ret)
goto err_put_dev;
dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
return 0;
err_put_dev:
put_device(&mhi_dev->dev);
err_free_irq:
free_irq(mhi_cntrl->irq, mhi_cntrl);
err_ida_free:
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
err_destroy_wq:
destroy_workqueue(mhi_cntrl->wq);
err_destroy_ring_item_cache:
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
err_destroy_ev_ring_el_cache:
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
err_destroy_tre_buf_cache:
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
err_free_cmd:
kfree(mhi_cntrl->mhi_cmd);
err_free_ch:
kfree(mhi_cntrl->mhi_chan);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
/*
* It is expected that the controller drivers will power down the MHI EP stack
* using "mhi_ep_power_down()" before calling this function to unregister themselves.
*/
void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
{
struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
destroy_workqueue(mhi_cntrl->wq);
free_irq(mhi_cntrl->irq, mhi_cntrl);
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
kfree(mhi_cntrl->mhi_cmd);
kfree(mhi_cntrl->mhi_chan);
device_del(&mhi_dev->dev);
put_device(&mhi_dev->dev);
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
}
EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
static int mhi_ep_driver_probe(struct device *dev)
{
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
return mhi_drv->probe(mhi_dev, mhi_dev->id);
}
static int mhi_ep_driver_remove(struct device *dev)
{
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
struct mhi_result result = {};
struct mhi_ep_chan *mhi_chan;
int dir;
/* Skip if it is a controller device */
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
return 0;
/* Disconnect the channels associated with the driver */
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
mutex_lock(&mhi_chan->lock);
/* Send channel disconnect status to the client driver */
if (mhi_chan->xfer_cb) {
result.transaction_status = -ENOTCONN;
result.bytes_xferd = 0;
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
}
mhi_chan->state = MHI_CH_STATE_DISABLED;
mhi_chan->xfer_cb = NULL;
mutex_unlock(&mhi_chan->lock);
}
/* Remove the client driver now */
mhi_drv->remove(mhi_dev);
return 0;
}
int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
{
struct device_driver *driver = &mhi_drv->driver;
if (!mhi_drv->probe || !mhi_drv->remove)
return -EINVAL;
/* Client drivers should have callbacks defined for both channels */
if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
return -EINVAL;
driver->bus = &mhi_ep_bus_type;
driver->owner = owner;
driver->probe = mhi_ep_driver_probe;
driver->remove = mhi_ep_driver_remove;
return driver_register(driver);
}
EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
{
driver_unregister(&mhi_drv->driver);
}
EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
mhi_dev->name);
}
static int mhi_ep_match(struct device *dev, struct device_driver *drv)
{
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
const struct mhi_device_id *id;
/*
* If the device is a controller type then there is no client driver
* associated with it
*/
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
return 0;
for (id = mhi_drv->id_table; id->chan[0]; id++)
if (!strcmp(mhi_dev->name, id->chan)) {
mhi_dev->id = id;
return 1;
}
return 0;
};
struct bus_type mhi_ep_bus_type = {
.name = "mhi_ep",
.dev_name = "mhi_ep",
.match = mhi_ep_match,
.uevent = mhi_ep_uevent,
};
static int __init mhi_ep_init(void)
{
return bus_register(&mhi_ep_bus_type);
}
static void __exit mhi_ep_exit(void)
{
bus_unregister(&mhi_ep_bus_type);
}
postcore_initcall(mhi_ep_init);
module_exit(mhi_ep_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MHI Bus Endpoint stack");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");