blob: e3cab8e98f5253cc825402d3204646e19460056e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2018-2023, Intel Corporation. */
/* flow director ethtool support for ice */
#include "ice.h"
#include "ice_lib.h"
#include "ice_fdir.h"
#include "ice_flow.h"
static struct in6_addr full_ipv6_addr_mask = {
.in6_u = {
.u6_addr8 = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
}
}
};
static struct in6_addr zero_ipv6_addr_mask = {
.in6_u = {
.u6_addr8 = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
}
};
/* calls to ice_flow_add_prof require the number of segments in the array
* for segs_cnt. In this code that is one more than the index.
*/
#define TNL_SEG_CNT(_TNL_) ((_TNL_) + 1)
/**
* ice_fltr_to_ethtool_flow - convert filter type values to ethtool
* flow type values
* @flow: filter type to be converted
*
* Returns the corresponding ethtool flow type.
*/
static int ice_fltr_to_ethtool_flow(enum ice_fltr_ptype flow)
{
switch (flow) {
case ICE_FLTR_PTYPE_NONF_ETH:
return ETHER_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
return TCP_V4_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
return UDP_V4_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV4_SCTP:
return SCTP_V4_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV4_OTHER:
return IPV4_USER_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
return TCP_V6_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
return UDP_V6_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV6_SCTP:
return SCTP_V6_FLOW;
case ICE_FLTR_PTYPE_NONF_IPV6_OTHER:
return IPV6_USER_FLOW;
default:
/* 0 is undefined ethtool flow */
return 0;
}
}
/**
* ice_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
* @eth: Ethtool flow type to be converted
*
* Returns flow enum
*/
static enum ice_fltr_ptype ice_ethtool_flow_to_fltr(int eth)
{
switch (eth) {
case ETHER_FLOW:
return ICE_FLTR_PTYPE_NONF_ETH;
case TCP_V4_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV4_TCP;
case UDP_V4_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV4_UDP;
case SCTP_V4_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV4_SCTP;
case IPV4_USER_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV4_OTHER;
case TCP_V6_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV6_TCP;
case UDP_V6_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV6_UDP;
case SCTP_V6_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV6_SCTP;
case IPV6_USER_FLOW:
return ICE_FLTR_PTYPE_NONF_IPV6_OTHER;
default:
return ICE_FLTR_PTYPE_NONF_NONE;
}
}
/**
* ice_is_mask_valid - check mask field set
* @mask: full mask to check
* @field: field for which mask should be valid
*
* If the mask is fully set return true. If it is not valid for field return
* false.
*/
static bool ice_is_mask_valid(u64 mask, u64 field)
{
return (mask & field) == field;
}
/**
* ice_get_ethtool_fdir_entry - fill ethtool structure with fdir filter data
* @hw: hardware structure that contains filter list
* @cmd: ethtool command data structure to receive the filter data
*
* Returns 0 on success and -EINVAL on failure
*/
int ice_get_ethtool_fdir_entry(struct ice_hw *hw, struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp;
struct ice_fdir_fltr *rule;
int ret = 0;
u16 idx;
fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
mutex_lock(&hw->fdir_fltr_lock);
rule = ice_fdir_find_fltr_by_idx(hw, fsp->location);
if (!rule || fsp->location != rule->fltr_id) {
ret = -EINVAL;
goto release_lock;
}
fsp->flow_type = ice_fltr_to_ethtool_flow(rule->flow_type);
memset(&fsp->m_u, 0, sizeof(fsp->m_u));
memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
switch (fsp->flow_type) {
case ETHER_FLOW:
fsp->h_u.ether_spec = rule->eth;
fsp->m_u.ether_spec = rule->eth_mask;
break;
case IPV4_USER_FLOW:
fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
fsp->h_u.usr_ip4_spec.proto = 0;
fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip.v4.l4_header;
fsp->h_u.usr_ip4_spec.tos = rule->ip.v4.tos;
fsp->h_u.usr_ip4_spec.ip4src = rule->ip.v4.src_ip;
fsp->h_u.usr_ip4_spec.ip4dst = rule->ip.v4.dst_ip;
fsp->m_u.usr_ip4_spec.ip4src = rule->mask.v4.src_ip;
fsp->m_u.usr_ip4_spec.ip4dst = rule->mask.v4.dst_ip;
fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
fsp->m_u.usr_ip4_spec.proto = 0;
fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->mask.v4.l4_header;
fsp->m_u.usr_ip4_spec.tos = rule->mask.v4.tos;
break;
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
fsp->h_u.tcp_ip4_spec.psrc = rule->ip.v4.src_port;
fsp->h_u.tcp_ip4_spec.pdst = rule->ip.v4.dst_port;
fsp->h_u.tcp_ip4_spec.ip4src = rule->ip.v4.src_ip;
fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip.v4.dst_ip;
fsp->m_u.tcp_ip4_spec.psrc = rule->mask.v4.src_port;
fsp->m_u.tcp_ip4_spec.pdst = rule->mask.v4.dst_port;
fsp->m_u.tcp_ip4_spec.ip4src = rule->mask.v4.src_ip;
fsp->m_u.tcp_ip4_spec.ip4dst = rule->mask.v4.dst_ip;
break;
case IPV6_USER_FLOW:
fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip.v6.l4_header;
fsp->h_u.usr_ip6_spec.tclass = rule->ip.v6.tc;
fsp->h_u.usr_ip6_spec.l4_proto = rule->ip.v6.proto;
memcpy(fsp->h_u.tcp_ip6_spec.ip6src, rule->ip.v6.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->h_u.tcp_ip6_spec.ip6dst, rule->ip.v6.dst_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.tcp_ip6_spec.ip6src, rule->mask.v6.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.tcp_ip6_spec.ip6dst, rule->mask.v6.dst_ip,
sizeof(struct in6_addr));
fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->mask.v6.l4_header;
fsp->m_u.usr_ip6_spec.tclass = rule->mask.v6.tc;
fsp->m_u.usr_ip6_spec.l4_proto = rule->mask.v6.proto;
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
memcpy(fsp->h_u.tcp_ip6_spec.ip6src, rule->ip.v6.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->h_u.tcp_ip6_spec.ip6dst, rule->ip.v6.dst_ip,
sizeof(struct in6_addr));
fsp->h_u.tcp_ip6_spec.psrc = rule->ip.v6.src_port;
fsp->h_u.tcp_ip6_spec.pdst = rule->ip.v6.dst_port;
memcpy(fsp->m_u.tcp_ip6_spec.ip6src,
rule->mask.v6.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.tcp_ip6_spec.ip6dst,
rule->mask.v6.dst_ip,
sizeof(struct in6_addr));
fsp->m_u.tcp_ip6_spec.psrc = rule->mask.v6.src_port;
fsp->m_u.tcp_ip6_spec.pdst = rule->mask.v6.dst_port;
fsp->h_u.tcp_ip6_spec.tclass = rule->ip.v6.tc;
fsp->m_u.tcp_ip6_spec.tclass = rule->mask.v6.tc;
break;
default:
break;
}
if (rule->dest_ctl == ICE_FLTR_PRGM_DESC_DEST_DROP_PKT)
fsp->ring_cookie = RX_CLS_FLOW_DISC;
else
fsp->ring_cookie = rule->orig_q_index;
idx = ice_ethtool_flow_to_fltr(fsp->flow_type);
if (idx == ICE_FLTR_PTYPE_NONF_NONE) {
dev_err(ice_hw_to_dev(hw), "Missing input index for flow_type %d\n",
rule->flow_type);
ret = -EINVAL;
}
release_lock:
mutex_unlock(&hw->fdir_fltr_lock);
return ret;
}
/**
* ice_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
* @hw: hardware structure containing the filter list
* @cmd: ethtool command data structure
* @rule_locs: ethtool array passed in from OS to receive filter IDs
*
* Returns 0 as expected for success by ethtool
*/
int
ice_get_fdir_fltr_ids(struct ice_hw *hw, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct ice_fdir_fltr *f_rule;
unsigned int cnt = 0;
int val = 0;
/* report total rule count */
cmd->data = ice_get_fdir_cnt_all(hw);
mutex_lock(&hw->fdir_fltr_lock);
list_for_each_entry(f_rule, &hw->fdir_list_head, fltr_node) {
if (cnt == cmd->rule_cnt) {
val = -EMSGSIZE;
goto release_lock;
}
rule_locs[cnt] = f_rule->fltr_id;
cnt++;
}
release_lock:
mutex_unlock(&hw->fdir_fltr_lock);
if (!val)
cmd->rule_cnt = cnt;
return val;
}
/**
* ice_fdir_remap_entries - update the FDir entries in profile
* @prof: FDir structure pointer
* @tun: tunneled or non-tunneled packet
* @idx: FDir entry index
*/
static void
ice_fdir_remap_entries(struct ice_fd_hw_prof *prof, int tun, int idx)
{
if (idx != prof->cnt && tun < ICE_FD_HW_SEG_MAX) {
int i;
for (i = idx; i < (prof->cnt - 1); i++) {
u64 old_entry_h;
old_entry_h = prof->entry_h[i + 1][tun];
prof->entry_h[i][tun] = old_entry_h;
prof->vsi_h[i] = prof->vsi_h[i + 1];
}
prof->entry_h[i][tun] = 0;
prof->vsi_h[i] = 0;
}
}
/**
* ice_fdir_rem_adq_chnl - remove an ADQ channel from HW filter rules
* @hw: hardware structure containing filter list
* @vsi_idx: VSI handle
*/
void ice_fdir_rem_adq_chnl(struct ice_hw *hw, u16 vsi_idx)
{
int status, flow;
if (!hw->fdir_prof)
return;
for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
struct ice_fd_hw_prof *prof = hw->fdir_prof[flow];
int tun, i;
if (!prof || !prof->cnt)
continue;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
u64 prof_id = prof->prof_id[tun];
for (i = 0; i < prof->cnt; i++) {
if (prof->vsi_h[i] != vsi_idx)
continue;
prof->entry_h[i][tun] = 0;
prof->vsi_h[i] = 0;
break;
}
/* after clearing FDir entries update the remaining */
ice_fdir_remap_entries(prof, tun, i);
/* find flow profile corresponding to prof_id and clear
* vsi_idx from bitmap.
*/
status = ice_flow_rem_vsi_prof(hw, vsi_idx, prof_id);
if (status) {
dev_err(ice_hw_to_dev(hw), "ice_flow_rem_vsi_prof() failed status=%d\n",
status);
}
}
prof->cnt--;
}
}
/**
* ice_fdir_get_hw_prof - return the ice_fd_hw_proc associated with a flow
* @hw: hardware structure containing the filter list
* @blk: hardware block
* @flow: FDir flow type to release
*/
static struct ice_fd_hw_prof *
ice_fdir_get_hw_prof(struct ice_hw *hw, enum ice_block blk, int flow)
{
if (blk == ICE_BLK_FD && hw->fdir_prof)
return hw->fdir_prof[flow];
return NULL;
}
/**
* ice_fdir_erase_flow_from_hw - remove a flow from the HW profile tables
* @hw: hardware structure containing the filter list
* @blk: hardware block
* @flow: FDir flow type to release
*/
static void
ice_fdir_erase_flow_from_hw(struct ice_hw *hw, enum ice_block blk, int flow)
{
struct ice_fd_hw_prof *prof = ice_fdir_get_hw_prof(hw, blk, flow);
int tun;
if (!prof)
return;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
u64 prof_id = prof->prof_id[tun];
int j;
for (j = 0; j < prof->cnt; j++) {
u16 vsi_num;
if (!prof->entry_h[j][tun] || !prof->vsi_h[j])
continue;
vsi_num = ice_get_hw_vsi_num(hw, prof->vsi_h[j]);
ice_rem_prof_id_flow(hw, blk, vsi_num, prof_id);
ice_flow_rem_entry(hw, blk, prof->entry_h[j][tun]);
prof->entry_h[j][tun] = 0;
}
ice_flow_rem_prof(hw, blk, prof_id);
}
}
/**
* ice_fdir_rem_flow - release the ice_flow structures for a filter type
* @hw: hardware structure containing the filter list
* @blk: hardware block
* @flow_type: FDir flow type to release
*/
static void
ice_fdir_rem_flow(struct ice_hw *hw, enum ice_block blk,
enum ice_fltr_ptype flow_type)
{
int flow = (int)flow_type & ~FLOW_EXT;
struct ice_fd_hw_prof *prof;
int tun, i;
prof = ice_fdir_get_hw_prof(hw, blk, flow);
if (!prof)
return;
ice_fdir_erase_flow_from_hw(hw, blk, flow);
for (i = 0; i < prof->cnt; i++)
prof->vsi_h[i] = 0;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
if (!prof->fdir_seg[tun])
continue;
devm_kfree(ice_hw_to_dev(hw), prof->fdir_seg[tun]);
prof->fdir_seg[tun] = NULL;
}
prof->cnt = 0;
}
/**
* ice_fdir_release_flows - release all flows in use for later replay
* @hw: pointer to HW instance
*/
void ice_fdir_release_flows(struct ice_hw *hw)
{
int flow;
/* release Flow Director HW table entries */
for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++)
ice_fdir_erase_flow_from_hw(hw, ICE_BLK_FD, flow);
}
/**
* ice_fdir_replay_flows - replay HW Flow Director filter info
* @hw: pointer to HW instance
*/
void ice_fdir_replay_flows(struct ice_hw *hw)
{
int flow;
for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
int tun;
if (!hw->fdir_prof[flow] || !hw->fdir_prof[flow]->cnt)
continue;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
struct ice_flow_prof *hw_prof;
struct ice_fd_hw_prof *prof;
int j;
prof = hw->fdir_prof[flow];
ice_flow_add_prof(hw, ICE_BLK_FD, ICE_FLOW_RX,
prof->fdir_seg[tun], TNL_SEG_CNT(tun),
false, &hw_prof);
for (j = 0; j < prof->cnt; j++) {
enum ice_flow_priority prio;
u64 entry_h = 0;
int err;
prio = ICE_FLOW_PRIO_NORMAL;
err = ice_flow_add_entry(hw, ICE_BLK_FD,
hw_prof->id,
prof->vsi_h[0],
prof->vsi_h[j],
prio, prof->fdir_seg,
&entry_h);
if (err) {
dev_err(ice_hw_to_dev(hw), "Could not replay Flow Director, flow type %d\n",
flow);
continue;
}
prof->prof_id[tun] = hw_prof->id;
prof->entry_h[j][tun] = entry_h;
}
}
}
}
/**
* ice_parse_rx_flow_user_data - deconstruct user-defined data
* @fsp: pointer to ethtool Rx flow specification
* @data: pointer to userdef data structure for storage
*
* Returns 0 on success, negative error value on failure
*/
static int
ice_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
struct ice_rx_flow_userdef *data)
{
u64 value, mask;
memset(data, 0, sizeof(*data));
if (!(fsp->flow_type & FLOW_EXT))
return 0;
value = be64_to_cpu(*((__force __be64 *)fsp->h_ext.data));
mask = be64_to_cpu(*((__force __be64 *)fsp->m_ext.data));
if (!mask)
return 0;
#define ICE_USERDEF_FLEX_WORD_M GENMASK_ULL(15, 0)
#define ICE_USERDEF_FLEX_OFFS_S 16
#define ICE_USERDEF_FLEX_OFFS_M GENMASK_ULL(31, ICE_USERDEF_FLEX_OFFS_S)
#define ICE_USERDEF_FLEX_FLTR_M GENMASK_ULL(31, 0)
/* 0x1fe is the maximum value for offsets stored in the internal
* filtering tables.
*/
#define ICE_USERDEF_FLEX_MAX_OFFS_VAL 0x1fe
if (!ice_is_mask_valid(mask, ICE_USERDEF_FLEX_FLTR_M) ||
value > ICE_USERDEF_FLEX_FLTR_M)
return -EINVAL;
data->flex_word = value & ICE_USERDEF_FLEX_WORD_M;
data->flex_offset = FIELD_GET(ICE_USERDEF_FLEX_OFFS_M, value);
if (data->flex_offset > ICE_USERDEF_FLEX_MAX_OFFS_VAL)
return -EINVAL;
data->flex_fltr = true;
return 0;
}
/**
* ice_fdir_num_avail_fltr - return the number of unused flow director filters
* @hw: pointer to hardware structure
* @vsi: software VSI structure
*
* There are 2 filter pools: guaranteed and best effort(shared). Each VSI can
* use filters from either pool. The guaranteed pool is divided between VSIs.
* The best effort filter pool is common to all VSIs and is a device shared
* resource pool. The number of filters available to this VSI is the sum of
* the VSIs guaranteed filter pool and the global available best effort
* filter pool.
*
* Returns the number of available flow director filters to this VSI
*/
static int ice_fdir_num_avail_fltr(struct ice_hw *hw, struct ice_vsi *vsi)
{
u16 vsi_num = ice_get_hw_vsi_num(hw, vsi->idx);
u16 num_guar;
u16 num_be;
/* total guaranteed filters assigned to this VSI */
num_guar = vsi->num_gfltr;
/* total global best effort filters */
num_be = hw->func_caps.fd_fltr_best_effort;
/* Subtract the number of programmed filters from the global values */
switch (hw->mac_type) {
case ICE_MAC_E830:
num_guar -= FIELD_GET(E830_VSIQF_FD_CNT_FD_GCNT_M,
rd32(hw, VSIQF_FD_CNT(vsi_num)));
num_be -= FIELD_GET(E830_GLQF_FD_CNT_FD_BCNT_M,
rd32(hw, GLQF_FD_CNT));
break;
case ICE_MAC_E810:
default:
num_guar -= FIELD_GET(E800_VSIQF_FD_CNT_FD_GCNT_M,
rd32(hw, VSIQF_FD_CNT(vsi_num)));
num_be -= FIELD_GET(E800_GLQF_FD_CNT_FD_BCNT_M,
rd32(hw, GLQF_FD_CNT));
}
return num_guar + num_be;
}
/**
* ice_fdir_alloc_flow_prof - allocate FDir flow profile structure(s)
* @hw: HW structure containing the FDir flow profile structure(s)
* @flow: flow type to allocate the flow profile for
*
* Allocate the fdir_prof and fdir_prof[flow] if not already created. Return 0
* on success and negative on error.
*/
static int
ice_fdir_alloc_flow_prof(struct ice_hw *hw, enum ice_fltr_ptype flow)
{
if (!hw)
return -EINVAL;
if (!hw->fdir_prof) {
hw->fdir_prof = devm_kcalloc(ice_hw_to_dev(hw),
ICE_FLTR_PTYPE_MAX,
sizeof(*hw->fdir_prof),
GFP_KERNEL);
if (!hw->fdir_prof)
return -ENOMEM;
}
if (!hw->fdir_prof[flow]) {
hw->fdir_prof[flow] = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(**hw->fdir_prof),
GFP_KERNEL);
if (!hw->fdir_prof[flow])
return -ENOMEM;
}
return 0;
}
/**
* ice_fdir_prof_vsi_idx - find or insert a vsi_idx in structure
* @prof: pointer to flow director HW profile
* @vsi_idx: vsi_idx to locate
*
* return the index of the vsi_idx. if vsi_idx is not found insert it
* into the vsi_h table.
*/
static u16
ice_fdir_prof_vsi_idx(struct ice_fd_hw_prof *prof, int vsi_idx)
{
u16 idx = 0;
for (idx = 0; idx < prof->cnt; idx++)
if (prof->vsi_h[idx] == vsi_idx)
return idx;
if (idx == prof->cnt)
prof->vsi_h[prof->cnt++] = vsi_idx;
return idx;
}
/**
* ice_fdir_set_hw_fltr_rule - Configure HW tables to generate a FDir rule
* @pf: pointer to the PF structure
* @seg: protocol header description pointer
* @flow: filter enum
* @tun: FDir segment to program
*/
static int
ice_fdir_set_hw_fltr_rule(struct ice_pf *pf, struct ice_flow_seg_info *seg,
enum ice_fltr_ptype flow, enum ice_fd_hw_seg tun)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *main_vsi, *ctrl_vsi;
struct ice_flow_seg_info *old_seg;
struct ice_flow_prof *prof = NULL;
struct ice_fd_hw_prof *hw_prof;
struct ice_hw *hw = &pf->hw;
u64 entry1_h = 0;
u64 entry2_h = 0;
bool del_last;
int err;
int idx;
main_vsi = ice_get_main_vsi(pf);
if (!main_vsi)
return -EINVAL;
ctrl_vsi = ice_get_ctrl_vsi(pf);
if (!ctrl_vsi)
return -EINVAL;
err = ice_fdir_alloc_flow_prof(hw, flow);
if (err)
return err;
hw_prof = hw->fdir_prof[flow];
old_seg = hw_prof->fdir_seg[tun];
if (old_seg) {
/* This flow_type already has a changed input set.
* If it matches the requested input set then we are
* done. Or, if it's different then it's an error.
*/
if (!memcmp(old_seg, seg, sizeof(*seg)))
return -EEXIST;
/* if there are FDir filters using this flow,
* then return error.
*/
if (hw->fdir_fltr_cnt[flow]) {
dev_err(dev, "Failed to add filter. Flow director filters on each port must have the same input set.\n");
return -EINVAL;
}
if (ice_is_arfs_using_perfect_flow(hw, flow)) {
dev_err(dev, "aRFS using perfect flow type %d, cannot change input set\n",
flow);
return -EINVAL;
}
/* remove HW filter definition */
ice_fdir_rem_flow(hw, ICE_BLK_FD, flow);
}
/* Adding a profile, but there is only one header supported.
* That is the final parameters are 1 header (segment), no
* actions (NULL) and zero actions 0.
*/
err = ice_flow_add_prof(hw, ICE_BLK_FD, ICE_FLOW_RX, seg,
TNL_SEG_CNT(tun), false, &prof);
if (err)
return err;
err = ice_flow_add_entry(hw, ICE_BLK_FD, prof->id, main_vsi->idx,
main_vsi->idx, ICE_FLOW_PRIO_NORMAL,
seg, &entry1_h);
if (err)
goto err_prof;
err = ice_flow_add_entry(hw, ICE_BLK_FD, prof->id, main_vsi->idx,
ctrl_vsi->idx, ICE_FLOW_PRIO_NORMAL,
seg, &entry2_h);
if (err)
goto err_entry;
hw_prof->fdir_seg[tun] = seg;
hw_prof->prof_id[tun] = prof->id;
hw_prof->entry_h[0][tun] = entry1_h;
hw_prof->entry_h[1][tun] = entry2_h;
hw_prof->vsi_h[0] = main_vsi->idx;
hw_prof->vsi_h[1] = ctrl_vsi->idx;
if (!hw_prof->cnt)
hw_prof->cnt = 2;
for (idx = 1; idx < ICE_CHNL_MAX_TC; idx++) {
u16 vsi_idx;
u16 vsi_h;
if (!ice_is_adq_active(pf) || !main_vsi->tc_map_vsi[idx])
continue;
entry1_h = 0;
vsi_h = main_vsi->tc_map_vsi[idx]->idx;
err = ice_flow_add_entry(hw, ICE_BLK_FD, prof->id,
main_vsi->idx, vsi_h,
ICE_FLOW_PRIO_NORMAL, seg,
&entry1_h);
if (err) {
dev_err(dev, "Could not add Channel VSI %d to flow group\n",
idx);
goto err_unroll;
}
vsi_idx = ice_fdir_prof_vsi_idx(hw_prof,
main_vsi->tc_map_vsi[idx]->idx);
hw_prof->entry_h[vsi_idx][tun] = entry1_h;
}
return 0;
err_unroll:
entry1_h = 0;
hw_prof->fdir_seg[tun] = NULL;
/* The variable del_last will be used to determine when to clean up
* the VSI group data. The VSI data is not needed if there are no
* segments.
*/
del_last = true;
for (idx = 0; idx < ICE_FD_HW_SEG_MAX; idx++)
if (hw_prof->fdir_seg[idx]) {
del_last = false;
break;
}
for (idx = 0; idx < hw_prof->cnt; idx++) {
u16 vsi_num = ice_get_hw_vsi_num(hw, hw_prof->vsi_h[idx]);
if (!hw_prof->entry_h[idx][tun])
continue;
ice_rem_prof_id_flow(hw, ICE_BLK_FD, vsi_num, prof->id);
ice_flow_rem_entry(hw, ICE_BLK_FD, hw_prof->entry_h[idx][tun]);
hw_prof->entry_h[idx][tun] = 0;
if (del_last)
hw_prof->vsi_h[idx] = 0;
}
if (del_last)
hw_prof->cnt = 0;
err_entry:
ice_rem_prof_id_flow(hw, ICE_BLK_FD,
ice_get_hw_vsi_num(hw, main_vsi->idx), prof->id);
ice_flow_rem_entry(hw, ICE_BLK_FD, entry1_h);
err_prof:
ice_flow_rem_prof(hw, ICE_BLK_FD, prof->id);
dev_err(dev, "Failed to add filter. Flow director filters on each port must have the same input set.\n");
return err;
}
/**
* ice_set_init_fdir_seg
* @seg: flow segment for programming
* @l3_proto: ICE_FLOW_SEG_HDR_IPV4 or ICE_FLOW_SEG_HDR_IPV6
* @l4_proto: ICE_FLOW_SEG_HDR_TCP or ICE_FLOW_SEG_HDR_UDP
*
* Set the configuration for perfect filters to the provided flow segment for
* programming the HW filter. This is to be called only when initializing
* filters as this function it assumes no filters exist.
*/
static int
ice_set_init_fdir_seg(struct ice_flow_seg_info *seg,
enum ice_flow_seg_hdr l3_proto,
enum ice_flow_seg_hdr l4_proto)
{
enum ice_flow_field src_addr, dst_addr, src_port, dst_port;
if (!seg)
return -EINVAL;
if (l3_proto == ICE_FLOW_SEG_HDR_IPV4) {
src_addr = ICE_FLOW_FIELD_IDX_IPV4_SA;
dst_addr = ICE_FLOW_FIELD_IDX_IPV4_DA;
} else if (l3_proto == ICE_FLOW_SEG_HDR_IPV6) {
src_addr = ICE_FLOW_FIELD_IDX_IPV6_SA;
dst_addr = ICE_FLOW_FIELD_IDX_IPV6_DA;
} else {
return -EINVAL;
}
if (l4_proto == ICE_FLOW_SEG_HDR_TCP) {
src_port = ICE_FLOW_FIELD_IDX_TCP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_TCP_DST_PORT;
} else if (l4_proto == ICE_FLOW_SEG_HDR_UDP) {
src_port = ICE_FLOW_FIELD_IDX_UDP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_UDP_DST_PORT;
} else {
return -EINVAL;
}
ICE_FLOW_SET_HDRS(seg, l3_proto | l4_proto);
/* IP source address */
ice_flow_set_fld(seg, src_addr, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, false);
/* IP destination address */
ice_flow_set_fld(seg, dst_addr, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, false);
/* Layer 4 source port */
ice_flow_set_fld(seg, src_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, false);
/* Layer 4 destination port */
ice_flow_set_fld(seg, dst_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, false);
return 0;
}
/**
* ice_create_init_fdir_rule
* @pf: PF structure
* @flow: filter enum
*
* Return error value or 0 on success.
*/
static int
ice_create_init_fdir_rule(struct ice_pf *pf, enum ice_fltr_ptype flow)
{
struct ice_flow_seg_info *seg, *tun_seg;
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int ret;
/* if there is already a filter rule for kind return -EINVAL */
if (hw->fdir_prof && hw->fdir_prof[flow] &&
hw->fdir_prof[flow]->fdir_seg[0])
return -EINVAL;
seg = devm_kzalloc(dev, sizeof(*seg), GFP_KERNEL);
if (!seg)
return -ENOMEM;
tun_seg = devm_kcalloc(dev, ICE_FD_HW_SEG_MAX, sizeof(*tun_seg),
GFP_KERNEL);
if (!tun_seg) {
devm_kfree(dev, seg);
return -ENOMEM;
}
if (flow == ICE_FLTR_PTYPE_NONF_IPV4_TCP)
ret = ice_set_init_fdir_seg(seg, ICE_FLOW_SEG_HDR_IPV4,
ICE_FLOW_SEG_HDR_TCP);
else if (flow == ICE_FLTR_PTYPE_NONF_IPV4_UDP)
ret = ice_set_init_fdir_seg(seg, ICE_FLOW_SEG_HDR_IPV4,
ICE_FLOW_SEG_HDR_UDP);
else if (flow == ICE_FLTR_PTYPE_NONF_IPV6_TCP)
ret = ice_set_init_fdir_seg(seg, ICE_FLOW_SEG_HDR_IPV6,
ICE_FLOW_SEG_HDR_TCP);
else if (flow == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
ret = ice_set_init_fdir_seg(seg, ICE_FLOW_SEG_HDR_IPV6,
ICE_FLOW_SEG_HDR_UDP);
else
ret = -EINVAL;
if (ret)
goto err_exit;
/* add filter for outer headers */
ret = ice_fdir_set_hw_fltr_rule(pf, seg, flow, ICE_FD_HW_SEG_NON_TUN);
if (ret)
/* could not write filter, free memory */
goto err_exit;
/* make tunneled filter HW entries if possible */
memcpy(&tun_seg[1], seg, sizeof(*seg));
ret = ice_fdir_set_hw_fltr_rule(pf, tun_seg, flow, ICE_FD_HW_SEG_TUN);
if (ret)
/* could not write tunnel filter, but outer header filter
* exists
*/
devm_kfree(dev, tun_seg);
set_bit(flow, hw->fdir_perfect_fltr);
return ret;
err_exit:
devm_kfree(dev, tun_seg);
devm_kfree(dev, seg);
return -EOPNOTSUPP;
}
/**
* ice_set_fdir_ip4_seg
* @seg: flow segment for programming
* @tcp_ip4_spec: mask data from ethtool
* @l4_proto: Layer 4 protocol to program
* @perfect_fltr: only valid on success; returns true if perfect filter,
* false if not
*
* Set the mask data into the flow segment to be used to program HW
* table based on provided L4 protocol for IPv4
*/
static int
ice_set_fdir_ip4_seg(struct ice_flow_seg_info *seg,
struct ethtool_tcpip4_spec *tcp_ip4_spec,
enum ice_flow_seg_hdr l4_proto, bool *perfect_fltr)
{
enum ice_flow_field src_port, dst_port;
/* make sure we don't have any empty rule */
if (!tcp_ip4_spec->psrc && !tcp_ip4_spec->ip4src &&
!tcp_ip4_spec->pdst && !tcp_ip4_spec->ip4dst)
return -EINVAL;
/* filtering on TOS not supported */
if (tcp_ip4_spec->tos)
return -EOPNOTSUPP;
if (l4_proto == ICE_FLOW_SEG_HDR_TCP) {
src_port = ICE_FLOW_FIELD_IDX_TCP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_TCP_DST_PORT;
} else if (l4_proto == ICE_FLOW_SEG_HDR_UDP) {
src_port = ICE_FLOW_FIELD_IDX_UDP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_UDP_DST_PORT;
} else if (l4_proto == ICE_FLOW_SEG_HDR_SCTP) {
src_port = ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_SCTP_DST_PORT;
} else {
return -EOPNOTSUPP;
}
*perfect_fltr = true;
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_IPV4 | l4_proto);
/* IP source address */
if (tcp_ip4_spec->ip4src == htonl(0xFFFFFFFF))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV4_SA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!tcp_ip4_spec->ip4src)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* IP destination address */
if (tcp_ip4_spec->ip4dst == htonl(0xFFFFFFFF))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV4_DA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!tcp_ip4_spec->ip4dst)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* Layer 4 source port */
if (tcp_ip4_spec->psrc == htons(0xFFFF))
ice_flow_set_fld(seg, src_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
false);
else if (!tcp_ip4_spec->psrc)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* Layer 4 destination port */
if (tcp_ip4_spec->pdst == htons(0xFFFF))
ice_flow_set_fld(seg, dst_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
false);
else if (!tcp_ip4_spec->pdst)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
return 0;
}
/**
* ice_set_fdir_ip4_usr_seg
* @seg: flow segment for programming
* @usr_ip4_spec: ethtool userdef packet offset
* @perfect_fltr: only valid on success; returns true if perfect filter,
* false if not
*
* Set the offset data into the flow segment to be used to program HW
* table for IPv4
*/
static int
ice_set_fdir_ip4_usr_seg(struct ice_flow_seg_info *seg,
struct ethtool_usrip4_spec *usr_ip4_spec,
bool *perfect_fltr)
{
/* first 4 bytes of Layer 4 header */
if (usr_ip4_spec->l4_4_bytes)
return -EINVAL;
if (usr_ip4_spec->tos)
return -EINVAL;
if (usr_ip4_spec->ip_ver)
return -EINVAL;
/* Filtering on Layer 4 protocol not supported */
if (usr_ip4_spec->proto)
return -EOPNOTSUPP;
/* empty rules are not valid */
if (!usr_ip4_spec->ip4src && !usr_ip4_spec->ip4dst)
return -EINVAL;
*perfect_fltr = true;
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_IPV4);
/* IP source address */
if (usr_ip4_spec->ip4src == htonl(0xFFFFFFFF))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV4_SA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!usr_ip4_spec->ip4src)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* IP destination address */
if (usr_ip4_spec->ip4dst == htonl(0xFFFFFFFF))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV4_DA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!usr_ip4_spec->ip4dst)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
return 0;
}
/**
* ice_set_fdir_ip6_seg
* @seg: flow segment for programming
* @tcp_ip6_spec: mask data from ethtool
* @l4_proto: Layer 4 protocol to program
* @perfect_fltr: only valid on success; returns true if perfect filter,
* false if not
*
* Set the mask data into the flow segment to be used to program HW
* table based on provided L4 protocol for IPv6
*/
static int
ice_set_fdir_ip6_seg(struct ice_flow_seg_info *seg,
struct ethtool_tcpip6_spec *tcp_ip6_spec,
enum ice_flow_seg_hdr l4_proto, bool *perfect_fltr)
{
enum ice_flow_field src_port, dst_port;
/* make sure we don't have any empty rule */
if (!memcmp(tcp_ip6_spec->ip6src, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)) &&
!memcmp(tcp_ip6_spec->ip6dst, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)) &&
!tcp_ip6_spec->psrc && !tcp_ip6_spec->pdst)
return -EINVAL;
/* filtering on TC not supported */
if (tcp_ip6_spec->tclass)
return -EOPNOTSUPP;
if (l4_proto == ICE_FLOW_SEG_HDR_TCP) {
src_port = ICE_FLOW_FIELD_IDX_TCP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_TCP_DST_PORT;
} else if (l4_proto == ICE_FLOW_SEG_HDR_UDP) {
src_port = ICE_FLOW_FIELD_IDX_UDP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_UDP_DST_PORT;
} else if (l4_proto == ICE_FLOW_SEG_HDR_SCTP) {
src_port = ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT;
dst_port = ICE_FLOW_FIELD_IDX_SCTP_DST_PORT;
} else {
return -EINVAL;
}
*perfect_fltr = true;
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_IPV6 | l4_proto);
if (!memcmp(tcp_ip6_spec->ip6src, &full_ipv6_addr_mask,
sizeof(struct in6_addr)))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV6_SA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!memcmp(tcp_ip6_spec->ip6src, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)))
*perfect_fltr = false;
else
return -EOPNOTSUPP;
if (!memcmp(tcp_ip6_spec->ip6dst, &full_ipv6_addr_mask,
sizeof(struct in6_addr)))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV6_DA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!memcmp(tcp_ip6_spec->ip6dst, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)))
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* Layer 4 source port */
if (tcp_ip6_spec->psrc == htons(0xFFFF))
ice_flow_set_fld(seg, src_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
false);
else if (!tcp_ip6_spec->psrc)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
/* Layer 4 destination port */
if (tcp_ip6_spec->pdst == htons(0xFFFF))
ice_flow_set_fld(seg, dst_port, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
false);
else if (!tcp_ip6_spec->pdst)
*perfect_fltr = false;
else
return -EOPNOTSUPP;
return 0;
}
/**
* ice_set_fdir_ip6_usr_seg
* @seg: flow segment for programming
* @usr_ip6_spec: ethtool userdef packet offset
* @perfect_fltr: only valid on success; returns true if perfect filter,
* false if not
*
* Set the offset data into the flow segment to be used to program HW
* table for IPv6
*/
static int
ice_set_fdir_ip6_usr_seg(struct ice_flow_seg_info *seg,
struct ethtool_usrip6_spec *usr_ip6_spec,
bool *perfect_fltr)
{
/* filtering on Layer 4 bytes not supported */
if (usr_ip6_spec->l4_4_bytes)
return -EOPNOTSUPP;
/* filtering on TC not supported */
if (usr_ip6_spec->tclass)
return -EOPNOTSUPP;
/* filtering on Layer 4 protocol not supported */
if (usr_ip6_spec->l4_proto)
return -EOPNOTSUPP;
/* empty rules are not valid */
if (!memcmp(usr_ip6_spec->ip6src, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)) &&
!memcmp(usr_ip6_spec->ip6dst, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)))
return -EINVAL;
*perfect_fltr = true;
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_IPV6);
if (!memcmp(usr_ip6_spec->ip6src, &full_ipv6_addr_mask,
sizeof(struct in6_addr)))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV6_SA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!memcmp(usr_ip6_spec->ip6src, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)))
*perfect_fltr = false;
else
return -EOPNOTSUPP;
if (!memcmp(usr_ip6_spec->ip6dst, &full_ipv6_addr_mask,
sizeof(struct in6_addr)))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_IPV6_DA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!memcmp(usr_ip6_spec->ip6dst, &zero_ipv6_addr_mask,
sizeof(struct in6_addr)))
*perfect_fltr = false;
else
return -EOPNOTSUPP;
return 0;
}
/**
* ice_fdir_vlan_valid - validate VLAN data for Flow Director rule
* @dev: network interface device structure
* @fsp: pointer to ethtool Rx flow specification
*
* Return: true if vlan data is valid, false otherwise
*/
static bool ice_fdir_vlan_valid(struct device *dev,
struct ethtool_rx_flow_spec *fsp)
{
if (fsp->m_ext.vlan_etype && !eth_type_vlan(fsp->h_ext.vlan_etype))
return false;
if (fsp->m_ext.vlan_tci && ntohs(fsp->h_ext.vlan_tci) >= VLAN_N_VID)
return false;
/* proto and vlan must have vlan-etype defined */
if (fsp->m_u.ether_spec.h_proto && fsp->m_ext.vlan_tci &&
!fsp->m_ext.vlan_etype) {
dev_warn(dev, "Filter with proto and vlan require also vlan-etype");
return false;
}
return true;
}
/**
* ice_set_ether_flow_seg - set address and protocol segments for ether flow
* @dev: network interface device structure
* @seg: flow segment for programming
* @eth_spec: mask data from ethtool
*
* Return: 0 on success and errno in case of error.
*/
static int ice_set_ether_flow_seg(struct device *dev,
struct ice_flow_seg_info *seg,
struct ethhdr *eth_spec)
{
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_ETH);
/* empty rules are not valid */
if (is_zero_ether_addr(eth_spec->h_source) &&
is_zero_ether_addr(eth_spec->h_dest) &&
!eth_spec->h_proto)
return -EINVAL;
/* Ethertype */
if (eth_spec->h_proto == htons(0xFFFF)) {
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_ETH_TYPE,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
} else if (eth_spec->h_proto) {
dev_warn(dev, "Only 0x0000 or 0xffff proto mask is allowed for flow-type ether");
return -EOPNOTSUPP;
}
/* Source MAC address */
if (is_broadcast_ether_addr(eth_spec->h_source))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_ETH_SA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!is_zero_ether_addr(eth_spec->h_source))
goto err_mask;
/* Destination MAC address */
if (is_broadcast_ether_addr(eth_spec->h_dest))
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_ETH_DA,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
else if (!is_zero_ether_addr(eth_spec->h_dest))
goto err_mask;
return 0;
err_mask:
dev_warn(dev, "Only 00:00:00:00:00:00 or ff:ff:ff:ff:ff:ff MAC address mask is allowed for flow-type ether");
return -EOPNOTSUPP;
}
/**
* ice_set_fdir_vlan_seg - set vlan segments for ether flow
* @seg: flow segment for programming
* @ext_masks: masks for additional RX flow fields
*
* Return: 0 on success and errno in case of error.
*/
static int
ice_set_fdir_vlan_seg(struct ice_flow_seg_info *seg,
struct ethtool_flow_ext *ext_masks)
{
ICE_FLOW_SET_HDRS(seg, ICE_FLOW_SEG_HDR_VLAN);
if (ext_masks->vlan_etype) {
if (ext_masks->vlan_etype != htons(0xFFFF))
return -EOPNOTSUPP;
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_S_VLAN,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
}
if (ext_masks->vlan_tci) {
if (ext_masks->vlan_tci != htons(0xFFFF))
return -EOPNOTSUPP;
ice_flow_set_fld(seg, ICE_FLOW_FIELD_IDX_C_VLAN,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
}
return 0;
}
/**
* ice_cfg_fdir_xtrct_seq - Configure extraction sequence for the given filter
* @pf: PF structure
* @fsp: pointer to ethtool Rx flow specification
* @user: user defined data from flow specification
*
* Returns 0 on success.
*/
static int
ice_cfg_fdir_xtrct_seq(struct ice_pf *pf, struct ethtool_rx_flow_spec *fsp,
struct ice_rx_flow_userdef *user)
{
struct ice_flow_seg_info *seg, *tun_seg;
struct device *dev = ice_pf_to_dev(pf);
enum ice_fltr_ptype fltr_idx;
struct ice_hw *hw = &pf->hw;
bool perfect_filter = false;
int ret;
seg = devm_kzalloc(dev, sizeof(*seg), GFP_KERNEL);
if (!seg)
return -ENOMEM;
tun_seg = devm_kcalloc(dev, ICE_FD_HW_SEG_MAX, sizeof(*tun_seg),
GFP_KERNEL);
if (!tun_seg) {
devm_kfree(dev, seg);
return -ENOMEM;
}
switch (fsp->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
ret = ice_set_fdir_ip4_seg(seg, &fsp->m_u.tcp_ip4_spec,
ICE_FLOW_SEG_HDR_TCP,
&perfect_filter);
break;
case UDP_V4_FLOW:
ret = ice_set_fdir_ip4_seg(seg, &fsp->m_u.tcp_ip4_spec,
ICE_FLOW_SEG_HDR_UDP,
&perfect_filter);
break;
case SCTP_V4_FLOW:
ret = ice_set_fdir_ip4_seg(seg, &fsp->m_u.tcp_ip4_spec,
ICE_FLOW_SEG_HDR_SCTP,
&perfect_filter);
break;
case IPV4_USER_FLOW:
ret = ice_set_fdir_ip4_usr_seg(seg, &fsp->m_u.usr_ip4_spec,
&perfect_filter);
break;
case TCP_V6_FLOW:
ret = ice_set_fdir_ip6_seg(seg, &fsp->m_u.tcp_ip6_spec,
ICE_FLOW_SEG_HDR_TCP,
&perfect_filter);
break;
case UDP_V6_FLOW:
ret = ice_set_fdir_ip6_seg(seg, &fsp->m_u.tcp_ip6_spec,
ICE_FLOW_SEG_HDR_UDP,
&perfect_filter);
break;
case SCTP_V6_FLOW:
ret = ice_set_fdir_ip6_seg(seg, &fsp->m_u.tcp_ip6_spec,
ICE_FLOW_SEG_HDR_SCTP,
&perfect_filter);
break;
case IPV6_USER_FLOW:
ret = ice_set_fdir_ip6_usr_seg(seg, &fsp->m_u.usr_ip6_spec,
&perfect_filter);
break;
case ETHER_FLOW:
ret = ice_set_ether_flow_seg(dev, seg, &fsp->m_u.ether_spec);
if (!ret && (fsp->m_ext.vlan_etype || fsp->m_ext.vlan_tci)) {
if (!ice_fdir_vlan_valid(dev, fsp)) {
ret = -EINVAL;
break;
}
ret = ice_set_fdir_vlan_seg(seg, &fsp->m_ext);
}
break;
default:
ret = -EINVAL;
}
if (ret)
goto err_exit;
/* tunnel segments are shifted up one. */
memcpy(&tun_seg[1], seg, sizeof(*seg));
if (user && user->flex_fltr) {
perfect_filter = false;
ice_flow_add_fld_raw(seg, user->flex_offset,
ICE_FLTR_PRGM_FLEX_WORD_SIZE,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL);
ice_flow_add_fld_raw(&tun_seg[1], user->flex_offset,
ICE_FLTR_PRGM_FLEX_WORD_SIZE,
ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL);
}
fltr_idx = ice_ethtool_flow_to_fltr(fsp->flow_type & ~FLOW_EXT);
assign_bit(fltr_idx, hw->fdir_perfect_fltr, perfect_filter);
/* add filter for outer headers */
ret = ice_fdir_set_hw_fltr_rule(pf, seg, fltr_idx,
ICE_FD_HW_SEG_NON_TUN);
if (ret == -EEXIST) {
/* Rule already exists, free memory and count as success */
ret = 0;
goto err_exit;
} else if (ret) {
/* could not write filter, free memory */
goto err_exit;
}
/* make tunneled filter HW entries if possible */
memcpy(&tun_seg[1], seg, sizeof(*seg));
ret = ice_fdir_set_hw_fltr_rule(pf, tun_seg, fltr_idx,
ICE_FD_HW_SEG_TUN);
if (ret == -EEXIST) {
/* Rule already exists, free memory and count as success */
devm_kfree(dev, tun_seg);
ret = 0;
} else if (ret) {
/* could not write tunnel filter, but outer filter exists */
devm_kfree(dev, tun_seg);
}
return ret;
err_exit:
devm_kfree(dev, tun_seg);
devm_kfree(dev, seg);
return ret;
}
/**
* ice_update_per_q_fltr
* @vsi: ptr to VSI
* @q_index: queue index
* @inc: true to increment or false to decrement per queue filter count
*
* This function is used to keep track of per queue sideband filters
*/
static void ice_update_per_q_fltr(struct ice_vsi *vsi, u32 q_index, bool inc)
{
struct ice_rx_ring *rx_ring;
if (!vsi->num_rxq || q_index >= vsi->num_rxq)
return;
rx_ring = vsi->rx_rings[q_index];
if (!rx_ring || !rx_ring->ch)
return;
if (inc)
atomic_inc(&rx_ring->ch->num_sb_fltr);
else
atomic_dec_if_positive(&rx_ring->ch->num_sb_fltr);
}
/**
* ice_fdir_write_fltr - send a flow director filter to the hardware
* @pf: PF data structure
* @input: filter structure
* @add: true adds filter and false removed filter
* @is_tun: true adds inner filter on tunnel and false outer headers
*
* returns 0 on success and negative value on error
*/
int
ice_fdir_write_fltr(struct ice_pf *pf, struct ice_fdir_fltr *input, bool add,
bool is_tun)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_fltr_desc desc;
struct ice_vsi *ctrl_vsi;
u8 *pkt, *frag_pkt;
bool has_frag;
int err;
ctrl_vsi = ice_get_ctrl_vsi(pf);
if (!ctrl_vsi)
return -EINVAL;
pkt = devm_kzalloc(dev, ICE_FDIR_MAX_RAW_PKT_SIZE, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
frag_pkt = devm_kzalloc(dev, ICE_FDIR_MAX_RAW_PKT_SIZE, GFP_KERNEL);
if (!frag_pkt) {
err = -ENOMEM;
goto err_free;
}
ice_fdir_get_prgm_desc(hw, input, &desc, add);
err = ice_fdir_get_gen_prgm_pkt(hw, input, pkt, false, is_tun);
if (err)
goto err_free_all;
err = ice_prgm_fdir_fltr(ctrl_vsi, &desc, pkt);
if (err)
goto err_free_all;
/* repeat for fragment packet */
has_frag = ice_fdir_has_frag(input->flow_type);
if (has_frag) {
/* does not return error */
ice_fdir_get_prgm_desc(hw, input, &desc, add);
err = ice_fdir_get_gen_prgm_pkt(hw, input, frag_pkt, true,
is_tun);
if (err)
goto err_frag;
err = ice_prgm_fdir_fltr(ctrl_vsi, &desc, frag_pkt);
if (err)
goto err_frag;
} else {
devm_kfree(dev, frag_pkt);
}
return 0;
err_free_all:
devm_kfree(dev, frag_pkt);
err_free:
devm_kfree(dev, pkt);
return err;
err_frag:
devm_kfree(dev, frag_pkt);
return err;
}
/**
* ice_fdir_write_all_fltr - send a flow director filter to the hardware
* @pf: PF data structure
* @input: filter structure
* @add: true adds filter and false removed filter
*
* returns 0 on success and negative value on error
*/
static int
ice_fdir_write_all_fltr(struct ice_pf *pf, struct ice_fdir_fltr *input,
bool add)
{
u16 port_num;
int tun;
for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
bool is_tun = tun == ICE_FD_HW_SEG_TUN;
int err;
if (is_tun && !ice_get_open_tunnel_port(&pf->hw, &port_num, TNL_ALL))
continue;
err = ice_fdir_write_fltr(pf, input, add, is_tun);
if (err)
return err;
}
return 0;
}
/**
* ice_fdir_replay_fltrs - replay filters from the HW filter list
* @pf: board private structure
*/
void ice_fdir_replay_fltrs(struct ice_pf *pf)
{
struct ice_fdir_fltr *f_rule;
struct ice_hw *hw = &pf->hw;
list_for_each_entry(f_rule, &hw->fdir_list_head, fltr_node) {
int err = ice_fdir_write_all_fltr(pf, f_rule, true);
if (err)
dev_dbg(ice_pf_to_dev(pf), "Flow Director error %d, could not reprogram filter %d\n",
err, f_rule->fltr_id);
}
}
/**
* ice_fdir_create_dflt_rules - create default perfect filters
* @pf: PF data structure
*
* Returns 0 for success or error.
*/
int ice_fdir_create_dflt_rules(struct ice_pf *pf)
{
int err;
/* Create perfect TCP and UDP rules in hardware. */
err = ice_create_init_fdir_rule(pf, ICE_FLTR_PTYPE_NONF_IPV4_TCP);
if (err)
return err;
err = ice_create_init_fdir_rule(pf, ICE_FLTR_PTYPE_NONF_IPV4_UDP);
if (err)
return err;
err = ice_create_init_fdir_rule(pf, ICE_FLTR_PTYPE_NONF_IPV6_TCP);
if (err)
return err;
err = ice_create_init_fdir_rule(pf, ICE_FLTR_PTYPE_NONF_IPV6_UDP);
return err;
}
/**
* ice_fdir_del_all_fltrs - Delete all flow director filters
* @vsi: the VSI being changed
*
* This function needs to be called while holding hw->fdir_fltr_lock
*/
void ice_fdir_del_all_fltrs(struct ice_vsi *vsi)
{
struct ice_fdir_fltr *f_rule, *tmp;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
list_for_each_entry_safe(f_rule, tmp, &hw->fdir_list_head, fltr_node) {
ice_fdir_write_all_fltr(pf, f_rule, false);
ice_fdir_update_cntrs(hw, f_rule->flow_type, false);
list_del(&f_rule->fltr_node);
devm_kfree(ice_pf_to_dev(pf), f_rule);
}
}
/**
* ice_vsi_manage_fdir - turn on/off flow director
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is an enable or disable request
*/
void ice_vsi_manage_fdir(struct ice_vsi *vsi, bool ena)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_fltr_ptype flow;
if (ena) {
set_bit(ICE_FLAG_FD_ENA, pf->flags);
ice_fdir_create_dflt_rules(pf);
return;
}
mutex_lock(&hw->fdir_fltr_lock);
if (!test_and_clear_bit(ICE_FLAG_FD_ENA, pf->flags))
goto release_lock;
ice_fdir_del_all_fltrs(vsi);
if (hw->fdir_prof)
for (flow = ICE_FLTR_PTYPE_NONF_NONE; flow < ICE_FLTR_PTYPE_MAX;
flow++)
if (hw->fdir_prof[flow])
ice_fdir_rem_flow(hw, ICE_BLK_FD, flow);
release_lock:
mutex_unlock(&hw->fdir_fltr_lock);
}
/**
* ice_fdir_do_rem_flow - delete flow and possibly add perfect flow
* @pf: PF structure
* @flow_type: FDir flow type to release
*/
static void
ice_fdir_do_rem_flow(struct ice_pf *pf, enum ice_fltr_ptype flow_type)
{
struct ice_hw *hw = &pf->hw;
bool need_perfect = false;
if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_TCP ||
flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP ||
flow_type == ICE_FLTR_PTYPE_NONF_IPV6_TCP ||
flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
need_perfect = true;
if (need_perfect && test_bit(flow_type, hw->fdir_perfect_fltr))
return;
ice_fdir_rem_flow(hw, ICE_BLK_FD, flow_type);
if (need_perfect)
ice_create_init_fdir_rule(pf, flow_type);
}
/**
* ice_fdir_update_list_entry - add or delete a filter from the filter list
* @pf: PF structure
* @input: filter structure
* @fltr_idx: ethtool index of filter to modify
*
* returns 0 on success and negative on errors
*/
static int
ice_fdir_update_list_entry(struct ice_pf *pf, struct ice_fdir_fltr *input,
int fltr_idx)
{
struct ice_fdir_fltr *old_fltr;
struct ice_hw *hw = &pf->hw;
struct ice_vsi *vsi;
int err = -ENOENT;
/* Do not update filters during reset */
if (ice_is_reset_in_progress(pf->state))
return -EBUSY;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return -EINVAL;
old_fltr = ice_fdir_find_fltr_by_idx(hw, fltr_idx);
if (old_fltr) {
err = ice_fdir_write_all_fltr(pf, old_fltr, false);
if (err)
return err;
ice_fdir_update_cntrs(hw, old_fltr->flow_type, false);
/* update sb-filters count, specific to ring->channel */
ice_update_per_q_fltr(vsi, old_fltr->orig_q_index, false);
if (!input && !hw->fdir_fltr_cnt[old_fltr->flow_type])
/* we just deleted the last filter of flow_type so we
* should also delete the HW filter info.
*/
ice_fdir_do_rem_flow(pf, old_fltr->flow_type);
list_del(&old_fltr->fltr_node);
devm_kfree(ice_hw_to_dev(hw), old_fltr);
}
if (!input)
return err;
ice_fdir_list_add_fltr(hw, input);
/* update sb-filters count, specific to ring->channel */
ice_update_per_q_fltr(vsi, input->orig_q_index, true);
ice_fdir_update_cntrs(hw, input->flow_type, true);
return 0;
}
/**
* ice_del_fdir_ethtool - delete Flow Director filter
* @vsi: pointer to target VSI
* @cmd: command to add or delete Flow Director filter
*
* Returns 0 on success and negative values for failure
*/
int ice_del_fdir_ethtool(struct ice_vsi *vsi, struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int val;
if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
return -EOPNOTSUPP;
/* Do not delete filters during reset */
if (ice_is_reset_in_progress(pf->state)) {
dev_err(ice_pf_to_dev(pf), "Device is resetting - deleting Flow Director filters not supported during reset\n");
return -EBUSY;
}
if (test_bit(ICE_FD_FLUSH_REQ, pf->state))
return -EBUSY;
mutex_lock(&hw->fdir_fltr_lock);
val = ice_fdir_update_list_entry(pf, NULL, fsp->location);
mutex_unlock(&hw->fdir_fltr_lock);
return val;
}
/**
* ice_update_ring_dest_vsi - update dest ring and dest VSI
* @vsi: pointer to target VSI
* @dest_vsi: ptr to dest VSI index
* @ring: ptr to dest ring
*
* This function updates destination VSI and queue if user specifies
* target queue which falls in channel's (aka ADQ) queue region
*/
static void
ice_update_ring_dest_vsi(struct ice_vsi *vsi, u16 *dest_vsi, u32 *ring)
{
struct ice_channel *ch;
list_for_each_entry(ch, &vsi->ch_list, list) {
if (!ch->ch_vsi)
continue;
/* make sure to locate corresponding channel based on "queue"
* specified
*/
if ((*ring < ch->base_q) ||
(*ring >= (ch->base_q + ch->num_rxq)))
continue;
/* update the dest_vsi based on channel */
*dest_vsi = ch->ch_vsi->idx;
/* update the "ring" to be correct based on channel */
*ring -= ch->base_q;
}
}
/**
* ice_set_fdir_input_set - Set the input set for Flow Director
* @vsi: pointer to target VSI
* @fsp: pointer to ethtool Rx flow specification
* @input: filter structure
*/
static int
ice_set_fdir_input_set(struct ice_vsi *vsi, struct ethtool_rx_flow_spec *fsp,
struct ice_fdir_fltr *input)
{
u16 dest_vsi, q_index = 0;
u16 orig_q_index = 0;
struct ice_pf *pf;
struct ice_hw *hw;
int flow_type;
u8 dest_ctl;
if (!vsi || !fsp || !input)
return -EINVAL;
pf = vsi->back;
hw = &pf->hw;
dest_vsi = vsi->idx;
if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DROP_PKT;
} else {
u32 ring = ethtool_get_flow_spec_ring(fsp->ring_cookie);
u8 vf = ethtool_get_flow_spec_ring_vf(fsp->ring_cookie);
if (vf) {
dev_err(ice_pf_to_dev(pf), "Failed to add filter. Flow director filters are not supported on VF queues.\n");
return -EINVAL;
}
if (ring >= vsi->num_rxq)
return -EINVAL;
orig_q_index = ring;
ice_update_ring_dest_vsi(vsi, &dest_vsi, &ring);
dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX;
q_index = ring;
}
input->fltr_id = fsp->location;
input->q_index = q_index;
flow_type = fsp->flow_type & ~FLOW_EXT;
/* Record the original queue index as specified by user.
* with channel configuration 'q_index' becomes relative
* to TC (channel).
*/
input->orig_q_index = orig_q_index;
input->dest_vsi = dest_vsi;
input->dest_ctl = dest_ctl;
input->fltr_status = ICE_FLTR_PRGM_DESC_FD_STATUS_FD_ID;
input->cnt_index = ICE_FD_SB_STAT_IDX(hw->fd_ctr_base);
input->flow_type = ice_ethtool_flow_to_fltr(flow_type);
if (fsp->flow_type & FLOW_EXT) {
memcpy(input->ext_data.usr_def, fsp->h_ext.data,
sizeof(input->ext_data.usr_def));
input->ext_data.vlan_type = fsp->h_ext.vlan_etype;
input->ext_data.vlan_tag = fsp->h_ext.vlan_tci;
memcpy(input->ext_mask.usr_def, fsp->m_ext.data,
sizeof(input->ext_mask.usr_def));
input->ext_mask.vlan_type = fsp->m_ext.vlan_etype;
input->ext_mask.vlan_tag = fsp->m_ext.vlan_tci;
}
switch (flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
input->ip.v4.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
input->ip.v4.src_port = fsp->h_u.tcp_ip4_spec.psrc;
input->ip.v4.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
input->ip.v4.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
input->mask.v4.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
input->mask.v4.src_port = fsp->m_u.tcp_ip4_spec.psrc;
input->mask.v4.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
input->mask.v4.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
break;
case IPV4_USER_FLOW:
input->ip.v4.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
input->ip.v4.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
input->ip.v4.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
input->ip.v4.proto = fsp->h_u.usr_ip4_spec.proto;
input->ip.v4.ip_ver = fsp->h_u.usr_ip4_spec.ip_ver;
input->ip.v4.tos = fsp->h_u.usr_ip4_spec.tos;
input->mask.v4.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
input->mask.v4.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
input->mask.v4.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
input->mask.v4.proto = fsp->m_u.usr_ip4_spec.proto;
input->mask.v4.ip_ver = fsp->m_u.usr_ip4_spec.ip_ver;
input->mask.v4.tos = fsp->m_u.usr_ip4_spec.tos;
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
memcpy(input->ip.v6.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
memcpy(input->ip.v6.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
input->ip.v6.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
input->ip.v6.src_port = fsp->h_u.tcp_ip6_spec.psrc;
input->ip.v6.tc = fsp->h_u.tcp_ip6_spec.tclass;
memcpy(input->mask.v6.dst_ip, fsp->m_u.tcp_ip6_spec.ip6dst,
sizeof(struct in6_addr));
memcpy(input->mask.v6.src_ip, fsp->m_u.tcp_ip6_spec.ip6src,
sizeof(struct in6_addr));
input->mask.v6.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
input->mask.v6.src_port = fsp->m_u.tcp_ip6_spec.psrc;
input->mask.v6.tc = fsp->m_u.tcp_ip6_spec.tclass;
break;
case IPV6_USER_FLOW:
memcpy(input->ip.v6.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
memcpy(input->ip.v6.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
input->ip.v6.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
input->ip.v6.tc = fsp->h_u.usr_ip6_spec.tclass;
/* if no protocol requested, use IPPROTO_NONE */
if (!fsp->m_u.usr_ip6_spec.l4_proto)
input->ip.v6.proto = IPPROTO_NONE;
else
input->ip.v6.proto = fsp->h_u.usr_ip6_spec.l4_proto;
memcpy(input->mask.v6.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
memcpy(input->mask.v6.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
input->mask.v6.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
input->mask.v6.tc = fsp->m_u.usr_ip6_spec.tclass;
input->mask.v6.proto = fsp->m_u.usr_ip6_spec.l4_proto;
break;
case ETHER_FLOW:
input->eth = fsp->h_u.ether_spec;
input->eth_mask = fsp->m_u.ether_spec;
break;
default:
/* not doing un-parsed flow types */
return -EINVAL;
}
return 0;
}
/**
* ice_add_fdir_ethtool - Add/Remove Flow Director filter
* @vsi: pointer to target VSI
* @cmd: command to add or delete Flow Director filter
*
* Returns 0 on success and negative values for failure
*/
int ice_add_fdir_ethtool(struct ice_vsi *vsi, struct ethtool_rxnfc *cmd)
{
struct ice_rx_flow_userdef userdata;
struct ethtool_rx_flow_spec *fsp;
struct ice_fdir_fltr *input;
struct device *dev;
struct ice_pf *pf;
struct ice_hw *hw;
int fltrs_needed;
u32 max_location;
u16 tunnel_port;
int ret;
if (!vsi)
return -EINVAL;
pf = vsi->back;
hw = &pf->hw;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
return -EOPNOTSUPP;
/* Do not program filters during reset */
if (ice_is_reset_in_progress(pf->state)) {
dev_err(dev, "Device is resetting - adding Flow Director filters not supported during reset\n");
return -EBUSY;
}
fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
if (ice_parse_rx_flow_user_data(fsp, &userdata))
return -EINVAL;
if (fsp->flow_type & FLOW_MAC_EXT)
return -EINVAL;
ret = ice_cfg_fdir_xtrct_seq(pf, fsp, &userdata);
if (ret)
return ret;
max_location = ice_get_fdir_cnt_all(hw);
if (fsp->location >= max_location) {
dev_err(dev, "Failed to add filter. The number of ntuple filters or provided location exceed max %d.\n",
max_location);
return -ENOSPC;
}
/* return error if not an update and no available filters */
fltrs_needed = ice_get_open_tunnel_port(hw, &tunnel_port, TNL_ALL) ? 2 : 1;
if (!ice_fdir_find_fltr_by_idx(hw, fsp->location) &&
ice_fdir_num_avail_fltr(hw, pf->vsi[vsi->idx]) < fltrs_needed) {
dev_err(dev, "Failed to add filter. The maximum number of flow director filters has been reached.\n");
return -ENOSPC;
}
input = devm_kzalloc(dev, sizeof(*input), GFP_KERNEL);
if (!input)
return -ENOMEM;
ret = ice_set_fdir_input_set(vsi, fsp, input);
if (ret)
goto free_input;
mutex_lock(&hw->fdir_fltr_lock);
if (ice_fdir_is_dup_fltr(hw, input)) {
ret = -EINVAL;
goto release_lock;
}
if (userdata.flex_fltr) {
input->flex_fltr = true;
input->flex_word = cpu_to_be16(userdata.flex_word);
input->flex_offset = userdata.flex_offset;
}
input->cnt_ena = ICE_FXD_FLTR_QW0_STAT_ENA_PKTS;
input->fdid_prio = ICE_FXD_FLTR_QW1_FDID_PRI_THREE;
input->comp_report = ICE_FXD_FLTR_QW0_COMP_REPORT_SW_FAIL;
/* input struct is added to the HW filter list */
ret = ice_fdir_update_list_entry(pf, input, fsp->location);
if (ret)
goto release_lock;
ret = ice_fdir_write_all_fltr(pf, input, true);
if (ret)
goto remove_sw_rule;
goto release_lock;
remove_sw_rule:
ice_fdir_update_cntrs(hw, input->flow_type, false);
/* update sb-filters count, specific to ring->channel */
ice_update_per_q_fltr(vsi, input->orig_q_index, false);
list_del(&input->fltr_node);
release_lock:
mutex_unlock(&hw->fdir_fltr_lock);
free_input:
if (ret)
devm_kfree(dev, input);
return ret;
}