blob: cc9e961f007877d9d9c29d89f231b3959898acbc [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"
#include "gc/gc_10_3_0_offset.h"
#include "gc/gc_10_3_0_sh_mask.h"
#include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
#include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
#include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
#include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"
#include "soc15_common.h"
#include "soc15.h"
#include "navi10_sdma_pkt_open.h"
#include "nbio_v2_3.h"
#include "sdma_common.h"
#include "sdma_v5_2.h"
MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin");
MODULE_FIRMWARE("amdgpu/beige_goby_sdma.bin");
MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin");
MODULE_FIRMWARE("amdgpu/yellow_carp_sdma.bin");
MODULE_FIRMWARE("amdgpu/sdma_5_2_6.bin");
MODULE_FIRMWARE("amdgpu/sdma_5_2_7.bin");
#define SDMA1_REG_OFFSET 0x600
#define SDMA3_REG_OFFSET 0x400
#define SDMA0_HYP_DEC_REG_START 0x5880
#define SDMA0_HYP_DEC_REG_END 0x5893
#define SDMA1_HYP_DEC_REG_OFFSET 0x20
static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);
static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
{
u32 base;
if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
internal_offset <= SDMA0_HYP_DEC_REG_END) {
base = adev->reg_offset[GC_HWIP][0][1];
if (instance != 0)
internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
} else {
if (instance < 2) {
base = adev->reg_offset[GC_HWIP][0][0];
if (instance == 1)
internal_offset += SDMA1_REG_OFFSET;
} else {
base = adev->reg_offset[GC_HWIP][0][2];
if (instance == 3)
internal_offset += SDMA3_REG_OFFSET;
}
}
return base + internal_offset;
}
static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring,
uint64_t addr)
{
unsigned ret;
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, 1);
/* this is the offset we need patch later */
ret = ring->wptr & ring->buf_mask;
/* insert dummy here and patch it later */
amdgpu_ring_write(ring, 0);
return ret;
}
/**
* sdma_v5_2_ring_get_rptr - get the current read pointer
*
* @ring: amdgpu ring pointer
*
* Get the current rptr from the hardware (NAVI10+).
*/
static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
{
u64 *rptr;
/* XXX check if swapping is necessary on BE */
rptr = (u64 *)ring->rptr_cpu_addr;
DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
return ((*rptr) >> 2);
}
/**
* sdma_v5_2_ring_get_wptr - get the current write pointer
*
* @ring: amdgpu ring pointer
*
* Get the current wptr from the hardware (NAVI10+).
*/
static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u64 wptr;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
} else {
wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
wptr = wptr << 32;
wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
}
return wptr >> 2;
}
/**
* sdma_v5_2_ring_set_wptr - commit the write pointer
*
* @ring: amdgpu ring pointer
*
* Write the wptr back to the hardware (NAVI10+).
*/
static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
DRM_DEBUG("Setting write pointer\n");
if (ring->use_doorbell) {
DRM_DEBUG("Using doorbell -- "
"wptr_offs == 0x%08x "
"lower_32_bits(ring->wptr << 2) == 0x%08x "
"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
ring->wptr_offs,
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
/* XXX check if swapping is necessary on BE */
atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
ring->wptr << 2);
DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
ring->doorbell_index, ring->wptr << 2);
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
} else {
DRM_DEBUG("Not using doorbell -- "
"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
ring->me,
lower_32_bits(ring->wptr << 2),
ring->me,
upper_32_bits(ring->wptr << 2));
WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
lower_32_bits(ring->wptr << 2));
WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
upper_32_bits(ring->wptr << 2));
}
}
static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
int i;
for (i = 0; i < count; i++)
if (sdma && sdma->burst_nop && (i == 0))
amdgpu_ring_write(ring, ring->funcs->nop |
SDMA_PKT_NOP_HEADER_COUNT(count - 1));
else
amdgpu_ring_write(ring, ring->funcs->nop);
}
/**
* sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
*
* @ring: amdgpu ring pointer
* @job: job to retrieve vmid from
* @ib: IB object to schedule
* @flags: unused
*
* Schedule an IB in the DMA ring.
*/
static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
/* An IB packet must end on a 8 DW boundary--the next dword
* must be on a 8-dword boundary. Our IB packet below is 6
* dwords long, thus add x number of NOPs, such that, in
* modular arithmetic,
* wptr + 6 + x = 8k, k >= 0, which in C is,
* (wptr + 6 + x) % 8 = 0.
* The expression below, is a solution of x.
*/
sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
/* base must be 32 byte aligned */
amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, ib->length_dw);
amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
}
/**
* sdma_v5_2_ring_emit_mem_sync - flush the IB by graphics cache rinse
*
* @ring: amdgpu ring pointer
*
* flush the IB by graphics cache rinse.
*/
static void sdma_v5_2_ring_emit_mem_sync(struct amdgpu_ring *ring)
{
uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB |
SDMA_GCR_GLM_INV | SDMA_GCR_GL1_INV |
SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
SDMA_GCR_GLI_INV(1);
/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
}
/**
* sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
*
* @ring: amdgpu ring pointer
*
* Emit an hdp flush packet on the requested DMA ring.
*/
static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 ref_and_mask = 0;
const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
if (ring->me > 1) {
amdgpu_asic_flush_hdp(adev, ring);
} else {
ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
amdgpu_ring_write(ring, ref_and_mask); /* reference */
amdgpu_ring_write(ring, ref_and_mask); /* mask */
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
}
}
/**
* sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
*
* @ring: amdgpu ring pointer
* @addr: address
* @seq: sequence number
* @flags: fence related flags
*
* Add a DMA fence packet to the ring to write
* the fence seq number and DMA trap packet to generate
* an interrupt if needed.
*/
static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
/* write the fence */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
/* zero in first two bits */
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
/* optionally write high bits as well */
if (write64bit) {
addr += 4;
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
/* zero in first two bits */
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
if ((flags & AMDGPU_FENCE_FLAG_INT)) {
uint32_t ctx = ring->is_mes_queue ?
(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
/* generate an interrupt */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
}
}
/**
* sdma_v5_2_gfx_stop - stop the gfx async dma engines
*
* @adev: amdgpu_device pointer
*
* Stop the gfx async dma ring buffers.
*/
static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
{
u32 rb_cntl, ib_cntl;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
}
}
/**
* sdma_v5_2_rlc_stop - stop the compute async dma engines
*
* @adev: amdgpu_device pointer
*
* Stop the compute async dma queues.
*/
static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
{
/* XXX todo */
}
/**
* sdma_v5_2_ctx_switch_enable - stop the async dma engines context switch
*
* @adev: amdgpu_device pointer
* @enable: enable/disable the DMA MEs context switch.
*
* Halt or unhalt the async dma engines context switch.
*/
static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
{
u32 f32_cntl, phase_quantum = 0;
int i;
if (amdgpu_sdma_phase_quantum) {
unsigned value = amdgpu_sdma_phase_quantum;
unsigned unit = 0;
while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
value = (value + 1) >> 1;
unit++;
}
if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
WARN_ONCE(1,
"clamping sdma_phase_quantum to %uK clock cycles\n",
value << unit);
}
phase_quantum =
value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
}
for (i = 0; i < adev->sdma.num_instances; i++) {
if (enable && amdgpu_sdma_phase_quantum) {
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
phase_quantum);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
phase_quantum);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
phase_quantum);
}
if (!amdgpu_sriov_vf(adev)) {
f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
AUTO_CTXSW_ENABLE, enable ? 1 : 0);
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
}
}
}
/**
* sdma_v5_2_enable - stop the async dma engines
*
* @adev: amdgpu_device pointer
* @enable: enable/disable the DMA MEs.
*
* Halt or unhalt the async dma engines.
*/
static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
{
u32 f32_cntl;
int i;
if (!enable) {
sdma_v5_2_gfx_stop(adev);
sdma_v5_2_rlc_stop(adev);
}
if (!amdgpu_sriov_vf(adev)) {
for (i = 0; i < adev->sdma.num_instances; i++) {
f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
}
}
}
/**
* sdma_v5_2_gfx_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the gfx DMA ring buffers and enable them.
* Returns 0 for success, error for failure.
*/
static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 rb_cntl, ib_cntl;
u32 rb_bufsz;
u32 doorbell;
u32 doorbell_offset;
u32 temp;
u32 wptr_poll_cntl;
u64 wptr_gpu_addr;
int i, r;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
if (!amdgpu_sriov_vf(adev))
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
/* Set ring buffer size in dwords */
rb_bufsz = order_base_2(ring->ring_size / 4);
rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
/* Initialize the ring buffer's read and write pointers */
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
/* setup the wptr shadow polling */
wptr_gpu_addr = ring->wptr_gpu_addr;
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
lower_32_bits(wptr_gpu_addr));
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
upper_32_bits(wptr_gpu_addr));
wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i,
mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
SDMA0_GFX_RB_WPTR_POLL_CNTL,
F32_POLL_ENABLE, 1);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
wptr_poll_cntl);
/* set the wb address whether it's enabled or not */
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
ring->wptr = 0;
/* before programing wptr to a less value, need set minor_ptr_update first */
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
}
doorbell = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
if (ring->use_doorbell) {
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
OFFSET, ring->doorbell_index);
} else {
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
}
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
ring->doorbell_index,
adev->doorbell_index.sdma_doorbell_range);
if (amdgpu_sriov_vf(adev))
sdma_v5_2_ring_set_wptr(ring);
/* set minor_ptr_update to 0 after wptr programed */
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
/* SRIOV VF has no control of any of registers below */
if (!amdgpu_sriov_vf(adev)) {
/* set utc l1 enable flag always to 1 */
temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
/* enable MCBP */
temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
/* Set up RESP_MODE to non-copy addresses */
temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
/* program default cache read and write policy */
temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
/* clean read policy and write policy bits */
temp &= 0xFF0FFF;
temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
(CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
/* unhalt engine */
temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
}
/* enable DMA RB */
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
/* enable DMA IBs */
WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
sdma_v5_2_ctx_switch_enable(adev, true);
sdma_v5_2_enable(adev, true);
}
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
}
return 0;
}
/**
* sdma_v5_2_rlc_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the compute DMA queues and enable them.
* Returns 0 for success, error for failure.
*/
static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
{
return 0;
}
/**
* sdma_v5_2_load_microcode - load the sDMA ME ucode
*
* @adev: amdgpu_device pointer
*
* Loads the sDMA0/1/2/3 ucode.
* Returns 0 for success, -EINVAL if the ucode is not available.
*/
static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
{
const struct sdma_firmware_header_v1_0 *hdr;
const __le32 *fw_data;
u32 fw_size;
int i, j;
/* halt the MEs */
sdma_v5_2_enable(adev, false);
for (i = 0; i < adev->sdma.num_instances; i++) {
if (!adev->sdma.instance[i].fw)
return -EINVAL;
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
amdgpu_ucode_print_sdma_hdr(&hdr->header);
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
fw_data = (const __le32 *)
(adev->sdma.instance[i].fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
for (j = 0; j < fw_size; j++) {
if (amdgpu_emu_mode == 1 && j % 500 == 0)
msleep(1);
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
}
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
}
return 0;
}
static int sdma_v5_2_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 grbm_soft_reset;
u32 tmp;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
grbm_soft_reset = REG_SET_FIELD(0,
GRBM_SOFT_RESET, SOFT_RESET_SDMA0,
1);
grbm_soft_reset <<= i;
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
udelay(50);
}
return 0;
}
/**
* sdma_v5_2_start - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the DMA engines and enable them.
* Returns 0 for success, error for failure.
*/
static int sdma_v5_2_start(struct amdgpu_device *adev)
{
int r = 0;
if (amdgpu_sriov_vf(adev)) {
sdma_v5_2_ctx_switch_enable(adev, false);
sdma_v5_2_enable(adev, false);
/* set RB registers */
r = sdma_v5_2_gfx_resume(adev);
return r;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
r = sdma_v5_2_load_microcode(adev);
if (r)
return r;
/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
if (amdgpu_emu_mode == 1)
msleep(1000);
}
sdma_v5_2_soft_reset(adev);
/* unhalt the MEs */
sdma_v5_2_enable(adev, true);
/* enable sdma ring preemption */
sdma_v5_2_ctx_switch_enable(adev, true);
/* start the gfx rings and rlc compute queues */
r = sdma_v5_2_gfx_resume(adev);
if (r)
return r;
r = sdma_v5_2_rlc_resume(adev);
return r;
}
static int sdma_v5_2_mqd_init(struct amdgpu_device *adev, void *mqd,
struct amdgpu_mqd_prop *prop)
{
struct v10_sdma_mqd *m = mqd;
uint64_t wb_gpu_addr;
m->sdmax_rlcx_rb_cntl =
order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0,
mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
wb_gpu_addr = prop->wptr_gpu_addr;
m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
wb_gpu_addr = prop->rptr_gpu_addr;
m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0,
mmSDMA0_GFX_IB_CNTL));
m->sdmax_rlcx_doorbell_offset =
prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
return 0;
}
static void sdma_v5_2_set_mqd_funcs(struct amdgpu_device *adev)
{
adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_2_mqd_init;
}
/**
* sdma_v5_2_ring_test_ring - simple async dma engine test
*
* @ring: amdgpu_ring structure holding ring information
*
* Test the DMA engine by writing using it to write an
* value to memory.
* Returns 0 for success, error for failure.
*/
static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
unsigned i;
unsigned index;
int r;
u32 tmp;
u64 gpu_addr;
volatile uint32_t *cpu_ptr = NULL;
tmp = 0xCAFEDEAD;
if (ring->is_mes_queue) {
uint32_t offset = 0;
offset = amdgpu_mes_ctx_get_offs(ring,
AMDGPU_MES_CTX_PADDING_OFFS);
gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
*cpu_ptr = tmp;
} else {
r = amdgpu_device_wb_get(adev, &index);
if (r) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
return r;
}
gpu_addr = adev->wb.gpu_addr + (index * 4);
adev->wb.wb[index] = cpu_to_le32(tmp);
}
r = amdgpu_ring_alloc(ring, 20);
if (r) {
DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
if (!ring->is_mes_queue)
amdgpu_device_wb_free(adev, index);
return r;
}
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->is_mes_queue)
tmp = le32_to_cpu(*cpu_ptr);
else
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
break;
if (amdgpu_emu_mode == 1)
msleep(1);
else
udelay(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
if (!ring->is_mes_queue)
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* sdma_v5_2_ring_test_ib - test an IB on the DMA engine
*
* @ring: amdgpu_ring structure holding ring information
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Test a simple IB in the DMA ring.
* Returns 0 on success, error on failure.
*/
static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
unsigned index;
long r;
u32 tmp = 0;
u64 gpu_addr;
volatile uint32_t *cpu_ptr = NULL;
tmp = 0xCAFEDEAD;
memset(&ib, 0, sizeof(ib));
if (ring->is_mes_queue) {
uint32_t offset = 0;
offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
offset = amdgpu_mes_ctx_get_offs(ring,
AMDGPU_MES_CTX_PADDING_OFFS);
gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
*cpu_ptr = tmp;
} else {
r = amdgpu_device_wb_get(adev, &index);
if (r) {
dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
return r;
}
gpu_addr = adev->wb.gpu_addr + (index * 4);
adev->wb.wb[index] = cpu_to_le32(tmp);
r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
goto err0;
}
}
ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
ib.ptr[1] = lower_32_bits(gpu_addr);
ib.ptr[2] = upper_32_bits(gpu_addr);
ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
ib.ptr[4] = 0xDEADBEEF;
ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.length_dw = 8;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err1;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
DRM_ERROR("amdgpu: IB test timed out\n");
r = -ETIMEDOUT;
goto err1;
} else if (r < 0) {
DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
goto err1;
}
if (ring->is_mes_queue)
tmp = le32_to_cpu(*cpu_ptr);
else
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
r = 0;
else
r = -EINVAL;
err1:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err0:
if (!ring->is_mes_queue)
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @src: src addr to copy from
* @count: number of page entries to update
*
* Update PTEs by copying them from the GART using sDMA.
*/
static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
uint64_t pe, uint64_t src,
unsigned count)
{
unsigned bytes = count * 8;
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
ib->ptr[ib->length_dw++] = bytes - 1;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src);
ib->ptr[ib->length_dw++] = upper_32_bits(src);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
}
/**
* sdma_v5_2_vm_write_pte - update PTEs by writing them manually
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @value: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
*
* Update PTEs by writing them manually using sDMA.
*/
static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
uint64_t value, unsigned count,
uint32_t incr)
{
unsigned ndw = count * 2;
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = ndw - 1;
for (; ndw > 0; ndw -= 2) {
ib->ptr[ib->length_dw++] = lower_32_bits(value);
ib->ptr[ib->length_dw++] = upper_32_bits(value);
value += incr;
}
}
/**
* sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: access flags
*
* Update the page tables using sDMA.
*/
static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint64_t flags)
{
/* for physically contiguous pages (vram) */
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
ib->ptr[ib->length_dw++] = upper_32_bits(flags);
ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
ib->ptr[ib->length_dw++] = upper_32_bits(addr);
ib->ptr[ib->length_dw++] = incr; /* increment size */
ib->ptr[ib->length_dw++] = 0;
ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}
/**
* sdma_v5_2_ring_pad_ib - pad the IB
*
* @ib: indirect buffer to fill with padding
* @ring: amdgpu_ring structure holding ring information
*
* Pad the IB with NOPs to a boundary multiple of 8.
*/
static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
u32 pad_count;
int i;
pad_count = (-ib->length_dw) & 0x7;
for (i = 0; i < pad_count; i++)
if (sdma && sdma->burst_nop && (i == 0))
ib->ptr[ib->length_dw++] =
SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
else
ib->ptr[ib->length_dw++] =
SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}
/**
* sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
*
* @ring: amdgpu_ring pointer
*
* Make sure all previous operations are completed (CIK).
*/
static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
/* wait for idle */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
amdgpu_ring_write(ring, seq); /* reference */
amdgpu_ring_write(ring, 0xffffffff); /* mask */
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
}
/**
* sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
*
* @ring: amdgpu_ring pointer
* @vmid: vmid number to use
* @pd_addr: address
*
* Update the page table base and flush the VM TLB
* using sDMA.
*/
static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
}
static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, val);
}
static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
amdgpu_ring_write(ring, reg << 2);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val); /* reference */
amdgpu_ring_write(ring, mask); /* mask */
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
}
static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
uint32_t reg0, uint32_t reg1,
uint32_t ref, uint32_t mask)
{
amdgpu_ring_emit_wreg(ring, reg0, ref);
/* wait for a cycle to reset vm_inv_eng*_ack */
amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
}
static int sdma_v5_2_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = amdgpu_sdma_init_microcode(adev, 0, true);
if (r)
return r;
sdma_v5_2_set_ring_funcs(adev);
sdma_v5_2_set_buffer_funcs(adev);
sdma_v5_2_set_vm_pte_funcs(adev);
sdma_v5_2_set_irq_funcs(adev);
sdma_v5_2_set_mqd_funcs(adev);
return 0;
}
static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
{
switch (seq_num) {
case 0:
return SOC15_IH_CLIENTID_SDMA0;
case 1:
return SOC15_IH_CLIENTID_SDMA1;
case 2:
return SOC15_IH_CLIENTID_SDMA2;
case 3:
return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
default:
break;
}
return -EINVAL;
}
static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
{
switch (seq_num) {
case 0:
return SDMA0_5_0__SRCID__SDMA_TRAP;
case 1:
return SDMA1_5_0__SRCID__SDMA_TRAP;
case 2:
return SDMA2_5_0__SRCID__SDMA_TRAP;
case 3:
return SDMA3_5_0__SRCID__SDMA_TRAP;
default:
break;
}
return -EINVAL;
}
static int sdma_v5_2_sw_init(void *handle)
{
struct amdgpu_ring *ring;
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* SDMA trap event */
for (i = 0; i < adev->sdma.num_instances; i++) {
r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
sdma_v5_2_seq_to_trap_id(i),
&adev->sdma.trap_irq);
if (r)
return r;
}
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->me = i;
DRM_INFO("use_doorbell being set to: [%s]\n",
ring->use_doorbell?"true":"false");
ring->doorbell_index =
(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset
ring->vm_hub = AMDGPU_GFXHUB(0);
sprintf(ring->name, "sdma%d", i);
r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
AMDGPU_SDMA_IRQ_INSTANCE0 + i,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
return r;
}
return r;
}
static int sdma_v5_2_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int i;
for (i = 0; i < adev->sdma.num_instances; i++)
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
amdgpu_sdma_destroy_inst_ctx(adev, true);
return 0;
}
static int sdma_v5_2_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return sdma_v5_2_start(adev);
}
static int sdma_v5_2_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev))
return 0;
sdma_v5_2_ctx_switch_enable(adev, false);
sdma_v5_2_enable(adev, false);
return 0;
}
static int sdma_v5_2_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return sdma_v5_2_hw_fini(adev);
}
static int sdma_v5_2_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return sdma_v5_2_hw_init(adev);
}
static bool sdma_v5_2_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 i;
for (i = 0; i < adev->sdma.num_instances; i++) {
u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
return false;
}
return true;
}
static int sdma_v5_2_wait_for_idle(void *handle)
{
unsigned i;
u32 sdma0, sdma1, sdma2, sdma3;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));
if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
{
int i, r = 0;
struct amdgpu_device *adev = ring->adev;
u32 index = 0;
u64 sdma_gfx_preempt;
amdgpu_sdma_get_index_from_ring(ring, &index);
sdma_gfx_preempt =
sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);
/* assert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, false);
/* emit the trailing fence */
ring->trail_seq += 1;
amdgpu_ring_alloc(ring, 10);
sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
ring->trail_seq, 0);
amdgpu_ring_commit(ring);
/* assert IB preemption */
WREG32(sdma_gfx_preempt, 1);
/* poll the trailing fence */
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->trail_seq ==
le32_to_cpu(*(ring->trail_fence_cpu_addr)))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
r = -EINVAL;
DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
}
/* deassert IB preemption */
WREG32(sdma_gfx_preempt, 0);
/* deassert the preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, true);
return r;
}
static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 sdma_cntl;
u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);
if (!amdgpu_sriov_vf(adev)) {
sdma_cntl = RREG32(reg_offset);
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32(reg_offset, sdma_cntl);
}
return 0;
}
static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t mes_queue_id = entry->src_data[0];
DRM_DEBUG("IH: SDMA trap\n");
if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
struct amdgpu_mes_queue *queue;
mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
spin_lock(&adev->mes.queue_id_lock);
queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
if (queue) {
DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
amdgpu_fence_process(queue->ring);
}
spin_unlock(&adev->mes.queue_id_lock);
return 0;
}
switch (entry->client_id) {
case SOC15_IH_CLIENTID_SDMA0:
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[0].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
case 3:
/* XXX page queue*/
break;
}
break;
case SOC15_IH_CLIENTID_SDMA1:
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[1].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
case 3:
/* XXX page queue*/
break;
}
break;
case SOC15_IH_CLIENTID_SDMA2:
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[2].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
case 3:
/* XXX page queue*/
break;
}
break;
case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[3].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
case 3:
/* XXX page queue*/
break;
}
break;
}
return 0;
}
static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
return 0;
}
static bool sdma_v5_2_firmware_mgcg_support(struct amdgpu_device *adev,
int i)
{
switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
case IP_VERSION(5, 2, 1):
if (adev->sdma.instance[i].fw_version < 70)
return false;
break;
case IP_VERSION(5, 2, 3):
if (adev->sdma.instance[i].fw_version < 47)
return false;
break;
case IP_VERSION(5, 2, 7):
if (adev->sdma.instance[i].fw_version < 9)
return false;
break;
default:
return true;
}
return true;
}
static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t data, def;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
if (!sdma_v5_2_firmware_mgcg_support(adev, i))
adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_MGCG;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
/* Enable sdma clock gating */
def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
if (def != data)
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
} else {
/* Disable sdma clock gating */
def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
if (def != data)
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
}
}
}
static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
bool enable)
{
uint32_t data, def;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
if (adev->sdma.instance[i].fw_version < 70 &&
amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
IP_VERSION(5, 2, 1))
adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_LS;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
/* Enable sdma mem light sleep */
def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
if (def != data)
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
} else {
/* Disable sdma mem light sleep */
def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
if (def != data)
WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
}
}
}
static int sdma_v5_2_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev))
return 0;
switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
case IP_VERSION(5, 2, 0):
case IP_VERSION(5, 2, 2):
case IP_VERSION(5, 2, 1):
case IP_VERSION(5, 2, 4):
case IP_VERSION(5, 2, 5):
case IP_VERSION(5, 2, 6):
case IP_VERSION(5, 2, 3):
case IP_VERSION(5, 2, 7):
sdma_v5_2_update_medium_grain_clock_gating(adev,
state == AMD_CG_STATE_GATE);
sdma_v5_2_update_medium_grain_light_sleep(adev,
state == AMD_CG_STATE_GATE);
break;
default:
break;
}
return 0;
}
static int sdma_v5_2_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static void sdma_v5_2_get_clockgating_state(void *handle, u64 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
if (amdgpu_sriov_vf(adev))
*flags = 0;
/* AMD_CG_SUPPORT_SDMA_MGCG */
data = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
if (!(data & SDMA0_CLK_CTRL__CGCG_EN_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
/* AMD_CG_SUPPORT_SDMA_LS */
data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
*flags |= AMD_CG_SUPPORT_SDMA_LS;
}
static void sdma_v5_2_ring_begin_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* SDMA 5.2.3 (RMB) FW doesn't seem to properly
* disallow GFXOFF in some cases leading to
* hangs in SDMA. Disallow GFXOFF while SDMA is active.
* We can probably just limit this to 5.2.3,
* but it shouldn't hurt for other parts since
* this GFXOFF will be disallowed anyway when SDMA is
* active, this just makes it explicit.
*/
amdgpu_gfx_off_ctrl(adev, false);
}
static void sdma_v5_2_ring_end_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* SDMA 5.2.3 (RMB) FW doesn't seem to properly
* disallow GFXOFF in some cases leading to
* hangs in SDMA. Allow GFXOFF when SDMA is complete.
*/
amdgpu_gfx_off_ctrl(adev, true);
}
const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
.name = "sdma_v5_2",
.early_init = sdma_v5_2_early_init,
.late_init = NULL,
.sw_init = sdma_v5_2_sw_init,
.sw_fini = sdma_v5_2_sw_fini,
.hw_init = sdma_v5_2_hw_init,
.hw_fini = sdma_v5_2_hw_fini,
.suspend = sdma_v5_2_suspend,
.resume = sdma_v5_2_resume,
.is_idle = sdma_v5_2_is_idle,
.wait_for_idle = sdma_v5_2_wait_for_idle,
.soft_reset = sdma_v5_2_soft_reset,
.set_clockgating_state = sdma_v5_2_set_clockgating_state,
.set_powergating_state = sdma_v5_2_set_powergating_state,
.get_clockgating_state = sdma_v5_2_get_clockgating_state,
};
static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
.type = AMDGPU_RING_TYPE_SDMA,
.align_mask = 0xf,
.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
.support_64bit_ptrs = true,
.secure_submission_supported = true,
.get_rptr = sdma_v5_2_ring_get_rptr,
.get_wptr = sdma_v5_2_ring_get_wptr,
.set_wptr = sdma_v5_2_ring_set_wptr,
.emit_frame_size =
5 + /* sdma_v5_2_ring_init_cond_exec */
6 + /* sdma_v5_2_ring_emit_hdp_flush */
3 + /* hdp_invalidate */
6 + /* sdma_v5_2_ring_emit_pipeline_sync */
/* sdma_v5_2_ring_emit_vm_flush */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
.emit_ib = sdma_v5_2_ring_emit_ib,
.emit_mem_sync = sdma_v5_2_ring_emit_mem_sync,
.emit_fence = sdma_v5_2_ring_emit_fence,
.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
.test_ring = sdma_v5_2_ring_test_ring,
.test_ib = sdma_v5_2_ring_test_ib,
.insert_nop = sdma_v5_2_ring_insert_nop,
.pad_ib = sdma_v5_2_ring_pad_ib,
.begin_use = sdma_v5_2_ring_begin_use,
.end_use = sdma_v5_2_ring_end_use,
.emit_wreg = sdma_v5_2_ring_emit_wreg,
.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
.preempt_ib = sdma_v5_2_ring_preempt_ib,
};
static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
adev->sdma.instance[i].ring.me = i;
}
}
static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
.set = sdma_v5_2_set_trap_irq_state,
.process = sdma_v5_2_process_trap_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
.process = sdma_v5_2_process_illegal_inst_irq,
};
static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
{
adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
adev->sdma.num_instances;
adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
}
/**
* sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
*
* @ib: indirect buffer to copy to
* @src_offset: src GPU address
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
* @copy_flags: copy flags for the buffers
*
* Copy GPU buffers using the DMA engine.
* Used by the amdgpu ttm implementation to move pages if
* registered as the asic copy callback.
*/
static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
uint64_t src_offset,
uint64_t dst_offset,
uint32_t byte_count,
uint32_t copy_flags)
{
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
ib->ptr[ib->length_dw++] = byte_count - 1;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}
/**
* sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
*
* @ib: indirect buffer to fill
* @src_data: value to write to buffer
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
*
* Fill GPU buffers using the DMA engine.
*/
static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
uint32_t src_data,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = src_data;
ib->ptr[ib->length_dw++] = byte_count - 1;
}
static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
.copy_max_bytes = 0x400000,
.copy_num_dw = 7,
.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,
.fill_max_bytes = 0x400000,
.fill_num_dw = 5,
.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
};
static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
{
if (adev->mman.buffer_funcs == NULL) {
adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
}
}
static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
.copy_pte_num_dw = 7,
.copy_pte = sdma_v5_2_vm_copy_pte,
.write_pte = sdma_v5_2_vm_write_pte,
.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
};
static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
{
unsigned i;
if (adev->vm_manager.vm_pte_funcs == NULL) {
adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
for (i = 0; i < adev->sdma.num_instances; i++) {
adev->vm_manager.vm_pte_scheds[i] =
&adev->sdma.instance[i].ring.sched;
}
adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
}
}
const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SDMA,
.major = 5,
.minor = 2,
.rev = 0,
.funcs = &sdma_v5_2_ip_funcs,
};