blob: 6a987cf598e4fb7fdee9e42781220b15d72c8462 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* Copyright (c) 2018 Synopsys, Inc. and/or its affiliates.
* stmmac XGMAC support.
*/
#include <linux/bitrev.h>
#include <linux/crc32.h>
#include <linux/iopoll.h>
#include "stmmac.h"
#include "stmmac_ptp.h"
#include "dwxlgmac2.h"
#include "dwxgmac2.h"
static void dwxgmac2_core_init(struct mac_device_info *hw,
struct net_device *dev)
{
void __iomem *ioaddr = hw->pcsr;
u32 tx, rx;
tx = readl(ioaddr + XGMAC_TX_CONFIG);
rx = readl(ioaddr + XGMAC_RX_CONFIG);
tx |= XGMAC_CORE_INIT_TX;
rx |= XGMAC_CORE_INIT_RX;
if (hw->ps) {
tx |= XGMAC_CONFIG_TE;
tx &= ~hw->link.speed_mask;
switch (hw->ps) {
case SPEED_10000:
tx |= hw->link.xgmii.speed10000;
break;
case SPEED_2500:
tx |= hw->link.speed2500;
break;
case SPEED_1000:
default:
tx |= hw->link.speed1000;
break;
}
}
writel(tx, ioaddr + XGMAC_TX_CONFIG);
writel(rx, ioaddr + XGMAC_RX_CONFIG);
writel(XGMAC_INT_DEFAULT_EN, ioaddr + XGMAC_INT_EN);
}
static void dwxgmac2_set_mac(void __iomem *ioaddr, bool enable)
{
u32 tx = readl(ioaddr + XGMAC_TX_CONFIG);
u32 rx = readl(ioaddr + XGMAC_RX_CONFIG);
if (enable) {
tx |= XGMAC_CONFIG_TE;
rx |= XGMAC_CONFIG_RE;
} else {
tx &= ~XGMAC_CONFIG_TE;
rx &= ~XGMAC_CONFIG_RE;
}
writel(tx, ioaddr + XGMAC_TX_CONFIG);
writel(rx, ioaddr + XGMAC_RX_CONFIG);
}
static int dwxgmac2_rx_ipc(struct mac_device_info *hw)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_RX_CONFIG);
if (hw->rx_csum)
value |= XGMAC_CONFIG_IPC;
else
value &= ~XGMAC_CONFIG_IPC;
writel(value, ioaddr + XGMAC_RX_CONFIG);
return !!(readl(ioaddr + XGMAC_RX_CONFIG) & XGMAC_CONFIG_IPC);
}
static void dwxgmac2_rx_queue_enable(struct mac_device_info *hw, u8 mode,
u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_RXQ_CTRL0) & ~XGMAC_RXQEN(queue);
if (mode == MTL_QUEUE_AVB)
value |= 0x1 << XGMAC_RXQEN_SHIFT(queue);
else if (mode == MTL_QUEUE_DCB)
value |= 0x2 << XGMAC_RXQEN_SHIFT(queue);
writel(value, ioaddr + XGMAC_RXQ_CTRL0);
}
static void dwxgmac2_rx_queue_prio(struct mac_device_info *hw, u32 prio,
u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 clear_mask = 0;
u32 ctrl2, ctrl3;
int i;
ctrl2 = readl(ioaddr + XGMAC_RXQ_CTRL2);
ctrl3 = readl(ioaddr + XGMAC_RXQ_CTRL3);
/* The software must ensure that the same priority
* is not mapped to multiple Rx queues
*/
for (i = 0; i < 4; i++)
clear_mask |= ((prio << XGMAC_PSRQ_SHIFT(i)) &
XGMAC_PSRQ(i));
ctrl2 &= ~clear_mask;
ctrl3 &= ~clear_mask;
/* First assign new priorities to a queue, then
* clear them from others queues
*/
if (queue < 4) {
ctrl2 |= (prio << XGMAC_PSRQ_SHIFT(queue)) &
XGMAC_PSRQ(queue);
writel(ctrl2, ioaddr + XGMAC_RXQ_CTRL2);
writel(ctrl3, ioaddr + XGMAC_RXQ_CTRL3);
} else {
queue -= 4;
ctrl3 |= (prio << XGMAC_PSRQ_SHIFT(queue)) &
XGMAC_PSRQ(queue);
writel(ctrl3, ioaddr + XGMAC_RXQ_CTRL3);
writel(ctrl2, ioaddr + XGMAC_RXQ_CTRL2);
}
}
static void dwxgmac2_tx_queue_prio(struct mac_device_info *hw, u32 prio,
u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 value, reg;
reg = (queue < 4) ? XGMAC_TC_PRTY_MAP0 : XGMAC_TC_PRTY_MAP1;
if (queue >= 4)
queue -= 4;
value = readl(ioaddr + reg);
value &= ~XGMAC_PSTC(queue);
value |= (prio << XGMAC_PSTC_SHIFT(queue)) & XGMAC_PSTC(queue);
writel(value, ioaddr + reg);
}
static void dwxgmac2_rx_queue_routing(struct mac_device_info *hw,
u8 packet, u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
static const struct stmmac_rx_routing dwxgmac2_route_possibilities[] = {
{ XGMAC_AVCPQ, XGMAC_AVCPQ_SHIFT },
{ XGMAC_PTPQ, XGMAC_PTPQ_SHIFT },
{ XGMAC_DCBCPQ, XGMAC_DCBCPQ_SHIFT },
{ XGMAC_UPQ, XGMAC_UPQ_SHIFT },
{ XGMAC_MCBCQ, XGMAC_MCBCQ_SHIFT },
};
value = readl(ioaddr + XGMAC_RXQ_CTRL1);
/* routing configuration */
value &= ~dwxgmac2_route_possibilities[packet - 1].reg_mask;
value |= (queue << dwxgmac2_route_possibilities[packet - 1].reg_shift) &
dwxgmac2_route_possibilities[packet - 1].reg_mask;
/* some packets require extra ops */
if (packet == PACKET_AVCPQ)
value |= FIELD_PREP(XGMAC_TACPQE, 1);
else if (packet == PACKET_MCBCQ)
value |= FIELD_PREP(XGMAC_MCBCQEN, 1);
writel(value, ioaddr + XGMAC_RXQ_CTRL1);
}
static void dwxgmac2_prog_mtl_rx_algorithms(struct mac_device_info *hw,
u32 rx_alg)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_MTL_OPMODE);
value &= ~XGMAC_RAA;
switch (rx_alg) {
case MTL_RX_ALGORITHM_SP:
break;
case MTL_RX_ALGORITHM_WSP:
value |= XGMAC_RAA;
break;
default:
break;
}
writel(value, ioaddr + XGMAC_MTL_OPMODE);
}
static void dwxgmac2_prog_mtl_tx_algorithms(struct mac_device_info *hw,
u32 tx_alg)
{
void __iomem *ioaddr = hw->pcsr;
bool ets = true;
u32 value;
int i;
value = readl(ioaddr + XGMAC_MTL_OPMODE);
value &= ~XGMAC_ETSALG;
switch (tx_alg) {
case MTL_TX_ALGORITHM_WRR:
value |= XGMAC_WRR;
break;
case MTL_TX_ALGORITHM_WFQ:
value |= XGMAC_WFQ;
break;
case MTL_TX_ALGORITHM_DWRR:
value |= XGMAC_DWRR;
break;
default:
ets = false;
break;
}
writel(value, ioaddr + XGMAC_MTL_OPMODE);
/* Set ETS if desired */
for (i = 0; i < MTL_MAX_TX_QUEUES; i++) {
value = readl(ioaddr + XGMAC_MTL_TCx_ETS_CONTROL(i));
value &= ~XGMAC_TSA;
if (ets)
value |= XGMAC_ETS;
writel(value, ioaddr + XGMAC_MTL_TCx_ETS_CONTROL(i));
}
}
static void dwxgmac2_set_mtl_tx_queue_weight(struct stmmac_priv *priv,
struct mac_device_info *hw,
u32 weight, u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
writel(weight, ioaddr + XGMAC_MTL_TCx_QUANTUM_WEIGHT(queue));
}
static void dwxgmac2_map_mtl_to_dma(struct mac_device_info *hw, u32 queue,
u32 chan)
{
void __iomem *ioaddr = hw->pcsr;
u32 value, reg;
reg = (queue < 4) ? XGMAC_MTL_RXQ_DMA_MAP0 : XGMAC_MTL_RXQ_DMA_MAP1;
if (queue >= 4)
queue -= 4;
value = readl(ioaddr + reg);
value &= ~XGMAC_QxMDMACH(queue);
value |= (chan << XGMAC_QxMDMACH_SHIFT(queue)) & XGMAC_QxMDMACH(queue);
writel(value, ioaddr + reg);
}
static void dwxgmac2_config_cbs(struct stmmac_priv *priv,
struct mac_device_info *hw,
u32 send_slope, u32 idle_slope,
u32 high_credit, u32 low_credit, u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
writel(send_slope, ioaddr + XGMAC_MTL_TCx_SENDSLOPE(queue));
writel(idle_slope, ioaddr + XGMAC_MTL_TCx_QUANTUM_WEIGHT(queue));
writel(high_credit, ioaddr + XGMAC_MTL_TCx_HICREDIT(queue));
writel(low_credit, ioaddr + XGMAC_MTL_TCx_LOCREDIT(queue));
value = readl(ioaddr + XGMAC_MTL_TCx_ETS_CONTROL(queue));
value &= ~XGMAC_TSA;
value |= XGMAC_CC | XGMAC_CBS;
writel(value, ioaddr + XGMAC_MTL_TCx_ETS_CONTROL(queue));
}
static void dwxgmac2_dump_regs(struct mac_device_info *hw, u32 *reg_space)
{
void __iomem *ioaddr = hw->pcsr;
int i;
for (i = 0; i < XGMAC_MAC_REGSIZE; i++)
reg_space[i] = readl(ioaddr + i * 4);
}
static int dwxgmac2_host_irq_status(struct mac_device_info *hw,
struct stmmac_extra_stats *x)
{
void __iomem *ioaddr = hw->pcsr;
u32 stat, en;
int ret = 0;
en = readl(ioaddr + XGMAC_INT_EN);
stat = readl(ioaddr + XGMAC_INT_STATUS);
stat &= en;
if (stat & XGMAC_PMTIS) {
x->irq_receive_pmt_irq_n++;
readl(ioaddr + XGMAC_PMT);
}
if (stat & XGMAC_LPIIS) {
u32 lpi = readl(ioaddr + XGMAC_LPI_CTRL);
if (lpi & XGMAC_TLPIEN) {
ret |= CORE_IRQ_TX_PATH_IN_LPI_MODE;
x->irq_tx_path_in_lpi_mode_n++;
}
if (lpi & XGMAC_TLPIEX) {
ret |= CORE_IRQ_TX_PATH_EXIT_LPI_MODE;
x->irq_tx_path_exit_lpi_mode_n++;
}
if (lpi & XGMAC_RLPIEN)
x->irq_rx_path_in_lpi_mode_n++;
if (lpi & XGMAC_RLPIEX)
x->irq_rx_path_exit_lpi_mode_n++;
}
return ret;
}
static int dwxgmac2_host_mtl_irq_status(struct stmmac_priv *priv,
struct mac_device_info *hw, u32 chan)
{
void __iomem *ioaddr = hw->pcsr;
int ret = 0;
u32 status;
status = readl(ioaddr + XGMAC_MTL_INT_STATUS);
if (status & BIT(chan)) {
u32 chan_status = readl(ioaddr + XGMAC_MTL_QINT_STATUS(chan));
if (chan_status & XGMAC_RXOVFIS)
ret |= CORE_IRQ_MTL_RX_OVERFLOW;
writel(~0x0, ioaddr + XGMAC_MTL_QINT_STATUS(chan));
}
return ret;
}
static void dwxgmac2_flow_ctrl(struct mac_device_info *hw, unsigned int duplex,
unsigned int fc, unsigned int pause_time,
u32 tx_cnt)
{
void __iomem *ioaddr = hw->pcsr;
u32 i;
if (fc & FLOW_RX)
writel(XGMAC_RFE, ioaddr + XGMAC_RX_FLOW_CTRL);
if (fc & FLOW_TX) {
for (i = 0; i < tx_cnt; i++) {
u32 value = XGMAC_TFE;
if (duplex)
value |= pause_time << XGMAC_PT_SHIFT;
writel(value, ioaddr + XGMAC_Qx_TX_FLOW_CTRL(i));
}
}
}
static void dwxgmac2_pmt(struct mac_device_info *hw, unsigned long mode)
{
void __iomem *ioaddr = hw->pcsr;
u32 val = 0x0;
if (mode & WAKE_MAGIC)
val |= XGMAC_PWRDWN | XGMAC_MGKPKTEN;
if (mode & WAKE_UCAST)
val |= XGMAC_PWRDWN | XGMAC_GLBLUCAST | XGMAC_RWKPKTEN;
if (val) {
u32 cfg = readl(ioaddr + XGMAC_RX_CONFIG);
cfg |= XGMAC_CONFIG_RE;
writel(cfg, ioaddr + XGMAC_RX_CONFIG);
}
writel(val, ioaddr + XGMAC_PMT);
}
static void dwxgmac2_set_umac_addr(struct mac_device_info *hw,
const unsigned char *addr,
unsigned int reg_n)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = (addr[5] << 8) | addr[4];
writel(value | XGMAC_AE, ioaddr + XGMAC_ADDRx_HIGH(reg_n));
value = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
writel(value, ioaddr + XGMAC_ADDRx_LOW(reg_n));
}
static void dwxgmac2_get_umac_addr(struct mac_device_info *hw,
unsigned char *addr, unsigned int reg_n)
{
void __iomem *ioaddr = hw->pcsr;
u32 hi_addr, lo_addr;
/* Read the MAC address from the hardware */
hi_addr = readl(ioaddr + XGMAC_ADDRx_HIGH(reg_n));
lo_addr = readl(ioaddr + XGMAC_ADDRx_LOW(reg_n));
/* Extract the MAC address from the high and low words */
addr[0] = lo_addr & 0xff;
addr[1] = (lo_addr >> 8) & 0xff;
addr[2] = (lo_addr >> 16) & 0xff;
addr[3] = (lo_addr >> 24) & 0xff;
addr[4] = hi_addr & 0xff;
addr[5] = (hi_addr >> 8) & 0xff;
}
static void dwxgmac2_set_eee_mode(struct mac_device_info *hw,
bool en_tx_lpi_clockgating)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_LPI_CTRL);
value |= XGMAC_LPITXEN | XGMAC_LPITXA;
if (en_tx_lpi_clockgating)
value |= XGMAC_TXCGE;
writel(value, ioaddr + XGMAC_LPI_CTRL);
}
static void dwxgmac2_reset_eee_mode(struct mac_device_info *hw)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_LPI_CTRL);
value &= ~(XGMAC_LPITXEN | XGMAC_LPITXA | XGMAC_TXCGE);
writel(value, ioaddr + XGMAC_LPI_CTRL);
}
static void dwxgmac2_set_eee_pls(struct mac_device_info *hw, int link)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_LPI_CTRL);
if (link)
value |= XGMAC_PLS;
else
value &= ~XGMAC_PLS;
writel(value, ioaddr + XGMAC_LPI_CTRL);
}
static void dwxgmac2_set_eee_timer(struct mac_device_info *hw, int ls, int tw)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = (tw & 0xffff) | ((ls & 0x3ff) << 16);
writel(value, ioaddr + XGMAC_LPI_TIMER_CTRL);
}
static void dwxgmac2_set_mchash(void __iomem *ioaddr, u32 *mcfilterbits,
int mcbitslog2)
{
int numhashregs, regs;
switch (mcbitslog2) {
case 6:
numhashregs = 2;
break;
case 7:
numhashregs = 4;
break;
case 8:
numhashregs = 8;
break;
default:
return;
}
for (regs = 0; regs < numhashregs; regs++)
writel(mcfilterbits[regs], ioaddr + XGMAC_HASH_TABLE(regs));
}
static void dwxgmac2_set_filter(struct mac_device_info *hw,
struct net_device *dev)
{
void __iomem *ioaddr = (void __iomem *)dev->base_addr;
u32 value = readl(ioaddr + XGMAC_PACKET_FILTER);
int mcbitslog2 = hw->mcast_bits_log2;
u32 mc_filter[8];
int i;
value &= ~(XGMAC_FILTER_PR | XGMAC_FILTER_HMC | XGMAC_FILTER_PM);
value |= XGMAC_FILTER_HPF;
memset(mc_filter, 0, sizeof(mc_filter));
if (dev->flags & IFF_PROMISC) {
value |= XGMAC_FILTER_PR;
value |= XGMAC_FILTER_PCF;
} else if ((dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(dev) > hw->multicast_filter_bins)) {
value |= XGMAC_FILTER_PM;
for (i = 0; i < XGMAC_MAX_HASH_TABLE; i++)
writel(~0x0, ioaddr + XGMAC_HASH_TABLE(i));
} else if (!netdev_mc_empty(dev) && (dev->flags & IFF_MULTICAST)) {
struct netdev_hw_addr *ha;
value |= XGMAC_FILTER_HMC;
netdev_for_each_mc_addr(ha, dev) {
u32 nr = (bitrev32(~crc32_le(~0, ha->addr, 6)) >>
(32 - mcbitslog2));
mc_filter[nr >> 5] |= (1 << (nr & 0x1F));
}
}
dwxgmac2_set_mchash(ioaddr, mc_filter, mcbitslog2);
/* Handle multiple unicast addresses */
if (netdev_uc_count(dev) > hw->unicast_filter_entries) {
value |= XGMAC_FILTER_PR;
} else {
struct netdev_hw_addr *ha;
int reg = 1;
netdev_for_each_uc_addr(ha, dev) {
dwxgmac2_set_umac_addr(hw, ha->addr, reg);
reg++;
}
for ( ; reg < XGMAC_ADDR_MAX; reg++) {
writel(0, ioaddr + XGMAC_ADDRx_HIGH(reg));
writel(0, ioaddr + XGMAC_ADDRx_LOW(reg));
}
}
writel(value, ioaddr + XGMAC_PACKET_FILTER);
}
static void dwxgmac2_set_mac_loopback(void __iomem *ioaddr, bool enable)
{
u32 value = readl(ioaddr + XGMAC_RX_CONFIG);
if (enable)
value |= XGMAC_CONFIG_LM;
else
value &= ~XGMAC_CONFIG_LM;
writel(value, ioaddr + XGMAC_RX_CONFIG);
}
static int dwxgmac2_rss_write_reg(void __iomem *ioaddr, bool is_key, int idx,
u32 val)
{
u32 ctrl = 0;
writel(val, ioaddr + XGMAC_RSS_DATA);
ctrl |= idx << XGMAC_RSSIA_SHIFT;
ctrl |= is_key ? XGMAC_ADDRT : 0x0;
ctrl |= XGMAC_OB;
writel(ctrl, ioaddr + XGMAC_RSS_ADDR);
return readl_poll_timeout(ioaddr + XGMAC_RSS_ADDR, ctrl,
!(ctrl & XGMAC_OB), 100, 10000);
}
static int dwxgmac2_rss_configure(struct mac_device_info *hw,
struct stmmac_rss *cfg, u32 num_rxq)
{
void __iomem *ioaddr = hw->pcsr;
u32 value, *key;
int i, ret;
value = readl(ioaddr + XGMAC_RSS_CTRL);
if (!cfg || !cfg->enable) {
value &= ~XGMAC_RSSE;
writel(value, ioaddr + XGMAC_RSS_CTRL);
return 0;
}
key = (u32 *)cfg->key;
for (i = 0; i < (ARRAY_SIZE(cfg->key) / sizeof(u32)); i++) {
ret = dwxgmac2_rss_write_reg(ioaddr, true, i, key[i]);
if (ret)
return ret;
}
for (i = 0; i < ARRAY_SIZE(cfg->table); i++) {
ret = dwxgmac2_rss_write_reg(ioaddr, false, i, cfg->table[i]);
if (ret)
return ret;
}
for (i = 0; i < num_rxq; i++)
dwxgmac2_map_mtl_to_dma(hw, i, XGMAC_QDDMACH);
value |= XGMAC_UDP4TE | XGMAC_TCP4TE | XGMAC_IP2TE | XGMAC_RSSE;
writel(value, ioaddr + XGMAC_RSS_CTRL);
return 0;
}
static void dwxgmac2_update_vlan_hash(struct mac_device_info *hw, u32 hash,
__le16 perfect_match, bool is_double)
{
void __iomem *ioaddr = hw->pcsr;
writel(hash, ioaddr + XGMAC_VLAN_HASH_TABLE);
if (hash) {
u32 value = readl(ioaddr + XGMAC_PACKET_FILTER);
value |= XGMAC_FILTER_VTFE;
writel(value, ioaddr + XGMAC_PACKET_FILTER);
value = readl(ioaddr + XGMAC_VLAN_TAG);
value |= XGMAC_VLAN_VTHM | XGMAC_VLAN_ETV;
if (is_double) {
value |= XGMAC_VLAN_EDVLP;
value |= XGMAC_VLAN_ESVL;
value |= XGMAC_VLAN_DOVLTC;
} else {
value &= ~XGMAC_VLAN_EDVLP;
value &= ~XGMAC_VLAN_ESVL;
value &= ~XGMAC_VLAN_DOVLTC;
}
value &= ~XGMAC_VLAN_VID;
writel(value, ioaddr + XGMAC_VLAN_TAG);
} else if (perfect_match) {
u32 value = readl(ioaddr + XGMAC_PACKET_FILTER);
value |= XGMAC_FILTER_VTFE;
writel(value, ioaddr + XGMAC_PACKET_FILTER);
value = readl(ioaddr + XGMAC_VLAN_TAG);
value &= ~XGMAC_VLAN_VTHM;
value |= XGMAC_VLAN_ETV;
if (is_double) {
value |= XGMAC_VLAN_EDVLP;
value |= XGMAC_VLAN_ESVL;
value |= XGMAC_VLAN_DOVLTC;
} else {
value &= ~XGMAC_VLAN_EDVLP;
value &= ~XGMAC_VLAN_ESVL;
value &= ~XGMAC_VLAN_DOVLTC;
}
value &= ~XGMAC_VLAN_VID;
writel(value | perfect_match, ioaddr + XGMAC_VLAN_TAG);
} else {
u32 value = readl(ioaddr + XGMAC_PACKET_FILTER);
value &= ~XGMAC_FILTER_VTFE;
writel(value, ioaddr + XGMAC_PACKET_FILTER);
value = readl(ioaddr + XGMAC_VLAN_TAG);
value &= ~(XGMAC_VLAN_VTHM | XGMAC_VLAN_ETV);
value &= ~(XGMAC_VLAN_EDVLP | XGMAC_VLAN_ESVL);
value &= ~XGMAC_VLAN_DOVLTC;
value &= ~XGMAC_VLAN_VID;
writel(value, ioaddr + XGMAC_VLAN_TAG);
}
}
struct dwxgmac3_error_desc {
bool valid;
const char *desc;
const char *detailed_desc;
};
#define STAT_OFF(field) offsetof(struct stmmac_safety_stats, field)
static void dwxgmac3_log_error(struct net_device *ndev, u32 value, bool corr,
const char *module_name,
const struct dwxgmac3_error_desc *desc,
unsigned long field_offset,
struct stmmac_safety_stats *stats)
{
unsigned long loc, mask;
u8 *bptr = (u8 *)stats;
unsigned long *ptr;
ptr = (unsigned long *)(bptr + field_offset);
mask = value;
for_each_set_bit(loc, &mask, 32) {
netdev_err(ndev, "Found %s error in %s: '%s: %s'\n", corr ?
"correctable" : "uncorrectable", module_name,
desc[loc].desc, desc[loc].detailed_desc);
/* Update counters */
ptr[loc]++;
}
}
static const struct dwxgmac3_error_desc dwxgmac3_mac_errors[32]= {
{ true, "ATPES", "Application Transmit Interface Parity Check Error" },
{ true, "DPES", "Descriptor Cache Data Path Parity Check Error" },
{ true, "TPES", "TSO Data Path Parity Check Error" },
{ true, "TSOPES", "TSO Header Data Path Parity Check Error" },
{ true, "MTPES", "MTL Data Path Parity Check Error" },
{ true, "MTSPES", "MTL TX Status Data Path Parity Check Error" },
{ true, "MTBUPES", "MAC TBU Data Path Parity Check Error" },
{ true, "MTFCPES", "MAC TFC Data Path Parity Check Error" },
{ true, "ARPES", "Application Receive Interface Data Path Parity Check Error" },
{ true, "MRWCPES", "MTL RWC Data Path Parity Check Error" },
{ true, "MRRCPES", "MTL RCC Data Path Parity Check Error" },
{ true, "CWPES", "CSR Write Data Path Parity Check Error" },
{ true, "ASRPES", "AXI Slave Read Data Path Parity Check Error" },
{ true, "TTES", "TX FSM Timeout Error" },
{ true, "RTES", "RX FSM Timeout Error" },
{ true, "CTES", "CSR FSM Timeout Error" },
{ true, "ATES", "APP FSM Timeout Error" },
{ true, "PTES", "PTP FSM Timeout Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 18 */
{ false, "UNKNOWN", "Unknown Error" }, /* 19 */
{ false, "UNKNOWN", "Unknown Error" }, /* 20 */
{ true, "MSTTES", "Master Read/Write Timeout Error" },
{ true, "SLVTES", "Slave Read/Write Timeout Error" },
{ true, "ATITES", "Application Timeout on ATI Interface Error" },
{ true, "ARITES", "Application Timeout on ARI Interface Error" },
{ true, "FSMPES", "FSM State Parity Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 26 */
{ false, "UNKNOWN", "Unknown Error" }, /* 27 */
{ false, "UNKNOWN", "Unknown Error" }, /* 28 */
{ false, "UNKNOWN", "Unknown Error" }, /* 29 */
{ false, "UNKNOWN", "Unknown Error" }, /* 30 */
{ true, "CPI", "Control Register Parity Check Error" },
};
static void dwxgmac3_handle_mac_err(struct net_device *ndev,
void __iomem *ioaddr, bool correctable,
struct stmmac_safety_stats *stats)
{
u32 value;
value = readl(ioaddr + XGMAC_MAC_DPP_FSM_INT_STATUS);
writel(value, ioaddr + XGMAC_MAC_DPP_FSM_INT_STATUS);
dwxgmac3_log_error(ndev, value, correctable, "MAC",
dwxgmac3_mac_errors, STAT_OFF(mac_errors), stats);
}
static const struct dwxgmac3_error_desc dwxgmac3_mtl_errors[32]= {
{ true, "TXCES", "MTL TX Memory Error" },
{ true, "TXAMS", "MTL TX Memory Address Mismatch Error" },
{ true, "TXUES", "MTL TX Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 3 */
{ true, "RXCES", "MTL RX Memory Error" },
{ true, "RXAMS", "MTL RX Memory Address Mismatch Error" },
{ true, "RXUES", "MTL RX Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 7 */
{ true, "ECES", "MTL EST Memory Error" },
{ true, "EAMS", "MTL EST Memory Address Mismatch Error" },
{ true, "EUES", "MTL EST Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 11 */
{ true, "RPCES", "MTL RX Parser Memory Error" },
{ true, "RPAMS", "MTL RX Parser Memory Address Mismatch Error" },
{ true, "RPUES", "MTL RX Parser Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 15 */
{ false, "UNKNOWN", "Unknown Error" }, /* 16 */
{ false, "UNKNOWN", "Unknown Error" }, /* 17 */
{ false, "UNKNOWN", "Unknown Error" }, /* 18 */
{ false, "UNKNOWN", "Unknown Error" }, /* 19 */
{ false, "UNKNOWN", "Unknown Error" }, /* 20 */
{ false, "UNKNOWN", "Unknown Error" }, /* 21 */
{ false, "UNKNOWN", "Unknown Error" }, /* 22 */
{ false, "UNKNOWN", "Unknown Error" }, /* 23 */
{ false, "UNKNOWN", "Unknown Error" }, /* 24 */
{ false, "UNKNOWN", "Unknown Error" }, /* 25 */
{ false, "UNKNOWN", "Unknown Error" }, /* 26 */
{ false, "UNKNOWN", "Unknown Error" }, /* 27 */
{ false, "UNKNOWN", "Unknown Error" }, /* 28 */
{ false, "UNKNOWN", "Unknown Error" }, /* 29 */
{ false, "UNKNOWN", "Unknown Error" }, /* 30 */
{ false, "UNKNOWN", "Unknown Error" }, /* 31 */
};
static void dwxgmac3_handle_mtl_err(struct net_device *ndev,
void __iomem *ioaddr, bool correctable,
struct stmmac_safety_stats *stats)
{
u32 value;
value = readl(ioaddr + XGMAC_MTL_ECC_INT_STATUS);
writel(value, ioaddr + XGMAC_MTL_ECC_INT_STATUS);
dwxgmac3_log_error(ndev, value, correctable, "MTL",
dwxgmac3_mtl_errors, STAT_OFF(mtl_errors), stats);
}
static const struct dwxgmac3_error_desc dwxgmac3_dma_errors[32]= {
{ true, "TCES", "DMA TSO Memory Error" },
{ true, "TAMS", "DMA TSO Memory Address Mismatch Error" },
{ true, "TUES", "DMA TSO Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 3 */
{ true, "DCES", "DMA DCACHE Memory Error" },
{ true, "DAMS", "DMA DCACHE Address Mismatch Error" },
{ true, "DUES", "DMA DCACHE Memory Error" },
{ false, "UNKNOWN", "Unknown Error" }, /* 7 */
{ false, "UNKNOWN", "Unknown Error" }, /* 8 */
{ false, "UNKNOWN", "Unknown Error" }, /* 9 */
{ false, "UNKNOWN", "Unknown Error" }, /* 10 */
{ false, "UNKNOWN", "Unknown Error" }, /* 11 */
{ false, "UNKNOWN", "Unknown Error" }, /* 12 */
{ false, "UNKNOWN", "Unknown Error" }, /* 13 */
{ false, "UNKNOWN", "Unknown Error" }, /* 14 */
{ false, "UNKNOWN", "Unknown Error" }, /* 15 */
{ false, "UNKNOWN", "Unknown Error" }, /* 16 */
{ false, "UNKNOWN", "Unknown Error" }, /* 17 */
{ false, "UNKNOWN", "Unknown Error" }, /* 18 */
{ false, "UNKNOWN", "Unknown Error" }, /* 19 */
{ false, "UNKNOWN", "Unknown Error" }, /* 20 */
{ false, "UNKNOWN", "Unknown Error" }, /* 21 */
{ false, "UNKNOWN", "Unknown Error" }, /* 22 */
{ false, "UNKNOWN", "Unknown Error" }, /* 23 */
{ false, "UNKNOWN", "Unknown Error" }, /* 24 */
{ false, "UNKNOWN", "Unknown Error" }, /* 25 */
{ false, "UNKNOWN", "Unknown Error" }, /* 26 */
{ false, "UNKNOWN", "Unknown Error" }, /* 27 */
{ false, "UNKNOWN", "Unknown Error" }, /* 28 */
{ false, "UNKNOWN", "Unknown Error" }, /* 29 */
{ false, "UNKNOWN", "Unknown Error" }, /* 30 */
{ false, "UNKNOWN", "Unknown Error" }, /* 31 */
};
#define DPP_RX_ERR "Read Rx Descriptor Parity checker Error"
#define DPP_TX_ERR "Read Tx Descriptor Parity checker Error"
static const struct dwxgmac3_error_desc dwxgmac3_dma_dpp_errors[32] = {
{ true, "TDPES0", DPP_TX_ERR },
{ true, "TDPES1", DPP_TX_ERR },
{ true, "TDPES2", DPP_TX_ERR },
{ true, "TDPES3", DPP_TX_ERR },
{ true, "TDPES4", DPP_TX_ERR },
{ true, "TDPES5", DPP_TX_ERR },
{ true, "TDPES6", DPP_TX_ERR },
{ true, "TDPES7", DPP_TX_ERR },
{ true, "TDPES8", DPP_TX_ERR },
{ true, "TDPES9", DPP_TX_ERR },
{ true, "TDPES10", DPP_TX_ERR },
{ true, "TDPES11", DPP_TX_ERR },
{ true, "TDPES12", DPP_TX_ERR },
{ true, "TDPES13", DPP_TX_ERR },
{ true, "TDPES14", DPP_TX_ERR },
{ true, "TDPES15", DPP_TX_ERR },
{ true, "RDPES0", DPP_RX_ERR },
{ true, "RDPES1", DPP_RX_ERR },
{ true, "RDPES2", DPP_RX_ERR },
{ true, "RDPES3", DPP_RX_ERR },
{ true, "RDPES4", DPP_RX_ERR },
{ true, "RDPES5", DPP_RX_ERR },
{ true, "RDPES6", DPP_RX_ERR },
{ true, "RDPES7", DPP_RX_ERR },
{ true, "RDPES8", DPP_RX_ERR },
{ true, "RDPES9", DPP_RX_ERR },
{ true, "RDPES10", DPP_RX_ERR },
{ true, "RDPES11", DPP_RX_ERR },
{ true, "RDPES12", DPP_RX_ERR },
{ true, "RDPES13", DPP_RX_ERR },
{ true, "RDPES14", DPP_RX_ERR },
{ true, "RDPES15", DPP_RX_ERR },
};
static void dwxgmac3_handle_dma_err(struct net_device *ndev,
void __iomem *ioaddr, bool correctable,
struct stmmac_safety_stats *stats)
{
u32 value;
value = readl(ioaddr + XGMAC_DMA_ECC_INT_STATUS);
writel(value, ioaddr + XGMAC_DMA_ECC_INT_STATUS);
dwxgmac3_log_error(ndev, value, correctable, "DMA",
dwxgmac3_dma_errors, STAT_OFF(dma_errors), stats);
value = readl(ioaddr + XGMAC_DMA_DPP_INT_STATUS);
writel(value, ioaddr + XGMAC_DMA_DPP_INT_STATUS);
dwxgmac3_log_error(ndev, value, false, "DMA_DPP",
dwxgmac3_dma_dpp_errors,
STAT_OFF(dma_dpp_errors), stats);
}
static int
dwxgmac3_safety_feat_config(void __iomem *ioaddr, unsigned int asp,
struct stmmac_safety_feature_cfg *safety_cfg)
{
u32 value;
if (!asp)
return -EINVAL;
/* 1. Enable Safety Features */
writel(0x0, ioaddr + XGMAC_MTL_ECC_CONTROL);
/* 2. Enable MTL Safety Interrupts */
value = readl(ioaddr + XGMAC_MTL_ECC_INT_ENABLE);
value |= XGMAC_RPCEIE; /* RX Parser Memory Correctable Error */
value |= XGMAC_ECEIE; /* EST Memory Correctable Error */
value |= XGMAC_RXCEIE; /* RX Memory Correctable Error */
value |= XGMAC_TXCEIE; /* TX Memory Correctable Error */
writel(value, ioaddr + XGMAC_MTL_ECC_INT_ENABLE);
/* 3. Enable DMA Safety Interrupts */
value = readl(ioaddr + XGMAC_DMA_ECC_INT_ENABLE);
value |= XGMAC_DCEIE; /* Descriptor Cache Memory Correctable Error */
value |= XGMAC_TCEIE; /* TSO Memory Correctable Error */
writel(value, ioaddr + XGMAC_DMA_ECC_INT_ENABLE);
/* 0x2: Without ECC or Parity Ports on External Application Interface
* 0x4: Only ECC Protection for External Memory feature is selected
*/
if (asp == 0x2 || asp == 0x4)
return 0;
/* 4. Enable Parity and Timeout for FSM */
value = readl(ioaddr + XGMAC_MAC_FSM_CONTROL);
value |= XGMAC_PRTYEN; /* FSM Parity Feature */
value |= XGMAC_TMOUTEN; /* FSM Timeout Feature */
writel(value, ioaddr + XGMAC_MAC_FSM_CONTROL);
/* 5. Enable Data Path Parity Protection */
value = readl(ioaddr + XGMAC_MTL_DPP_CONTROL);
/* already enabled by default, explicit enable it again */
value &= ~XGMAC_DPP_DISABLE;
writel(value, ioaddr + XGMAC_MTL_DPP_CONTROL);
return 0;
}
static int dwxgmac3_safety_feat_irq_status(struct net_device *ndev,
void __iomem *ioaddr,
unsigned int asp,
struct stmmac_safety_stats *stats)
{
bool err, corr;
u32 mtl, dma;
int ret = 0;
if (!asp)
return -EINVAL;
mtl = readl(ioaddr + XGMAC_MTL_SAFETY_INT_STATUS);
dma = readl(ioaddr + XGMAC_DMA_SAFETY_INT_STATUS);
err = (mtl & XGMAC_MCSIS) || (dma & XGMAC_MCSIS);
corr = false;
if (err) {
dwxgmac3_handle_mac_err(ndev, ioaddr, corr, stats);
ret |= !corr;
}
err = (mtl & (XGMAC_MEUIS | XGMAC_MECIS)) ||
(dma & (XGMAC_MSUIS | XGMAC_MSCIS));
corr = (mtl & XGMAC_MECIS) || (dma & XGMAC_MSCIS);
if (err) {
dwxgmac3_handle_mtl_err(ndev, ioaddr, corr, stats);
ret |= !corr;
}
/* DMA_DPP_Interrupt_Status is indicated by MCSIS bit in
* DMA_Safety_Interrupt_Status, so we handle DMA Data Path
* Parity Errors here
*/
err = dma & (XGMAC_DEUIS | XGMAC_DECIS | XGMAC_MCSIS);
corr = dma & XGMAC_DECIS;
if (err) {
dwxgmac3_handle_dma_err(ndev, ioaddr, corr, stats);
ret |= !corr;
}
return ret;
}
static const struct dwxgmac3_error {
const struct dwxgmac3_error_desc *desc;
} dwxgmac3_all_errors[] = {
{ dwxgmac3_mac_errors },
{ dwxgmac3_mtl_errors },
{ dwxgmac3_dma_errors },
{ dwxgmac3_dma_dpp_errors },
};
static int dwxgmac3_safety_feat_dump(struct stmmac_safety_stats *stats,
int index, unsigned long *count,
const char **desc)
{
int module = index / 32, offset = index % 32;
unsigned long *ptr = (unsigned long *)stats;
if (module >= ARRAY_SIZE(dwxgmac3_all_errors))
return -EINVAL;
if (!dwxgmac3_all_errors[module].desc[offset].valid)
return -EINVAL;
if (count)
*count = *(ptr + index);
if (desc)
*desc = dwxgmac3_all_errors[module].desc[offset].desc;
return 0;
}
static int dwxgmac3_rxp_disable(void __iomem *ioaddr)
{
u32 val = readl(ioaddr + XGMAC_MTL_OPMODE);
val &= ~XGMAC_FRPE;
writel(val, ioaddr + XGMAC_MTL_OPMODE);
return 0;
}
static void dwxgmac3_rxp_enable(void __iomem *ioaddr)
{
u32 val;
val = readl(ioaddr + XGMAC_MTL_OPMODE);
val |= XGMAC_FRPE;
writel(val, ioaddr + XGMAC_MTL_OPMODE);
}
static int dwxgmac3_rxp_update_single_entry(void __iomem *ioaddr,
struct stmmac_tc_entry *entry,
int pos)
{
int ret, i;
for (i = 0; i < (sizeof(entry->val) / sizeof(u32)); i++) {
int real_pos = pos * (sizeof(entry->val) / sizeof(u32)) + i;
u32 val;
/* Wait for ready */
ret = readl_poll_timeout(ioaddr + XGMAC_MTL_RXP_IACC_CTRL_ST,
val, !(val & XGMAC_STARTBUSY), 1, 10000);
if (ret)
return ret;
/* Write data */
val = *((u32 *)&entry->val + i);
writel(val, ioaddr + XGMAC_MTL_RXP_IACC_DATA);
/* Write pos */
val = real_pos & XGMAC_ADDR;
writel(val, ioaddr + XGMAC_MTL_RXP_IACC_CTRL_ST);
/* Write OP */
val |= XGMAC_WRRDN;
writel(val, ioaddr + XGMAC_MTL_RXP_IACC_CTRL_ST);
/* Start Write */
val |= XGMAC_STARTBUSY;
writel(val, ioaddr + XGMAC_MTL_RXP_IACC_CTRL_ST);
/* Wait for done */
ret = readl_poll_timeout(ioaddr + XGMAC_MTL_RXP_IACC_CTRL_ST,
val, !(val & XGMAC_STARTBUSY), 1, 10000);
if (ret)
return ret;
}
return 0;
}
static struct stmmac_tc_entry *
dwxgmac3_rxp_get_next_entry(struct stmmac_tc_entry *entries,
unsigned int count, u32 curr_prio)
{
struct stmmac_tc_entry *entry;
u32 min_prio = ~0x0;
int i, min_prio_idx;
bool found = false;
for (i = count - 1; i >= 0; i--) {
entry = &entries[i];
/* Do not update unused entries */
if (!entry->in_use)
continue;
/* Do not update already updated entries (i.e. fragments) */
if (entry->in_hw)
continue;
/* Let last entry be updated last */
if (entry->is_last)
continue;
/* Do not return fragments */
if (entry->is_frag)
continue;
/* Check if we already checked this prio */
if (entry->prio < curr_prio)
continue;
/* Check if this is the minimum prio */
if (entry->prio < min_prio) {
min_prio = entry->prio;
min_prio_idx = i;
found = true;
}
}
if (found)
return &entries[min_prio_idx];
return NULL;
}
static int dwxgmac3_rxp_config(void __iomem *ioaddr,
struct stmmac_tc_entry *entries,
unsigned int count)
{
struct stmmac_tc_entry *entry, *frag;
int i, ret, nve = 0;
u32 curr_prio = 0;
u32 old_val, val;
/* Force disable RX */
old_val = readl(ioaddr + XGMAC_RX_CONFIG);
val = old_val & ~XGMAC_CONFIG_RE;
writel(val, ioaddr + XGMAC_RX_CONFIG);
/* Disable RX Parser */
ret = dwxgmac3_rxp_disable(ioaddr);
if (ret)
goto re_enable;
/* Set all entries as NOT in HW */
for (i = 0; i < count; i++) {
entry = &entries[i];
entry->in_hw = false;
}
/* Update entries by reverse order */
while (1) {
entry = dwxgmac3_rxp_get_next_entry(entries, count, curr_prio);
if (!entry)
break;
curr_prio = entry->prio;
frag = entry->frag_ptr;
/* Set special fragment requirements */
if (frag) {
entry->val.af = 0;
entry->val.rf = 0;
entry->val.nc = 1;
entry->val.ok_index = nve + 2;
}
ret = dwxgmac3_rxp_update_single_entry(ioaddr, entry, nve);
if (ret)
goto re_enable;
entry->table_pos = nve++;
entry->in_hw = true;
if (frag && !frag->in_hw) {
ret = dwxgmac3_rxp_update_single_entry(ioaddr, frag, nve);
if (ret)
goto re_enable;
frag->table_pos = nve++;
frag->in_hw = true;
}
}
if (!nve)
goto re_enable;
/* Update all pass entry */
for (i = 0; i < count; i++) {
entry = &entries[i];
if (!entry->is_last)
continue;
ret = dwxgmac3_rxp_update_single_entry(ioaddr, entry, nve);
if (ret)
goto re_enable;
entry->table_pos = nve++;
}
/* Assume n. of parsable entries == n. of valid entries */
val = (nve << 16) & XGMAC_NPE;
val |= nve & XGMAC_NVE;
writel(val, ioaddr + XGMAC_MTL_RXP_CONTROL_STATUS);
/* Enable RX Parser */
dwxgmac3_rxp_enable(ioaddr);
re_enable:
/* Re-enable RX */
writel(old_val, ioaddr + XGMAC_RX_CONFIG);
return ret;
}
static int dwxgmac2_get_mac_tx_timestamp(struct mac_device_info *hw, u64 *ts)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
if (readl_poll_timeout_atomic(ioaddr + XGMAC_TIMESTAMP_STATUS,
value, value & XGMAC_TXTSC, 100, 10000))
return -EBUSY;
*ts = readl(ioaddr + XGMAC_TXTIMESTAMP_NSEC) & XGMAC_TXTSSTSLO;
*ts += readl(ioaddr + XGMAC_TXTIMESTAMP_SEC) * 1000000000ULL;
return 0;
}
static int dwxgmac2_flex_pps_config(void __iomem *ioaddr, int index,
struct stmmac_pps_cfg *cfg, bool enable,
u32 sub_second_inc, u32 systime_flags)
{
u32 tnsec = readl(ioaddr + XGMAC_PPSx_TARGET_TIME_NSEC(index));
u32 val = readl(ioaddr + XGMAC_PPS_CONTROL);
u64 period;
if (!cfg->available)
return -EINVAL;
if (tnsec & XGMAC_TRGTBUSY0)
return -EBUSY;
if (!sub_second_inc || !systime_flags)
return -EINVAL;
val &= ~XGMAC_PPSx_MASK(index);
if (!enable) {
val |= XGMAC_PPSCMDx(index, XGMAC_PPSCMD_STOP);
writel(val, ioaddr + XGMAC_PPS_CONTROL);
return 0;
}
val |= XGMAC_PPSCMDx(index, XGMAC_PPSCMD_START);
val |= XGMAC_TRGTMODSELx(index, XGMAC_PPSCMD_START);
/* XGMAC Core has 4 PPS outputs at most.
*
* Prior XGMAC Core 3.20, Fixed mode or Flexible mode are selectable for
* PPS0 only via PPSEN0. PPS{1,2,3} are in Flexible mode by default,
* and can not be switched to Fixed mode, since PPSEN{1,2,3} are
* read-only reserved to 0.
* But we always set PPSEN{1,2,3} do not make things worse ;-)
*
* From XGMAC Core 3.20 and later, PPSEN{0,1,2,3} are writable and must
* be set, or the PPS outputs stay in Fixed PPS mode by default.
*/
val |= XGMAC_PPSENx(index);
writel(cfg->start.tv_sec, ioaddr + XGMAC_PPSx_TARGET_TIME_SEC(index));
if (!(systime_flags & PTP_TCR_TSCTRLSSR))
cfg->start.tv_nsec = (cfg->start.tv_nsec * 1000) / 465;
writel(cfg->start.tv_nsec, ioaddr + XGMAC_PPSx_TARGET_TIME_NSEC(index));
period = cfg->period.tv_sec * 1000000000;
period += cfg->period.tv_nsec;
do_div(period, sub_second_inc);
if (period <= 1)
return -EINVAL;
writel(period - 1, ioaddr + XGMAC_PPSx_INTERVAL(index));
period >>= 1;
if (period <= 1)
return -EINVAL;
writel(period - 1, ioaddr + XGMAC_PPSx_WIDTH(index));
/* Finally, activate it */
writel(val, ioaddr + XGMAC_PPS_CONTROL);
return 0;
}
static void dwxgmac2_sarc_configure(void __iomem *ioaddr, int val)
{
u32 value = readl(ioaddr + XGMAC_TX_CONFIG);
value &= ~XGMAC_CONFIG_SARC;
value |= val << XGMAC_CONFIG_SARC_SHIFT;
writel(value, ioaddr + XGMAC_TX_CONFIG);
}
static void dwxgmac2_enable_vlan(struct mac_device_info *hw, u32 type)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XGMAC_VLAN_INCL);
value |= XGMAC_VLAN_VLTI;
value |= XGMAC_VLAN_CSVL; /* Only use SVLAN */
value &= ~XGMAC_VLAN_VLC;
value |= (type << XGMAC_VLAN_VLC_SHIFT) & XGMAC_VLAN_VLC;
writel(value, ioaddr + XGMAC_VLAN_INCL);
}
static int dwxgmac2_filter_wait(struct mac_device_info *hw)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
if (readl_poll_timeout(ioaddr + XGMAC_L3L4_ADDR_CTRL, value,
!(value & XGMAC_XB), 100, 10000))
return -EBUSY;
return 0;
}
static int dwxgmac2_filter_read(struct mac_device_info *hw, u32 filter_no,
u8 reg, u32 *data)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
int ret;
ret = dwxgmac2_filter_wait(hw);
if (ret)
return ret;
value = ((filter_no << XGMAC_IDDR_FNUM) | reg) << XGMAC_IDDR_SHIFT;
value |= XGMAC_TT | XGMAC_XB;
writel(value, ioaddr + XGMAC_L3L4_ADDR_CTRL);
ret = dwxgmac2_filter_wait(hw);
if (ret)
return ret;
*data = readl(ioaddr + XGMAC_L3L4_DATA);
return 0;
}
static int dwxgmac2_filter_write(struct mac_device_info *hw, u32 filter_no,
u8 reg, u32 data)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
int ret;
ret = dwxgmac2_filter_wait(hw);
if (ret)
return ret;
writel(data, ioaddr + XGMAC_L3L4_DATA);
value = ((filter_no << XGMAC_IDDR_FNUM) | reg) << XGMAC_IDDR_SHIFT;
value |= XGMAC_XB;
writel(value, ioaddr + XGMAC_L3L4_ADDR_CTRL);
return dwxgmac2_filter_wait(hw);
}
static int dwxgmac2_config_l3_filter(struct mac_device_info *hw, u32 filter_no,
bool en, bool ipv6, bool sa, bool inv,
u32 match)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
int ret;
value = readl(ioaddr + XGMAC_PACKET_FILTER);
value |= XGMAC_FILTER_IPFE;
writel(value, ioaddr + XGMAC_PACKET_FILTER);
ret = dwxgmac2_filter_read(hw, filter_no, XGMAC_L3L4_CTRL, &value);
if (ret)
return ret;
/* For IPv6 not both SA/DA filters can be active */
if (ipv6) {
value |= XGMAC_L3PEN0;
value &= ~(XGMAC_L3SAM0 | XGMAC_L3SAIM0);
value &= ~(XGMAC_L3DAM0 | XGMAC_L3DAIM0);
if (sa) {
value |= XGMAC_L3SAM0;
if (inv)
value |= XGMAC_L3SAIM0;
} else {
value |= XGMAC_L3DAM0;
if (inv)
value |= XGMAC_L3DAIM0;
}
} else {
value &= ~XGMAC_L3PEN0;
if (sa) {
value |= XGMAC_L3SAM0;
if (inv)
value |= XGMAC_L3SAIM0;
} else {
value |= XGMAC_L3DAM0;
if (inv)
value |= XGMAC_L3DAIM0;
}
}
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L3L4_CTRL, value);
if (ret)
return ret;
if (sa) {
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L3_ADDR0, match);
if (ret)
return ret;
} else {
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L3_ADDR1, match);
if (ret)
return ret;
}
if (!en)
return dwxgmac2_filter_write(hw, filter_no, XGMAC_L3L4_CTRL, 0);
return 0;
}
static int dwxgmac2_config_l4_filter(struct mac_device_info *hw, u32 filter_no,
bool en, bool udp, bool sa, bool inv,
u32 match)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
int ret;
value = readl(ioaddr + XGMAC_PACKET_FILTER);
value |= XGMAC_FILTER_IPFE;
writel(value, ioaddr + XGMAC_PACKET_FILTER);
ret = dwxgmac2_filter_read(hw, filter_no, XGMAC_L3L4_CTRL, &value);
if (ret)
return ret;
if (udp) {
value |= XGMAC_L4PEN0;
} else {
value &= ~XGMAC_L4PEN0;
}
value &= ~(XGMAC_L4SPM0 | XGMAC_L4SPIM0);
value &= ~(XGMAC_L4DPM0 | XGMAC_L4DPIM0);
if (sa) {
value |= XGMAC_L4SPM0;
if (inv)
value |= XGMAC_L4SPIM0;
} else {
value |= XGMAC_L4DPM0;
if (inv)
value |= XGMAC_L4DPIM0;
}
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L3L4_CTRL, value);
if (ret)
return ret;
if (sa) {
value = match & XGMAC_L4SP0;
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L4_ADDR, value);
if (ret)
return ret;
} else {
value = (match << XGMAC_L4DP0_SHIFT) & XGMAC_L4DP0;
ret = dwxgmac2_filter_write(hw, filter_no, XGMAC_L4_ADDR, value);
if (ret)
return ret;
}
if (!en)
return dwxgmac2_filter_write(hw, filter_no, XGMAC_L3L4_CTRL, 0);
return 0;
}
static void dwxgmac2_set_arp_offload(struct mac_device_info *hw, bool en,
u32 addr)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
writel(addr, ioaddr + XGMAC_ARP_ADDR);
value = readl(ioaddr + XGMAC_RX_CONFIG);
if (en)
value |= XGMAC_CONFIG_ARPEN;
else
value &= ~XGMAC_CONFIG_ARPEN;
writel(value, ioaddr + XGMAC_RX_CONFIG);
}
static void dwxgmac3_fpe_configure(void __iomem *ioaddr, struct stmmac_fpe_cfg *cfg,
u32 num_txq,
u32 num_rxq, bool enable)
{
u32 value;
if (!enable) {
value = readl(ioaddr + XGMAC_FPE_CTRL_STS);
value &= ~XGMAC_EFPE;
writel(value, ioaddr + XGMAC_FPE_CTRL_STS);
return;
}
value = readl(ioaddr + XGMAC_RXQ_CTRL1);
value &= ~XGMAC_RQ;
value |= (num_rxq - 1) << XGMAC_RQ_SHIFT;
writel(value, ioaddr + XGMAC_RXQ_CTRL1);
value = readl(ioaddr + XGMAC_FPE_CTRL_STS);
value |= XGMAC_EFPE;
writel(value, ioaddr + XGMAC_FPE_CTRL_STS);
}
const struct stmmac_ops dwxgmac210_ops = {
.core_init = dwxgmac2_core_init,
.set_mac = dwxgmac2_set_mac,
.rx_ipc = dwxgmac2_rx_ipc,
.rx_queue_enable = dwxgmac2_rx_queue_enable,
.rx_queue_prio = dwxgmac2_rx_queue_prio,
.tx_queue_prio = dwxgmac2_tx_queue_prio,
.rx_queue_routing = dwxgmac2_rx_queue_routing,
.prog_mtl_rx_algorithms = dwxgmac2_prog_mtl_rx_algorithms,
.prog_mtl_tx_algorithms = dwxgmac2_prog_mtl_tx_algorithms,
.set_mtl_tx_queue_weight = dwxgmac2_set_mtl_tx_queue_weight,
.map_mtl_to_dma = dwxgmac2_map_mtl_to_dma,
.config_cbs = dwxgmac2_config_cbs,
.dump_regs = dwxgmac2_dump_regs,
.host_irq_status = dwxgmac2_host_irq_status,
.host_mtl_irq_status = dwxgmac2_host_mtl_irq_status,
.flow_ctrl = dwxgmac2_flow_ctrl,
.pmt = dwxgmac2_pmt,
.set_umac_addr = dwxgmac2_set_umac_addr,
.get_umac_addr = dwxgmac2_get_umac_addr,
.set_eee_mode = dwxgmac2_set_eee_mode,
.reset_eee_mode = dwxgmac2_reset_eee_mode,
.set_eee_timer = dwxgmac2_set_eee_timer,
.set_eee_pls = dwxgmac2_set_eee_pls,
.debug = NULL,
.set_filter = dwxgmac2_set_filter,
.safety_feat_config = dwxgmac3_safety_feat_config,
.safety_feat_irq_status = dwxgmac3_safety_feat_irq_status,
.safety_feat_dump = dwxgmac3_safety_feat_dump,
.set_mac_loopback = dwxgmac2_set_mac_loopback,
.rss_configure = dwxgmac2_rss_configure,
.update_vlan_hash = dwxgmac2_update_vlan_hash,
.rxp_config = dwxgmac3_rxp_config,
.get_mac_tx_timestamp = dwxgmac2_get_mac_tx_timestamp,
.flex_pps_config = dwxgmac2_flex_pps_config,
.sarc_configure = dwxgmac2_sarc_configure,
.enable_vlan = dwxgmac2_enable_vlan,
.config_l3_filter = dwxgmac2_config_l3_filter,
.config_l4_filter = dwxgmac2_config_l4_filter,
.set_arp_offload = dwxgmac2_set_arp_offload,
.fpe_configure = dwxgmac3_fpe_configure,
};
static void dwxlgmac2_rx_queue_enable(struct mac_device_info *hw, u8 mode,
u32 queue)
{
void __iomem *ioaddr = hw->pcsr;
u32 value;
value = readl(ioaddr + XLGMAC_RXQ_ENABLE_CTRL0) & ~XGMAC_RXQEN(queue);
if (mode == MTL_QUEUE_AVB)
value |= 0x1 << XGMAC_RXQEN_SHIFT(queue);
else if (mode == MTL_QUEUE_DCB)
value |= 0x2 << XGMAC_RXQEN_SHIFT(queue);
writel(value, ioaddr + XLGMAC_RXQ_ENABLE_CTRL0);
}
const struct stmmac_ops dwxlgmac2_ops = {
.core_init = dwxgmac2_core_init,
.set_mac = dwxgmac2_set_mac,
.rx_ipc = dwxgmac2_rx_ipc,
.rx_queue_enable = dwxlgmac2_rx_queue_enable,
.rx_queue_prio = dwxgmac2_rx_queue_prio,
.tx_queue_prio = dwxgmac2_tx_queue_prio,
.rx_queue_routing = dwxgmac2_rx_queue_routing,
.prog_mtl_rx_algorithms = dwxgmac2_prog_mtl_rx_algorithms,
.prog_mtl_tx_algorithms = dwxgmac2_prog_mtl_tx_algorithms,
.set_mtl_tx_queue_weight = dwxgmac2_set_mtl_tx_queue_weight,
.map_mtl_to_dma = dwxgmac2_map_mtl_to_dma,
.config_cbs = dwxgmac2_config_cbs,
.dump_regs = dwxgmac2_dump_regs,
.host_irq_status = dwxgmac2_host_irq_status,
.host_mtl_irq_status = dwxgmac2_host_mtl_irq_status,
.flow_ctrl = dwxgmac2_flow_ctrl,
.pmt = dwxgmac2_pmt,
.set_umac_addr = dwxgmac2_set_umac_addr,
.get_umac_addr = dwxgmac2_get_umac_addr,
.set_eee_mode = dwxgmac2_set_eee_mode,
.reset_eee_mode = dwxgmac2_reset_eee_mode,
.set_eee_timer = dwxgmac2_set_eee_timer,
.set_eee_pls = dwxgmac2_set_eee_pls,
.debug = NULL,
.set_filter = dwxgmac2_set_filter,
.safety_feat_config = dwxgmac3_safety_feat_config,
.safety_feat_irq_status = dwxgmac3_safety_feat_irq_status,
.safety_feat_dump = dwxgmac3_safety_feat_dump,
.set_mac_loopback = dwxgmac2_set_mac_loopback,
.rss_configure = dwxgmac2_rss_configure,
.update_vlan_hash = dwxgmac2_update_vlan_hash,
.rxp_config = dwxgmac3_rxp_config,
.get_mac_tx_timestamp = dwxgmac2_get_mac_tx_timestamp,
.flex_pps_config = dwxgmac2_flex_pps_config,
.sarc_configure = dwxgmac2_sarc_configure,
.enable_vlan = dwxgmac2_enable_vlan,
.config_l3_filter = dwxgmac2_config_l3_filter,
.config_l4_filter = dwxgmac2_config_l4_filter,
.set_arp_offload = dwxgmac2_set_arp_offload,
.fpe_configure = dwxgmac3_fpe_configure,
};
int dwxgmac2_setup(struct stmmac_priv *priv)
{
struct mac_device_info *mac = priv->hw;
dev_info(priv->device, "\tXGMAC2\n");
priv->dev->priv_flags |= IFF_UNICAST_FLT;
mac->pcsr = priv->ioaddr;
mac->multicast_filter_bins = priv->plat->multicast_filter_bins;
mac->unicast_filter_entries = priv->plat->unicast_filter_entries;
mac->mcast_bits_log2 = 0;
if (mac->multicast_filter_bins)
mac->mcast_bits_log2 = ilog2(mac->multicast_filter_bins);
mac->link.caps = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_1000FD | MAC_2500FD | MAC_5000FD |
MAC_10000FD;
mac->link.duplex = 0;
mac->link.speed10 = XGMAC_CONFIG_SS_10_MII;
mac->link.speed100 = XGMAC_CONFIG_SS_100_MII;
mac->link.speed1000 = XGMAC_CONFIG_SS_1000_GMII;
mac->link.speed2500 = XGMAC_CONFIG_SS_2500_GMII;
mac->link.xgmii.speed2500 = XGMAC_CONFIG_SS_2500;
mac->link.xgmii.speed5000 = XGMAC_CONFIG_SS_5000;
mac->link.xgmii.speed10000 = XGMAC_CONFIG_SS_10000;
mac->link.speed_mask = XGMAC_CONFIG_SS_MASK;
mac->mii.addr = XGMAC_MDIO_ADDR;
mac->mii.data = XGMAC_MDIO_DATA;
mac->mii.addr_shift = 16;
mac->mii.addr_mask = GENMASK(20, 16);
mac->mii.reg_shift = 0;
mac->mii.reg_mask = GENMASK(15, 0);
mac->mii.clk_csr_shift = 19;
mac->mii.clk_csr_mask = GENMASK(21, 19);
return 0;
}
int dwxlgmac2_setup(struct stmmac_priv *priv)
{
struct mac_device_info *mac = priv->hw;
dev_info(priv->device, "\tXLGMAC\n");
priv->dev->priv_flags |= IFF_UNICAST_FLT;
mac->pcsr = priv->ioaddr;
mac->multicast_filter_bins = priv->plat->multicast_filter_bins;
mac->unicast_filter_entries = priv->plat->unicast_filter_entries;
mac->mcast_bits_log2 = 0;
if (mac->multicast_filter_bins)
mac->mcast_bits_log2 = ilog2(mac->multicast_filter_bins);
mac->link.caps = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_1000FD | MAC_2500FD | MAC_5000FD |
MAC_10000FD | MAC_25000FD |
MAC_40000FD | MAC_50000FD |
MAC_100000FD;
mac->link.duplex = 0;
mac->link.speed1000 = XLGMAC_CONFIG_SS_1000;
mac->link.speed2500 = XLGMAC_CONFIG_SS_2500;
mac->link.xgmii.speed10000 = XLGMAC_CONFIG_SS_10G;
mac->link.xlgmii.speed25000 = XLGMAC_CONFIG_SS_25G;
mac->link.xlgmii.speed40000 = XLGMAC_CONFIG_SS_40G;
mac->link.xlgmii.speed50000 = XLGMAC_CONFIG_SS_50G;
mac->link.xlgmii.speed100000 = XLGMAC_CONFIG_SS_100G;
mac->link.speed_mask = XLGMAC_CONFIG_SS;
mac->mii.addr = XGMAC_MDIO_ADDR;
mac->mii.data = XGMAC_MDIO_DATA;
mac->mii.addr_shift = 16;
mac->mii.addr_mask = GENMASK(20, 16);
mac->mii.reg_shift = 0;
mac->mii.reg_mask = GENMASK(15, 0);
mac->mii.clk_csr_shift = 19;
mac->mii.clk_csr_mask = GENMASK(21, 19);
return 0;
}