| // SPDX-License-Identifier: GPL-2.0 or MIT |
| /* Copyright 2023 Collabora ltd. */ |
| |
| #include <drm/drm_drv.h> |
| #include <drm/drm_exec.h> |
| #include <drm/drm_gem_shmem_helper.h> |
| #include <drm/drm_managed.h> |
| #include <drm/gpu_scheduler.h> |
| #include <drm/panthor_drm.h> |
| |
| #include <linux/build_bug.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma-resv.h> |
| #include <linux/firmware.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/iosys-map.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| |
| #include "panthor_devfreq.h" |
| #include "panthor_device.h" |
| #include "panthor_fw.h" |
| #include "panthor_gem.h" |
| #include "panthor_gpu.h" |
| #include "panthor_heap.h" |
| #include "panthor_mmu.h" |
| #include "panthor_regs.h" |
| #include "panthor_sched.h" |
| |
| /** |
| * DOC: Scheduler |
| * |
| * Mali CSF hardware adopts a firmware-assisted scheduling model, where |
| * the firmware takes care of scheduling aspects, to some extent. |
| * |
| * The scheduling happens at the scheduling group level, each group |
| * contains 1 to N queues (N is FW/hardware dependent, and exposed |
| * through the firmware interface). Each queue is assigned a command |
| * stream ring buffer, which serves as a way to get jobs submitted to |
| * the GPU, among other things. |
| * |
| * The firmware can schedule a maximum of M groups (M is FW/hardware |
| * dependent, and exposed through the firmware interface). Passed |
| * this maximum number of groups, the kernel must take care of |
| * rotating the groups passed to the firmware so every group gets |
| * a chance to have his queues scheduled for execution. |
| * |
| * The current implementation only supports with kernel-mode queues. |
| * In other terms, userspace doesn't have access to the ring-buffer. |
| * Instead, userspace passes indirect command stream buffers that are |
| * called from the queue ring-buffer by the kernel using a pre-defined |
| * sequence of command stream instructions to ensure the userspace driver |
| * always gets consistent results (cache maintenance, |
| * synchronization, ...). |
| * |
| * We rely on the drm_gpu_scheduler framework to deal with job |
| * dependencies and submission. As any other driver dealing with a |
| * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each |
| * entity has its own job scheduler. When a job is ready to be executed |
| * (all its dependencies are met), it is pushed to the appropriate |
| * queue ring-buffer, and the group is scheduled for execution if it |
| * wasn't already active. |
| * |
| * Kernel-side group scheduling is timeslice-based. When we have less |
| * groups than there are slots, the periodic tick is disabled and we |
| * just let the FW schedule the active groups. When there are more |
| * groups than slots, we let each group a chance to execute stuff for |
| * a given amount of time, and then re-evaluate and pick new groups |
| * to schedule. The group selection algorithm is based on |
| * priority+round-robin. |
| * |
| * Even though user-mode queues is out of the scope right now, the |
| * current design takes them into account by avoiding any guess on the |
| * group/queue state that would be based on information we wouldn't have |
| * if userspace was in charge of the ring-buffer. That's also one of the |
| * reason we don't do 'cooperative' scheduling (encoding FW group slot |
| * reservation as dma_fence that would be returned from the |
| * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as |
| * a queue of waiters, ordered by job submission order). This approach |
| * would work for kernel-mode queues, but would make user-mode queues a |
| * lot more complicated to retrofit. |
| */ |
| |
| #define JOB_TIMEOUT_MS 5000 |
| |
| #define MIN_CS_PER_CSG 8 |
| |
| #define MIN_CSGS 3 |
| #define MAX_CSG_PRIO 0xf |
| |
| struct panthor_group; |
| |
| /** |
| * struct panthor_csg_slot - Command stream group slot |
| * |
| * This represents a FW slot for a scheduling group. |
| */ |
| struct panthor_csg_slot { |
| /** @group: Scheduling group bound to this slot. */ |
| struct panthor_group *group; |
| |
| /** @priority: Group priority. */ |
| u8 priority; |
| |
| /** |
| * @idle: True if the group bound to this slot is idle. |
| * |
| * A group is idle when it has nothing waiting for execution on |
| * all its queues, or when queues are blocked waiting for something |
| * to happen (synchronization object). |
| */ |
| bool idle; |
| }; |
| |
| /** |
| * enum panthor_csg_priority - Group priority |
| */ |
| enum panthor_csg_priority { |
| /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ |
| PANTHOR_CSG_PRIORITY_LOW = 0, |
| |
| /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ |
| PANTHOR_CSG_PRIORITY_MEDIUM, |
| |
| /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ |
| PANTHOR_CSG_PRIORITY_HIGH, |
| |
| /** |
| * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. |
| * |
| * Real-time priority allows one to preempt scheduling of other |
| * non-real-time groups. When such a group becomes executable, |
| * it will evict the group with the lowest non-rt priority if |
| * there's no free group slot available. |
| * |
| * Currently not exposed to userspace. |
| */ |
| PANTHOR_CSG_PRIORITY_RT, |
| |
| /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ |
| PANTHOR_CSG_PRIORITY_COUNT, |
| }; |
| |
| /** |
| * struct panthor_scheduler - Object used to manage the scheduler |
| */ |
| struct panthor_scheduler { |
| /** @ptdev: Device. */ |
| struct panthor_device *ptdev; |
| |
| /** |
| * @wq: Workqueue used by our internal scheduler logic and |
| * drm_gpu_scheduler. |
| * |
| * Used for the scheduler tick, group update or other kind of FW |
| * event processing that can't be handled in the threaded interrupt |
| * path. Also passed to the drm_gpu_scheduler instances embedded |
| * in panthor_queue. |
| */ |
| struct workqueue_struct *wq; |
| |
| /** |
| * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. |
| * |
| * We have a queue dedicated to heap chunk allocation works to avoid |
| * blocking the rest of the scheduler if the allocation tries to |
| * reclaim memory. |
| */ |
| struct workqueue_struct *heap_alloc_wq; |
| |
| /** @tick_work: Work executed on a scheduling tick. */ |
| struct delayed_work tick_work; |
| |
| /** |
| * @sync_upd_work: Work used to process synchronization object updates. |
| * |
| * We use this work to unblock queues/groups that were waiting on a |
| * synchronization object. |
| */ |
| struct work_struct sync_upd_work; |
| |
| /** |
| * @fw_events_work: Work used to process FW events outside the interrupt path. |
| * |
| * Even if the interrupt is threaded, we need any event processing |
| * that require taking the panthor_scheduler::lock to be processed |
| * outside the interrupt path so we don't block the tick logic when |
| * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the |
| * event processing requires taking this lock, we just delegate all |
| * FW event processing to the scheduler workqueue. |
| */ |
| struct work_struct fw_events_work; |
| |
| /** |
| * @fw_events: Bitmask encoding pending FW events. |
| */ |
| atomic_t fw_events; |
| |
| /** |
| * @resched_target: When the next tick should occur. |
| * |
| * Expressed in jiffies. |
| */ |
| u64 resched_target; |
| |
| /** |
| * @last_tick: When the last tick occurred. |
| * |
| * Expressed in jiffies. |
| */ |
| u64 last_tick; |
| |
| /** @tick_period: Tick period in jiffies. */ |
| u64 tick_period; |
| |
| /** |
| * @lock: Lock protecting access to all the scheduler fields. |
| * |
| * Should be taken in the tick work, the irq handler, and anywhere the @groups |
| * fields are touched. |
| */ |
| struct mutex lock; |
| |
| /** @groups: Various lists used to classify groups. */ |
| struct { |
| /** |
| * @runnable: Runnable group lists. |
| * |
| * When a group has queues that want to execute something, |
| * its panthor_group::run_node should be inserted here. |
| * |
| * One list per-priority. |
| */ |
| struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; |
| |
| /** |
| * @idle: Idle group lists. |
| * |
| * When all queues of a group are idle (either because they |
| * have nothing to execute, or because they are blocked), the |
| * panthor_group::run_node field should be inserted here. |
| * |
| * One list per-priority. |
| */ |
| struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; |
| |
| /** |
| * @waiting: List of groups whose queues are blocked on a |
| * synchronization object. |
| * |
| * Insert panthor_group::wait_node here when a group is waiting |
| * for synchronization objects to be signaled. |
| * |
| * This list is evaluated in the @sync_upd_work work. |
| */ |
| struct list_head waiting; |
| } groups; |
| |
| /** |
| * @csg_slots: FW command stream group slots. |
| */ |
| struct panthor_csg_slot csg_slots[MAX_CSGS]; |
| |
| /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ |
| u32 csg_slot_count; |
| |
| /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ |
| u32 cs_slot_count; |
| |
| /** @as_slot_count: Number of address space slots supported by the MMU. */ |
| u32 as_slot_count; |
| |
| /** @used_csg_slot_count: Number of command stream group slot currently used. */ |
| u32 used_csg_slot_count; |
| |
| /** @sb_slot_count: Number of scoreboard slots. */ |
| u32 sb_slot_count; |
| |
| /** |
| * @might_have_idle_groups: True if an active group might have become idle. |
| * |
| * This will force a tick, so other runnable groups can be scheduled if one |
| * or more active groups became idle. |
| */ |
| bool might_have_idle_groups; |
| |
| /** @pm: Power management related fields. */ |
| struct { |
| /** @has_ref: True if the scheduler owns a runtime PM reference. */ |
| bool has_ref; |
| } pm; |
| |
| /** @reset: Reset related fields. */ |
| struct { |
| /** @lock: Lock protecting the other reset fields. */ |
| struct mutex lock; |
| |
| /** |
| * @in_progress: True if a reset is in progress. |
| * |
| * Set to true in panthor_sched_pre_reset() and back to false in |
| * panthor_sched_post_reset(). |
| */ |
| atomic_t in_progress; |
| |
| /** |
| * @stopped_groups: List containing all groups that were stopped |
| * before a reset. |
| * |
| * Insert panthor_group::run_node in the pre_reset path. |
| */ |
| struct list_head stopped_groups; |
| } reset; |
| }; |
| |
| /** |
| * struct panthor_syncobj_32b - 32-bit FW synchronization object |
| */ |
| struct panthor_syncobj_32b { |
| /** @seqno: Sequence number. */ |
| u32 seqno; |
| |
| /** |
| * @status: Status. |
| * |
| * Not zero on failure. |
| */ |
| u32 status; |
| }; |
| |
| /** |
| * struct panthor_syncobj_64b - 64-bit FW synchronization object |
| */ |
| struct panthor_syncobj_64b { |
| /** @seqno: Sequence number. */ |
| u64 seqno; |
| |
| /** |
| * @status: Status. |
| * |
| * Not zero on failure. |
| */ |
| u32 status; |
| |
| /** @pad: MBZ. */ |
| u32 pad; |
| }; |
| |
| /** |
| * struct panthor_queue - Execution queue |
| */ |
| struct panthor_queue { |
| /** @scheduler: DRM scheduler used for this queue. */ |
| struct drm_gpu_scheduler scheduler; |
| |
| /** @entity: DRM scheduling entity used for this queue. */ |
| struct drm_sched_entity entity; |
| |
| /** |
| * @remaining_time: Time remaining before the job timeout expires. |
| * |
| * The job timeout is suspended when the queue is not scheduled by the |
| * FW. Every time we suspend the timer, we need to save the remaining |
| * time so we can restore it later on. |
| */ |
| unsigned long remaining_time; |
| |
| /** @timeout_suspended: True if the job timeout was suspended. */ |
| bool timeout_suspended; |
| |
| /** |
| * @doorbell_id: Doorbell assigned to this queue. |
| * |
| * Right now, all groups share the same doorbell, and the doorbell ID |
| * is assigned to group_slot + 1 when the group is assigned a slot. But |
| * we might decide to provide fine grained doorbell assignment at some |
| * point, so don't have to wake up all queues in a group every time one |
| * of them is updated. |
| */ |
| u8 doorbell_id; |
| |
| /** |
| * @priority: Priority of the queue inside the group. |
| * |
| * Must be less than 16 (Only 4 bits available). |
| */ |
| u8 priority; |
| #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) |
| |
| /** @ringbuf: Command stream ring-buffer. */ |
| struct panthor_kernel_bo *ringbuf; |
| |
| /** @iface: Firmware interface. */ |
| struct { |
| /** @mem: FW memory allocated for this interface. */ |
| struct panthor_kernel_bo *mem; |
| |
| /** @input: Input interface. */ |
| struct panthor_fw_ringbuf_input_iface *input; |
| |
| /** @output: Output interface. */ |
| const struct panthor_fw_ringbuf_output_iface *output; |
| |
| /** @input_fw_va: FW virtual address of the input interface buffer. */ |
| u32 input_fw_va; |
| |
| /** @output_fw_va: FW virtual address of the output interface buffer. */ |
| u32 output_fw_va; |
| } iface; |
| |
| /** |
| * @syncwait: Stores information about the synchronization object this |
| * queue is waiting on. |
| */ |
| struct { |
| /** @gpu_va: GPU address of the synchronization object. */ |
| u64 gpu_va; |
| |
| /** @ref: Reference value to compare against. */ |
| u64 ref; |
| |
| /** @gt: True if this is a greater-than test. */ |
| bool gt; |
| |
| /** @sync64: True if this is a 64-bit sync object. */ |
| bool sync64; |
| |
| /** @bo: Buffer object holding the synchronization object. */ |
| struct drm_gem_object *obj; |
| |
| /** @offset: Offset of the synchronization object inside @bo. */ |
| u64 offset; |
| |
| /** |
| * @kmap: Kernel mapping of the buffer object holding the |
| * synchronization object. |
| */ |
| void *kmap; |
| } syncwait; |
| |
| /** @fence_ctx: Fence context fields. */ |
| struct { |
| /** @lock: Used to protect access to all fences allocated by this context. */ |
| spinlock_t lock; |
| |
| /** |
| * @id: Fence context ID. |
| * |
| * Allocated with dma_fence_context_alloc(). |
| */ |
| u64 id; |
| |
| /** @seqno: Sequence number of the last initialized fence. */ |
| atomic64_t seqno; |
| |
| /** |
| * @last_fence: Fence of the last submitted job. |
| * |
| * We return this fence when we get an empty command stream. |
| * This way, we are guaranteed that all earlier jobs have completed |
| * when drm_sched_job::s_fence::finished without having to feed |
| * the CS ring buffer with a dummy job that only signals the fence. |
| */ |
| struct dma_fence *last_fence; |
| |
| /** |
| * @in_flight_jobs: List containing all in-flight jobs. |
| * |
| * Used to keep track and signal panthor_job::done_fence when the |
| * synchronization object attached to the queue is signaled. |
| */ |
| struct list_head in_flight_jobs; |
| } fence_ctx; |
| }; |
| |
| /** |
| * enum panthor_group_state - Scheduling group state. |
| */ |
| enum panthor_group_state { |
| /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ |
| PANTHOR_CS_GROUP_CREATED, |
| |
| /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ |
| PANTHOR_CS_GROUP_ACTIVE, |
| |
| /** |
| * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is |
| * inactive/suspended right now. |
| */ |
| PANTHOR_CS_GROUP_SUSPENDED, |
| |
| /** |
| * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. |
| * |
| * Can no longer be scheduled. The only allowed action is a destruction. |
| */ |
| PANTHOR_CS_GROUP_TERMINATED, |
| |
| /** |
| * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. |
| * |
| * The FW returned an inconsistent state. The group is flagged unusable |
| * and can no longer be scheduled. The only allowed action is a |
| * destruction. |
| * |
| * When that happens, we also schedule a FW reset, to start from a fresh |
| * state. |
| */ |
| PANTHOR_CS_GROUP_UNKNOWN_STATE, |
| }; |
| |
| /** |
| * struct panthor_group - Scheduling group object |
| */ |
| struct panthor_group { |
| /** @refcount: Reference count */ |
| struct kref refcount; |
| |
| /** @ptdev: Device. */ |
| struct panthor_device *ptdev; |
| |
| /** @vm: VM bound to the group. */ |
| struct panthor_vm *vm; |
| |
| /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ |
| u64 compute_core_mask; |
| |
| /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ |
| u64 fragment_core_mask; |
| |
| /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ |
| u64 tiler_core_mask; |
| |
| /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ |
| u8 max_compute_cores; |
| |
| /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ |
| u8 max_fragment_cores; |
| |
| /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ |
| u8 max_tiler_cores; |
| |
| /** @priority: Group priority (check panthor_csg_priority). */ |
| u8 priority; |
| |
| /** @blocked_queues: Bitmask reflecting the blocked queues. */ |
| u32 blocked_queues; |
| |
| /** @idle_queues: Bitmask reflecting the idle queues. */ |
| u32 idle_queues; |
| |
| /** @fatal_lock: Lock used to protect access to fatal fields. */ |
| spinlock_t fatal_lock; |
| |
| /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ |
| u32 fatal_queues; |
| |
| /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ |
| atomic_t tiler_oom; |
| |
| /** @queue_count: Number of queues in this group. */ |
| u32 queue_count; |
| |
| /** @queues: Queues owned by this group. */ |
| struct panthor_queue *queues[MAX_CS_PER_CSG]; |
| |
| /** |
| * @csg_id: ID of the FW group slot. |
| * |
| * -1 when the group is not scheduled/active. |
| */ |
| int csg_id; |
| |
| /** |
| * @destroyed: True when the group has been destroyed. |
| * |
| * If a group is destroyed it becomes useless: no further jobs can be submitted |
| * to its queues. We simply wait for all references to be dropped so we can |
| * release the group object. |
| */ |
| bool destroyed; |
| |
| /** |
| * @timedout: True when a timeout occurred on any of the queues owned by |
| * this group. |
| * |
| * Timeouts can be reported by drm_sched or by the FW. In any case, any |
| * timeout situation is unrecoverable, and the group becomes useless. |
| * We simply wait for all references to be dropped so we can release the |
| * group object. |
| */ |
| bool timedout; |
| |
| /** |
| * @syncobjs: Pool of per-queue synchronization objects. |
| * |
| * One sync object per queue. The position of the sync object is |
| * determined by the queue index. |
| */ |
| struct panthor_kernel_bo *syncobjs; |
| |
| /** @state: Group state. */ |
| enum panthor_group_state state; |
| |
| /** |
| * @suspend_buf: Suspend buffer. |
| * |
| * Stores the state of the group and its queues when a group is suspended. |
| * Used at resume time to restore the group in its previous state. |
| * |
| * The size of the suspend buffer is exposed through the FW interface. |
| */ |
| struct panthor_kernel_bo *suspend_buf; |
| |
| /** |
| * @protm_suspend_buf: Protection mode suspend buffer. |
| * |
| * Stores the state of the group and its queues when a group that's in |
| * protection mode is suspended. |
| * |
| * Used at resume time to restore the group in its previous state. |
| * |
| * The size of the protection mode suspend buffer is exposed through the |
| * FW interface. |
| */ |
| struct panthor_kernel_bo *protm_suspend_buf; |
| |
| /** @sync_upd_work: Work used to check/signal job fences. */ |
| struct work_struct sync_upd_work; |
| |
| /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ |
| struct work_struct tiler_oom_work; |
| |
| /** @term_work: Work used to finish the group termination procedure. */ |
| struct work_struct term_work; |
| |
| /** |
| * @release_work: Work used to release group resources. |
| * |
| * We need to postpone the group release to avoid a deadlock when |
| * the last ref is released in the tick work. |
| */ |
| struct work_struct release_work; |
| |
| /** |
| * @run_node: Node used to insert the group in the |
| * panthor_group::groups::{runnable,idle} and |
| * panthor_group::reset.stopped_groups lists. |
| */ |
| struct list_head run_node; |
| |
| /** |
| * @wait_node: Node used to insert the group in the |
| * panthor_group::groups::waiting list. |
| */ |
| struct list_head wait_node; |
| }; |
| |
| /** |
| * group_queue_work() - Queue a group work |
| * @group: Group to queue the work for. |
| * @wname: Work name. |
| * |
| * Grabs a ref and queue a work item to the scheduler workqueue. If |
| * the work was already queued, we release the reference we grabbed. |
| * |
| * Work callbacks must release the reference we grabbed here. |
| */ |
| #define group_queue_work(group, wname) \ |
| do { \ |
| group_get(group); \ |
| if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ |
| group_put(group); \ |
| } while (0) |
| |
| /** |
| * sched_queue_work() - Queue a scheduler work. |
| * @sched: Scheduler object. |
| * @wname: Work name. |
| * |
| * Conditionally queues a scheduler work if no reset is pending/in-progress. |
| */ |
| #define sched_queue_work(sched, wname) \ |
| do { \ |
| if (!atomic_read(&(sched)->reset.in_progress) && \ |
| !panthor_device_reset_is_pending((sched)->ptdev)) \ |
| queue_work((sched)->wq, &(sched)->wname ## _work); \ |
| } while (0) |
| |
| /** |
| * sched_queue_delayed_work() - Queue a scheduler delayed work. |
| * @sched: Scheduler object. |
| * @wname: Work name. |
| * @delay: Work delay in jiffies. |
| * |
| * Conditionally queues a scheduler delayed work if no reset is |
| * pending/in-progress. |
| */ |
| #define sched_queue_delayed_work(sched, wname, delay) \ |
| do { \ |
| if (!atomic_read(&sched->reset.in_progress) && \ |
| !panthor_device_reset_is_pending((sched)->ptdev)) \ |
| mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ |
| } while (0) |
| |
| /* |
| * We currently set the maximum of groups per file to an arbitrary low value. |
| * But this can be updated if we need more. |
| */ |
| #define MAX_GROUPS_PER_POOL 128 |
| |
| /** |
| * struct panthor_group_pool - Group pool |
| * |
| * Each file get assigned a group pool. |
| */ |
| struct panthor_group_pool { |
| /** @xa: Xarray used to manage group handles. */ |
| struct xarray xa; |
| }; |
| |
| /** |
| * struct panthor_job - Used to manage GPU job |
| */ |
| struct panthor_job { |
| /** @base: Inherit from drm_sched_job. */ |
| struct drm_sched_job base; |
| |
| /** @refcount: Reference count. */ |
| struct kref refcount; |
| |
| /** @group: Group of the queue this job will be pushed to. */ |
| struct panthor_group *group; |
| |
| /** @queue_idx: Index of the queue inside @group. */ |
| u32 queue_idx; |
| |
| /** @call_info: Information about the userspace command stream call. */ |
| struct { |
| /** @start: GPU address of the userspace command stream. */ |
| u64 start; |
| |
| /** @size: Size of the userspace command stream. */ |
| u32 size; |
| |
| /** |
| * @latest_flush: Flush ID at the time the userspace command |
| * stream was built. |
| * |
| * Needed for the flush reduction mechanism. |
| */ |
| u32 latest_flush; |
| } call_info; |
| |
| /** @ringbuf: Position of this job is in the ring buffer. */ |
| struct { |
| /** @start: Start offset. */ |
| u64 start; |
| |
| /** @end: End offset. */ |
| u64 end; |
| } ringbuf; |
| |
| /** |
| * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs |
| * list. |
| */ |
| struct list_head node; |
| |
| /** @done_fence: Fence signaled when the job is finished or cancelled. */ |
| struct dma_fence *done_fence; |
| }; |
| |
| static void |
| panthor_queue_put_syncwait_obj(struct panthor_queue *queue) |
| { |
| if (queue->syncwait.kmap) { |
| struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); |
| |
| drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); |
| queue->syncwait.kmap = NULL; |
| } |
| |
| drm_gem_object_put(queue->syncwait.obj); |
| queue->syncwait.obj = NULL; |
| } |
| |
| static void * |
| panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_gem_object *bo; |
| struct iosys_map map; |
| int ret; |
| |
| if (queue->syncwait.kmap) |
| return queue->syncwait.kmap + queue->syncwait.offset; |
| |
| bo = panthor_vm_get_bo_for_va(group->vm, |
| queue->syncwait.gpu_va, |
| &queue->syncwait.offset); |
| if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) |
| goto err_put_syncwait_obj; |
| |
| queue->syncwait.obj = &bo->base.base; |
| ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); |
| if (drm_WARN_ON(&ptdev->base, ret)) |
| goto err_put_syncwait_obj; |
| |
| queue->syncwait.kmap = map.vaddr; |
| if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) |
| goto err_put_syncwait_obj; |
| |
| return queue->syncwait.kmap + queue->syncwait.offset; |
| |
| err_put_syncwait_obj: |
| panthor_queue_put_syncwait_obj(queue); |
| return NULL; |
| } |
| |
| static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) |
| { |
| if (IS_ERR_OR_NULL(queue)) |
| return; |
| |
| if (queue->entity.fence_context) |
| drm_sched_entity_destroy(&queue->entity); |
| |
| if (queue->scheduler.ops) |
| drm_sched_fini(&queue->scheduler); |
| |
| panthor_queue_put_syncwait_obj(queue); |
| |
| panthor_kernel_bo_destroy(queue->ringbuf); |
| panthor_kernel_bo_destroy(queue->iface.mem); |
| |
| /* Release the last_fence we were holding, if any. */ |
| dma_fence_put(queue->fence_ctx.last_fence); |
| |
| kfree(queue); |
| } |
| |
| static void group_release_work(struct work_struct *work) |
| { |
| struct panthor_group *group = container_of(work, |
| struct panthor_group, |
| release_work); |
| u32 i; |
| |
| for (i = 0; i < group->queue_count; i++) |
| group_free_queue(group, group->queues[i]); |
| |
| panthor_kernel_bo_destroy(group->suspend_buf); |
| panthor_kernel_bo_destroy(group->protm_suspend_buf); |
| panthor_kernel_bo_destroy(group->syncobjs); |
| |
| panthor_vm_put(group->vm); |
| kfree(group); |
| } |
| |
| static void group_release(struct kref *kref) |
| { |
| struct panthor_group *group = container_of(kref, |
| struct panthor_group, |
| refcount); |
| struct panthor_device *ptdev = group->ptdev; |
| |
| drm_WARN_ON(&ptdev->base, group->csg_id >= 0); |
| drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); |
| drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); |
| |
| queue_work(panthor_cleanup_wq, &group->release_work); |
| } |
| |
| static void group_put(struct panthor_group *group) |
| { |
| if (group) |
| kref_put(&group->refcount, group_release); |
| } |
| |
| static struct panthor_group * |
| group_get(struct panthor_group *group) |
| { |
| if (group) |
| kref_get(&group->refcount); |
| |
| return group; |
| } |
| |
| /** |
| * group_bind_locked() - Bind a group to a group slot |
| * @group: Group. |
| * @csg_id: Slot. |
| * |
| * Return: 0 on success, a negative error code otherwise. |
| */ |
| static int |
| group_bind_locked(struct panthor_group *group, u32 csg_id) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_csg_slot *csg_slot; |
| int ret; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || |
| ptdev->scheduler->csg_slots[csg_id].group)) |
| return -EINVAL; |
| |
| ret = panthor_vm_active(group->vm); |
| if (ret) |
| return ret; |
| |
| csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| group_get(group); |
| group->csg_id = csg_id; |
| |
| /* Dummy doorbell allocation: doorbell is assigned to the group and |
| * all queues use the same doorbell. |
| * |
| * TODO: Implement LRU-based doorbell assignment, so the most often |
| * updated queues get their own doorbell, thus avoiding useless checks |
| * on queues belonging to the same group that are rarely updated. |
| */ |
| for (u32 i = 0; i < group->queue_count; i++) |
| group->queues[i]->doorbell_id = csg_id + 1; |
| |
| csg_slot->group = group; |
| |
| return 0; |
| } |
| |
| /** |
| * group_unbind_locked() - Unbind a group from a slot. |
| * @group: Group to unbind. |
| * |
| * Return: 0 on success, a negative error code otherwise. |
| */ |
| static int |
| group_unbind_locked(struct panthor_group *group) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_csg_slot *slot; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) |
| return -EINVAL; |
| |
| if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) |
| return -EINVAL; |
| |
| slot = &ptdev->scheduler->csg_slots[group->csg_id]; |
| panthor_vm_idle(group->vm); |
| group->csg_id = -1; |
| |
| /* Tiler OOM events will be re-issued next time the group is scheduled. */ |
| atomic_set(&group->tiler_oom, 0); |
| cancel_work(&group->tiler_oom_work); |
| |
| for (u32 i = 0; i < group->queue_count; i++) |
| group->queues[i]->doorbell_id = -1; |
| |
| slot->group = NULL; |
| |
| group_put(group); |
| return 0; |
| } |
| |
| /** |
| * cs_slot_prog_locked() - Program a queue slot |
| * @ptdev: Device. |
| * @csg_id: Group slot ID. |
| * @cs_id: Queue slot ID. |
| * |
| * Program a queue slot with the queue information so things can start being |
| * executed on this queue. |
| * |
| * The group slot must have a group bound to it already (group_bind_locked()). |
| */ |
| static void |
| cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) |
| { |
| struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; |
| struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| queue->iface.input->extract = queue->iface.output->extract; |
| drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); |
| |
| cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); |
| cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); |
| cs_iface->input->ringbuf_input = queue->iface.input_fw_va; |
| cs_iface->input->ringbuf_output = queue->iface.output_fw_va; |
| cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | |
| CS_CONFIG_DOORBELL(queue->doorbell_id); |
| cs_iface->input->ack_irq_mask = ~0; |
| panthor_fw_update_reqs(cs_iface, req, |
| CS_IDLE_SYNC_WAIT | |
| CS_IDLE_EMPTY | |
| CS_STATE_START | |
| CS_EXTRACT_EVENT, |
| CS_IDLE_SYNC_WAIT | |
| CS_IDLE_EMPTY | |
| CS_STATE_MASK | |
| CS_EXTRACT_EVENT); |
| if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { |
| drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); |
| queue->timeout_suspended = false; |
| } |
| } |
| |
| /** |
| * cs_slot_reset_locked() - Reset a queue slot |
| * @ptdev: Device. |
| * @csg_id: Group slot. |
| * @cs_id: Queue slot. |
| * |
| * Change the queue slot state to STOP and suspend the queue timeout if |
| * the queue is not blocked. |
| * |
| * The group slot must have a group bound to it (group_bind_locked()). |
| */ |
| static int |
| cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) |
| { |
| struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; |
| struct panthor_queue *queue = group->queues[cs_id]; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| panthor_fw_update_reqs(cs_iface, req, |
| CS_STATE_STOP, |
| CS_STATE_MASK); |
| |
| /* If the queue is blocked, we want to keep the timeout running, so |
| * we can detect unbounded waits and kill the group when that happens. |
| */ |
| if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { |
| queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); |
| queue->timeout_suspended = true; |
| WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * csg_slot_sync_priority_locked() - Synchronize the group slot priority |
| * @ptdev: Device. |
| * @csg_id: Group slot ID. |
| * |
| * Group slot priority update happens asynchronously. When we receive a |
| * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can |
| * reflect it to our panthor_csg_slot object. |
| */ |
| static void |
| csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| struct panthor_fw_csg_iface *csg_iface; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; |
| } |
| |
| /** |
| * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority |
| * @ptdev: Device. |
| * @csg_id: Group slot. |
| * @cs_id: Queue slot. |
| * |
| * Queue state is updated on group suspend or STATUS_UPDATE event. |
| */ |
| static void |
| cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) |
| { |
| struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; |
| struct panthor_queue *queue = group->queues[cs_id]; |
| struct panthor_fw_cs_iface *cs_iface = |
| panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); |
| |
| u32 status_wait_cond; |
| |
| switch (cs_iface->output->status_blocked_reason) { |
| case CS_STATUS_BLOCKED_REASON_UNBLOCKED: |
| if (queue->iface.input->insert == queue->iface.output->extract && |
| cs_iface->output->status_scoreboards == 0) |
| group->idle_queues |= BIT(cs_id); |
| break; |
| |
| case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: |
| if (list_empty(&group->wait_node)) { |
| list_move_tail(&group->wait_node, |
| &group->ptdev->scheduler->groups.waiting); |
| } |
| group->blocked_queues |= BIT(cs_id); |
| queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; |
| queue->syncwait.ref = cs_iface->output->status_wait_sync_value; |
| status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; |
| queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; |
| if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { |
| u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; |
| |
| queue->syncwait.sync64 = true; |
| queue->syncwait.ref |= sync_val_hi << 32; |
| } else { |
| queue->syncwait.sync64 = false; |
| } |
| break; |
| |
| default: |
| /* Other reasons are not blocking. Consider the queue as runnable |
| * in those cases. |
| */ |
| break; |
| } |
| } |
| |
| static void |
| csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| u32 i; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| group->idle_queues = 0; |
| group->blocked_queues = 0; |
| |
| for (i = 0; i < group->queue_count; i++) { |
| if (group->queues[i]) |
| cs_slot_sync_queue_state_locked(ptdev, csg_id, i); |
| } |
| } |
| |
| static void |
| csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| struct panthor_fw_csg_iface *csg_iface; |
| struct panthor_group *group; |
| enum panthor_group_state new_state, old_state; |
| u32 csg_state; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| group = csg_slot->group; |
| |
| if (!group) |
| return; |
| |
| old_state = group->state; |
| csg_state = csg_iface->output->ack & CSG_STATE_MASK; |
| switch (csg_state) { |
| case CSG_STATE_START: |
| case CSG_STATE_RESUME: |
| new_state = PANTHOR_CS_GROUP_ACTIVE; |
| break; |
| case CSG_STATE_TERMINATE: |
| new_state = PANTHOR_CS_GROUP_TERMINATED; |
| break; |
| case CSG_STATE_SUSPEND: |
| new_state = PANTHOR_CS_GROUP_SUSPENDED; |
| break; |
| default: |
| /* The unknown state might be caused by a FW state corruption, |
| * which means the group metadata can't be trusted anymore, and |
| * the SUSPEND operation might propagate the corruption to the |
| * suspend buffers. Flag the group state as unknown to make |
| * sure it's unusable after that point. |
| */ |
| drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", |
| csg_id, csg_state); |
| new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; |
| break; |
| } |
| |
| if (old_state == new_state) |
| return; |
| |
| /* The unknown state might be caused by a FW issue, reset the FW to |
| * take a fresh start. |
| */ |
| if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) |
| panthor_device_schedule_reset(ptdev); |
| |
| if (new_state == PANTHOR_CS_GROUP_SUSPENDED) |
| csg_slot_sync_queues_state_locked(ptdev, csg_id); |
| |
| if (old_state == PANTHOR_CS_GROUP_ACTIVE) { |
| u32 i; |
| |
| /* Reset the queue slots so we start from a clean |
| * state when starting/resuming a new group on this |
| * CSG slot. No wait needed here, and no ringbell |
| * either, since the CS slot will only be re-used |
| * on the next CSG start operation. |
| */ |
| for (i = 0; i < group->queue_count; i++) { |
| if (group->queues[i]) |
| cs_slot_reset_locked(ptdev, csg_id, i); |
| } |
| } |
| |
| group->state = new_state; |
| } |
| |
| static int |
| csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) |
| { |
| struct panthor_fw_csg_iface *csg_iface; |
| struct panthor_csg_slot *csg_slot; |
| struct panthor_group *group; |
| u32 queue_mask = 0, i; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| if (priority > MAX_CSG_PRIO) |
| return -EINVAL; |
| |
| if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) |
| return -EINVAL; |
| |
| csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| group = csg_slot->group; |
| if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) |
| return 0; |
| |
| csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); |
| |
| for (i = 0; i < group->queue_count; i++) { |
| if (group->queues[i]) { |
| cs_slot_prog_locked(ptdev, csg_id, i); |
| queue_mask |= BIT(i); |
| } |
| } |
| |
| csg_iface->input->allow_compute = group->compute_core_mask; |
| csg_iface->input->allow_fragment = group->fragment_core_mask; |
| csg_iface->input->allow_other = group->tiler_core_mask; |
| csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | |
| CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | |
| CSG_EP_REQ_TILER(group->max_tiler_cores) | |
| CSG_EP_REQ_PRIORITY(priority); |
| csg_iface->input->config = panthor_vm_as(group->vm); |
| |
| if (group->suspend_buf) |
| csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); |
| else |
| csg_iface->input->suspend_buf = 0; |
| |
| if (group->protm_suspend_buf) { |
| csg_iface->input->protm_suspend_buf = |
| panthor_kernel_bo_gpuva(group->protm_suspend_buf); |
| } else { |
| csg_iface->input->protm_suspend_buf = 0; |
| } |
| |
| csg_iface->input->ack_irq_mask = ~0; |
| panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); |
| return 0; |
| } |
| |
| static void |
| cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, |
| u32 csg_id, u32 cs_id) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| struct panthor_fw_cs_iface *cs_iface; |
| u32 fatal; |
| u64 info; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| fatal = cs_iface->output->fatal; |
| info = cs_iface->output->fatal_info; |
| |
| if (group) |
| group->fatal_queues |= BIT(cs_id); |
| |
| if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { |
| /* If this exception is unrecoverable, queue a reset, and make |
| * sure we stop scheduling groups until the reset has happened. |
| */ |
| panthor_device_schedule_reset(ptdev); |
| cancel_delayed_work(&sched->tick_work); |
| } else { |
| sched_queue_delayed_work(sched, tick, 0); |
| } |
| |
| drm_warn(&ptdev->base, |
| "CSG slot %d CS slot: %d\n" |
| "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" |
| "CS_FATAL.EXCEPTION_DATA: 0x%x\n" |
| "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", |
| csg_id, cs_id, |
| (unsigned int)CS_EXCEPTION_TYPE(fatal), |
| panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), |
| (unsigned int)CS_EXCEPTION_DATA(fatal), |
| info); |
| } |
| |
| static void |
| cs_slot_process_fault_event_locked(struct panthor_device *ptdev, |
| u32 csg_id, u32 cs_id) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| struct panthor_queue *queue = group && cs_id < group->queue_count ? |
| group->queues[cs_id] : NULL; |
| struct panthor_fw_cs_iface *cs_iface; |
| u32 fault; |
| u64 info; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| fault = cs_iface->output->fault; |
| info = cs_iface->output->fault_info; |
| |
| if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { |
| u64 cs_extract = queue->iface.output->extract; |
| struct panthor_job *job; |
| |
| spin_lock(&queue->fence_ctx.lock); |
| list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { |
| if (cs_extract >= job->ringbuf.end) |
| continue; |
| |
| if (cs_extract < job->ringbuf.start) |
| break; |
| |
| dma_fence_set_error(job->done_fence, -EINVAL); |
| } |
| spin_unlock(&queue->fence_ctx.lock); |
| } |
| |
| drm_warn(&ptdev->base, |
| "CSG slot %d CS slot: %d\n" |
| "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" |
| "CS_FAULT.EXCEPTION_DATA: 0x%x\n" |
| "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", |
| csg_id, cs_id, |
| (unsigned int)CS_EXCEPTION_TYPE(fault), |
| panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), |
| (unsigned int)CS_EXCEPTION_DATA(fault), |
| info); |
| } |
| |
| static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| u32 renderpasses_in_flight, pending_frag_count; |
| struct panthor_heap_pool *heaps = NULL; |
| u64 heap_address, new_chunk_va = 0; |
| u32 vt_start, vt_end, frag_end; |
| int ret, csg_id; |
| |
| mutex_lock(&sched->lock); |
| csg_id = group->csg_id; |
| if (csg_id >= 0) { |
| struct panthor_fw_cs_iface *cs_iface; |
| |
| cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| heaps = panthor_vm_get_heap_pool(group->vm, false); |
| heap_address = cs_iface->output->heap_address; |
| vt_start = cs_iface->output->heap_vt_start; |
| vt_end = cs_iface->output->heap_vt_end; |
| frag_end = cs_iface->output->heap_frag_end; |
| renderpasses_in_flight = vt_start - frag_end; |
| pending_frag_count = vt_end - frag_end; |
| } |
| mutex_unlock(&sched->lock); |
| |
| /* The group got scheduled out, we stop here. We will get a new tiler OOM event |
| * when it's scheduled again. |
| */ |
| if (unlikely(csg_id < 0)) |
| return 0; |
| |
| if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { |
| ret = -EINVAL; |
| } else { |
| /* We do the allocation without holding the scheduler lock to avoid |
| * blocking the scheduling. |
| */ |
| ret = panthor_heap_grow(heaps, heap_address, |
| renderpasses_in_flight, |
| pending_frag_count, &new_chunk_va); |
| } |
| |
| /* If the heap context doesn't have memory for us, we want to let the |
| * FW try to reclaim memory by waiting for fragment jobs to land or by |
| * executing the tiler OOM exception handler, which is supposed to |
| * implement incremental rendering. |
| */ |
| if (ret && ret != -ENOMEM) { |
| drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); |
| group->fatal_queues |= BIT(cs_id); |
| sched_queue_delayed_work(sched, tick, 0); |
| goto out_put_heap_pool; |
| } |
| |
| mutex_lock(&sched->lock); |
| csg_id = group->csg_id; |
| if (csg_id >= 0) { |
| struct panthor_fw_csg_iface *csg_iface; |
| struct panthor_fw_cs_iface *cs_iface; |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| |
| cs_iface->input->heap_start = new_chunk_va; |
| cs_iface->input->heap_end = new_chunk_va; |
| panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); |
| panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); |
| panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); |
| } |
| mutex_unlock(&sched->lock); |
| |
| /* We allocated a chunck, but couldn't link it to the heap |
| * context because the group was scheduled out while we were |
| * allocating memory. We need to return this chunk to the heap. |
| */ |
| if (unlikely(csg_id < 0 && new_chunk_va)) |
| panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); |
| |
| ret = 0; |
| |
| out_put_heap_pool: |
| panthor_heap_pool_put(heaps); |
| return ret; |
| } |
| |
| static void group_tiler_oom_work(struct work_struct *work) |
| { |
| struct panthor_group *group = |
| container_of(work, struct panthor_group, tiler_oom_work); |
| u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); |
| |
| while (tiler_oom) { |
| u32 cs_id = ffs(tiler_oom) - 1; |
| |
| group_process_tiler_oom(group, cs_id); |
| tiler_oom &= ~BIT(cs_id); |
| } |
| |
| group_put(group); |
| } |
| |
| static void |
| cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, |
| u32 csg_id, u32 cs_id) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| if (drm_WARN_ON(&ptdev->base, !group)) |
| return; |
| |
| atomic_or(BIT(cs_id), &group->tiler_oom); |
| |
| /* We don't use group_queue_work() here because we want to queue the |
| * work item to the heap_alloc_wq. |
| */ |
| group_get(group); |
| if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) |
| group_put(group); |
| } |
| |
| static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, |
| u32 csg_id, u32 cs_id) |
| { |
| struct panthor_fw_cs_iface *cs_iface; |
| u32 req, ack, events; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); |
| req = cs_iface->input->req; |
| ack = cs_iface->output->ack; |
| events = (req ^ ack) & CS_EVT_MASK; |
| |
| if (events & CS_FATAL) |
| cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); |
| |
| if (events & CS_FAULT) |
| cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); |
| |
| if (events & CS_TILER_OOM) |
| cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); |
| |
| /* We don't acknowledge the TILER_OOM event since its handling is |
| * deferred to a separate work. |
| */ |
| panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); |
| |
| return (events & (CS_FAULT | CS_TILER_OOM)) != 0; |
| } |
| |
| static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| struct panthor_fw_csg_iface *csg_iface; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; |
| } |
| |
| static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| sched->might_have_idle_groups = true; |
| |
| /* Schedule a tick so we can evict idle groups and schedule non-idle |
| * ones. This will also update runtime PM and devfreq busy/idle states, |
| * so the device can lower its frequency or get suspended. |
| */ |
| sched_queue_delayed_work(sched, tick, 0); |
| } |
| |
| static void csg_slot_sync_update_locked(struct panthor_device *ptdev, |
| u32 csg_id) |
| { |
| struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| if (group) |
| group_queue_work(group, sync_upd); |
| |
| sched_queue_work(ptdev->scheduler, sync_upd); |
| } |
| |
| static void |
| csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| struct panthor_group *group = csg_slot->group; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); |
| |
| group = csg_slot->group; |
| if (!drm_WARN_ON(&ptdev->base, !group)) |
| group->timedout = true; |
| |
| sched_queue_delayed_work(sched, tick, 0); |
| } |
| |
| static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) |
| { |
| u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; |
| struct panthor_fw_csg_iface *csg_iface; |
| u32 ring_cs_db_mask = 0; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) |
| return; |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| req = READ_ONCE(csg_iface->input->req); |
| ack = READ_ONCE(csg_iface->output->ack); |
| cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); |
| cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); |
| csg_events = (req ^ ack) & CSG_EVT_MASK; |
| |
| /* There may not be any pending CSG/CS interrupts to process */ |
| if (req == ack && cs_irq_req == cs_irq_ack) |
| return; |
| |
| /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before |
| * examining the CS_ACK & CS_REQ bits. This would ensure that Host |
| * doesn't miss an interrupt for the CS in the race scenario where |
| * whilst Host is servicing an interrupt for the CS, firmware sends |
| * another interrupt for that CS. |
| */ |
| csg_iface->input->cs_irq_ack = cs_irq_req; |
| |
| panthor_fw_update_reqs(csg_iface, req, ack, |
| CSG_SYNC_UPDATE | |
| CSG_IDLE | |
| CSG_PROGRESS_TIMER_EVENT); |
| |
| if (csg_events & CSG_IDLE) |
| csg_slot_process_idle_event_locked(ptdev, csg_id); |
| |
| if (csg_events & CSG_PROGRESS_TIMER_EVENT) |
| csg_slot_process_progress_timer_event_locked(ptdev, csg_id); |
| |
| cs_irqs = cs_irq_req ^ cs_irq_ack; |
| while (cs_irqs) { |
| u32 cs_id = ffs(cs_irqs) - 1; |
| |
| if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) |
| ring_cs_db_mask |= BIT(cs_id); |
| |
| cs_irqs &= ~BIT(cs_id); |
| } |
| |
| if (csg_events & CSG_SYNC_UPDATE) |
| csg_slot_sync_update_locked(ptdev, csg_id); |
| |
| if (ring_cs_db_mask) |
| panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); |
| |
| panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); |
| } |
| |
| static void sched_process_idle_event_locked(struct panthor_device *ptdev) |
| { |
| struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| /* Acknowledge the idle event and schedule a tick. */ |
| panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); |
| sched_queue_delayed_work(ptdev->scheduler, tick, 0); |
| } |
| |
| /** |
| * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ |
| * @ptdev: Device. |
| */ |
| static void sched_process_global_irq_locked(struct panthor_device *ptdev) |
| { |
| struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); |
| u32 req, ack, evts; |
| |
| lockdep_assert_held(&ptdev->scheduler->lock); |
| |
| req = READ_ONCE(glb_iface->input->req); |
| ack = READ_ONCE(glb_iface->output->ack); |
| evts = (req ^ ack) & GLB_EVT_MASK; |
| |
| if (evts & GLB_IDLE) |
| sched_process_idle_event_locked(ptdev); |
| } |
| |
| static void process_fw_events_work(struct work_struct *work) |
| { |
| struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, |
| fw_events_work); |
| u32 events = atomic_xchg(&sched->fw_events, 0); |
| struct panthor_device *ptdev = sched->ptdev; |
| |
| mutex_lock(&sched->lock); |
| |
| if (events & JOB_INT_GLOBAL_IF) { |
| sched_process_global_irq_locked(ptdev); |
| events &= ~JOB_INT_GLOBAL_IF; |
| } |
| |
| while (events) { |
| u32 csg_id = ffs(events) - 1; |
| |
| sched_process_csg_irq_locked(ptdev, csg_id); |
| events &= ~BIT(csg_id); |
| } |
| |
| mutex_unlock(&sched->lock); |
| } |
| |
| /** |
| * panthor_sched_report_fw_events() - Report FW events to the scheduler. |
| */ |
| void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) |
| { |
| if (!ptdev->scheduler) |
| return; |
| |
| atomic_or(events, &ptdev->scheduler->fw_events); |
| sched_queue_work(ptdev->scheduler, fw_events); |
| } |
| |
| static const char *fence_get_driver_name(struct dma_fence *fence) |
| { |
| return "panthor"; |
| } |
| |
| static const char *queue_fence_get_timeline_name(struct dma_fence *fence) |
| { |
| return "queue-fence"; |
| } |
| |
| static const struct dma_fence_ops panthor_queue_fence_ops = { |
| .get_driver_name = fence_get_driver_name, |
| .get_timeline_name = queue_fence_get_timeline_name, |
| }; |
| |
| struct panthor_csg_slots_upd_ctx { |
| u32 update_mask; |
| u32 timedout_mask; |
| struct { |
| u32 value; |
| u32 mask; |
| } requests[MAX_CSGS]; |
| }; |
| |
| static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| } |
| |
| static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, |
| struct panthor_csg_slots_upd_ctx *ctx, |
| u32 csg_id, u32 value, u32 mask) |
| { |
| if (drm_WARN_ON(&ptdev->base, !mask) || |
| drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) |
| return; |
| |
| ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); |
| ctx->requests[csg_id].mask |= mask; |
| ctx->update_mask |= BIT(csg_id); |
| } |
| |
| static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, |
| struct panthor_csg_slots_upd_ctx *ctx) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| u32 update_slots = ctx->update_mask; |
| |
| lockdep_assert_held(&sched->lock); |
| |
| if (!ctx->update_mask) |
| return 0; |
| |
| while (update_slots) { |
| struct panthor_fw_csg_iface *csg_iface; |
| u32 csg_id = ffs(update_slots) - 1; |
| |
| update_slots &= ~BIT(csg_id); |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| panthor_fw_update_reqs(csg_iface, req, |
| ctx->requests[csg_id].value, |
| ctx->requests[csg_id].mask); |
| } |
| |
| panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); |
| |
| update_slots = ctx->update_mask; |
| while (update_slots) { |
| struct panthor_fw_csg_iface *csg_iface; |
| u32 csg_id = ffs(update_slots) - 1; |
| u32 req_mask = ctx->requests[csg_id].mask, acked; |
| int ret; |
| |
| update_slots &= ~BIT(csg_id); |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| |
| ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); |
| |
| if (acked & CSG_ENDPOINT_CONFIG) |
| csg_slot_sync_priority_locked(ptdev, csg_id); |
| |
| if (acked & CSG_STATE_MASK) |
| csg_slot_sync_state_locked(ptdev, csg_id); |
| |
| if (acked & CSG_STATUS_UPDATE) { |
| csg_slot_sync_queues_state_locked(ptdev, csg_id); |
| csg_slot_sync_idle_state_locked(ptdev, csg_id); |
| } |
| |
| if (ret && acked != req_mask && |
| ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { |
| drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); |
| ctx->timedout_mask |= BIT(csg_id); |
| } |
| } |
| |
| if (ctx->timedout_mask) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| struct panthor_sched_tick_ctx { |
| struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; |
| struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; |
| u32 idle_group_count; |
| u32 group_count; |
| enum panthor_csg_priority min_priority; |
| struct panthor_vm *vms[MAX_CS_PER_CSG]; |
| u32 as_count; |
| bool immediate_tick; |
| u32 csg_upd_failed_mask; |
| }; |
| |
| static bool |
| tick_ctx_is_full(const struct panthor_scheduler *sched, |
| const struct panthor_sched_tick_ctx *ctx) |
| { |
| return ctx->group_count == sched->csg_slot_count; |
| } |
| |
| static bool |
| group_is_idle(struct panthor_group *group) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| u32 inactive_queues; |
| |
| if (group->csg_id >= 0) |
| return ptdev->scheduler->csg_slots[group->csg_id].idle; |
| |
| inactive_queues = group->idle_queues | group->blocked_queues; |
| return hweight32(inactive_queues) == group->queue_count; |
| } |
| |
| static bool |
| group_can_run(struct panthor_group *group) |
| { |
| return group->state != PANTHOR_CS_GROUP_TERMINATED && |
| group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && |
| !group->destroyed && group->fatal_queues == 0 && |
| !group->timedout; |
| } |
| |
| static void |
| tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, |
| struct panthor_sched_tick_ctx *ctx, |
| struct list_head *queue, |
| bool skip_idle_groups, |
| bool owned_by_tick_ctx) |
| { |
| struct panthor_group *group, *tmp; |
| |
| if (tick_ctx_is_full(sched, ctx)) |
| return; |
| |
| list_for_each_entry_safe(group, tmp, queue, run_node) { |
| u32 i; |
| |
| if (!group_can_run(group)) |
| continue; |
| |
| if (skip_idle_groups && group_is_idle(group)) |
| continue; |
| |
| for (i = 0; i < ctx->as_count; i++) { |
| if (ctx->vms[i] == group->vm) |
| break; |
| } |
| |
| if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) |
| continue; |
| |
| if (!owned_by_tick_ctx) |
| group_get(group); |
| |
| list_move_tail(&group->run_node, &ctx->groups[group->priority]); |
| ctx->group_count++; |
| if (group_is_idle(group)) |
| ctx->idle_group_count++; |
| |
| if (i == ctx->as_count) |
| ctx->vms[ctx->as_count++] = group->vm; |
| |
| if (ctx->min_priority > group->priority) |
| ctx->min_priority = group->priority; |
| |
| if (tick_ctx_is_full(sched, ctx)) |
| return; |
| } |
| } |
| |
| static void |
| tick_ctx_insert_old_group(struct panthor_scheduler *sched, |
| struct panthor_sched_tick_ctx *ctx, |
| struct panthor_group *group, |
| bool full_tick) |
| { |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; |
| struct panthor_group *other_group; |
| |
| if (!full_tick) { |
| list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); |
| return; |
| } |
| |
| /* Rotate to make sure groups with lower CSG slot |
| * priorities have a chance to get a higher CSG slot |
| * priority next time they get picked. This priority |
| * has an impact on resource request ordering, so it's |
| * important to make sure we don't let one group starve |
| * all other groups with the same group priority. |
| */ |
| list_for_each_entry(other_group, |
| &ctx->old_groups[csg_slot->group->priority], |
| run_node) { |
| struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; |
| |
| if (other_csg_slot->priority > csg_slot->priority) { |
| list_add_tail(&csg_slot->group->run_node, &other_group->run_node); |
| return; |
| } |
| } |
| |
| list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); |
| } |
| |
| static void |
| tick_ctx_init(struct panthor_scheduler *sched, |
| struct panthor_sched_tick_ctx *ctx, |
| bool full_tick) |
| { |
| struct panthor_device *ptdev = sched->ptdev; |
| struct panthor_csg_slots_upd_ctx upd_ctx; |
| int ret; |
| u32 i; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| csgs_upd_ctx_init(&upd_ctx); |
| |
| ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; |
| for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { |
| INIT_LIST_HEAD(&ctx->groups[i]); |
| INIT_LIST_HEAD(&ctx->old_groups[i]); |
| } |
| |
| for (i = 0; i < sched->csg_slot_count; i++) { |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; |
| struct panthor_group *group = csg_slot->group; |
| struct panthor_fw_csg_iface *csg_iface; |
| |
| if (!group) |
| continue; |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, i); |
| group_get(group); |
| |
| /* If there was unhandled faults on the VM, force processing of |
| * CSG IRQs, so we can flag the faulty queue. |
| */ |
| if (panthor_vm_has_unhandled_faults(group->vm)) { |
| sched_process_csg_irq_locked(ptdev, i); |
| |
| /* No fatal fault reported, flag all queues as faulty. */ |
| if (!group->fatal_queues) |
| group->fatal_queues |= GENMASK(group->queue_count - 1, 0); |
| } |
| |
| tick_ctx_insert_old_group(sched, ctx, group, full_tick); |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, |
| csg_iface->output->ack ^ CSG_STATUS_UPDATE, |
| CSG_STATUS_UPDATE); |
| } |
| |
| ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); |
| if (ret) { |
| panthor_device_schedule_reset(ptdev); |
| ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; |
| } |
| } |
| |
| #define NUM_INSTRS_PER_SLOT 16 |
| |
| static void |
| group_term_post_processing(struct panthor_group *group) |
| { |
| struct panthor_job *job, *tmp; |
| LIST_HEAD(faulty_jobs); |
| bool cookie; |
| u32 i = 0; |
| |
| if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) |
| return; |
| |
| cookie = dma_fence_begin_signalling(); |
| for (i = 0; i < group->queue_count; i++) { |
| struct panthor_queue *queue = group->queues[i]; |
| struct panthor_syncobj_64b *syncobj; |
| int err; |
| |
| if (group->fatal_queues & BIT(i)) |
| err = -EINVAL; |
| else if (group->timedout) |
| err = -ETIMEDOUT; |
| else |
| err = -ECANCELED; |
| |
| if (!queue) |
| continue; |
| |
| spin_lock(&queue->fence_ctx.lock); |
| list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { |
| list_move_tail(&job->node, &faulty_jobs); |
| dma_fence_set_error(job->done_fence, err); |
| dma_fence_signal_locked(job->done_fence); |
| } |
| spin_unlock(&queue->fence_ctx.lock); |
| |
| /* Manually update the syncobj seqno to unblock waiters. */ |
| syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); |
| syncobj->status = ~0; |
| syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); |
| sched_queue_work(group->ptdev->scheduler, sync_upd); |
| } |
| dma_fence_end_signalling(cookie); |
| |
| list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { |
| list_del_init(&job->node); |
| panthor_job_put(&job->base); |
| } |
| } |
| |
| static void group_term_work(struct work_struct *work) |
| { |
| struct panthor_group *group = |
| container_of(work, struct panthor_group, term_work); |
| |
| group_term_post_processing(group); |
| group_put(group); |
| } |
| |
| static void |
| tick_ctx_cleanup(struct panthor_scheduler *sched, |
| struct panthor_sched_tick_ctx *ctx) |
| { |
| struct panthor_group *group, *tmp; |
| u32 i; |
| |
| for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { |
| list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { |
| /* If everything went fine, we should only have groups |
| * to be terminated in the old_groups lists. |
| */ |
| drm_WARN_ON(&group->ptdev->base, !ctx->csg_upd_failed_mask && |
| group_can_run(group)); |
| |
| if (!group_can_run(group)) { |
| list_del_init(&group->run_node); |
| list_del_init(&group->wait_node); |
| group_queue_work(group, term); |
| } else if (group->csg_id >= 0) { |
| list_del_init(&group->run_node); |
| } else { |
| list_move(&group->run_node, |
| group_is_idle(group) ? |
| &sched->groups.idle[group->priority] : |
| &sched->groups.runnable[group->priority]); |
| } |
| group_put(group); |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { |
| /* If everything went fine, the groups to schedule lists should |
| * be empty. |
| */ |
| drm_WARN_ON(&group->ptdev->base, |
| !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); |
| |
| list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { |
| if (group->csg_id >= 0) { |
| list_del_init(&group->run_node); |
| } else { |
| list_move(&group->run_node, |
| group_is_idle(group) ? |
| &sched->groups.idle[group->priority] : |
| &sched->groups.runnable[group->priority]); |
| } |
| group_put(group); |
| } |
| } |
| } |
| |
| static void |
| tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) |
| { |
| struct panthor_group *group, *tmp; |
| struct panthor_device *ptdev = sched->ptdev; |
| struct panthor_csg_slot *csg_slot; |
| int prio, new_csg_prio = MAX_CSG_PRIO, i; |
| u32 free_csg_slots = 0; |
| struct panthor_csg_slots_upd_ctx upd_ctx; |
| int ret; |
| |
| csgs_upd_ctx_init(&upd_ctx); |
| |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| /* Suspend or terminate evicted groups. */ |
| list_for_each_entry(group, &ctx->old_groups[prio], run_node) { |
| bool term = !group_can_run(group); |
| int csg_id = group->csg_id; |
| |
| if (drm_WARN_ON(&ptdev->base, csg_id < 0)) |
| continue; |
| |
| csg_slot = &sched->csg_slots[csg_id]; |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, |
| term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, |
| CSG_STATE_MASK); |
| } |
| |
| /* Update priorities on already running groups. */ |
| list_for_each_entry(group, &ctx->groups[prio], run_node) { |
| struct panthor_fw_csg_iface *csg_iface; |
| int csg_id = group->csg_id; |
| |
| if (csg_id < 0) { |
| new_csg_prio--; |
| continue; |
| } |
| |
| csg_slot = &sched->csg_slots[csg_id]; |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| if (csg_slot->priority == new_csg_prio) { |
| new_csg_prio--; |
| continue; |
| } |
| |
| panthor_fw_update_reqs(csg_iface, endpoint_req, |
| CSG_EP_REQ_PRIORITY(new_csg_prio), |
| CSG_EP_REQ_PRIORITY_MASK); |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, |
| csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, |
| CSG_ENDPOINT_CONFIG); |
| new_csg_prio--; |
| } |
| } |
| |
| ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); |
| if (ret) { |
| panthor_device_schedule_reset(ptdev); |
| ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; |
| return; |
| } |
| |
| /* Unbind evicted groups. */ |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| list_for_each_entry(group, &ctx->old_groups[prio], run_node) { |
| /* This group is gone. Process interrupts to clear |
| * any pending interrupts before we start the new |
| * group. |
| */ |
| if (group->csg_id >= 0) |
| sched_process_csg_irq_locked(ptdev, group->csg_id); |
| |
| group_unbind_locked(group); |
| } |
| } |
| |
| for (i = 0; i < sched->csg_slot_count; i++) { |
| if (!sched->csg_slots[i].group) |
| free_csg_slots |= BIT(i); |
| } |
| |
| csgs_upd_ctx_init(&upd_ctx); |
| new_csg_prio = MAX_CSG_PRIO; |
| |
| /* Start new groups. */ |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| list_for_each_entry(group, &ctx->groups[prio], run_node) { |
| int csg_id = group->csg_id; |
| struct panthor_fw_csg_iface *csg_iface; |
| |
| if (csg_id >= 0) { |
| new_csg_prio--; |
| continue; |
| } |
| |
| csg_id = ffs(free_csg_slots) - 1; |
| if (drm_WARN_ON(&ptdev->base, csg_id < 0)) |
| break; |
| |
| csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); |
| csg_slot = &sched->csg_slots[csg_id]; |
| group_bind_locked(group, csg_id); |
| csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, |
| group->state == PANTHOR_CS_GROUP_SUSPENDED ? |
| CSG_STATE_RESUME : CSG_STATE_START, |
| CSG_STATE_MASK); |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, |
| csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, |
| CSG_ENDPOINT_CONFIG); |
| free_csg_slots &= ~BIT(csg_id); |
| } |
| } |
| |
| ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); |
| if (ret) { |
| panthor_device_schedule_reset(ptdev); |
| ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; |
| return; |
| } |
| |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { |
| list_del_init(&group->run_node); |
| |
| /* If the group has been destroyed while we were |
| * scheduling, ask for an immediate tick to |
| * re-evaluate as soon as possible and get rid of |
| * this dangling group. |
| */ |
| if (group->destroyed) |
| ctx->immediate_tick = true; |
| group_put(group); |
| } |
| |
| /* Return evicted groups to the idle or run queues. Groups |
| * that can no longer be run (because they've been destroyed |
| * or experienced an unrecoverable error) will be scheduled |
| * for destruction in tick_ctx_cleanup(). |
| */ |
| list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { |
| if (!group_can_run(group)) |
| continue; |
| |
| if (group_is_idle(group)) |
| list_move_tail(&group->run_node, &sched->groups.idle[prio]); |
| else |
| list_move_tail(&group->run_node, &sched->groups.runnable[prio]); |
| group_put(group); |
| } |
| } |
| |
| sched->used_csg_slot_count = ctx->group_count; |
| sched->might_have_idle_groups = ctx->idle_group_count > 0; |
| } |
| |
| static u64 |
| tick_ctx_update_resched_target(struct panthor_scheduler *sched, |
| const struct panthor_sched_tick_ctx *ctx) |
| { |
| /* We had space left, no need to reschedule until some external event happens. */ |
| if (!tick_ctx_is_full(sched, ctx)) |
| goto no_tick; |
| |
| /* If idle groups were scheduled, no need to wake up until some external |
| * event happens (group unblocked, new job submitted, ...). |
| */ |
| if (ctx->idle_group_count) |
| goto no_tick; |
| |
| if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) |
| goto no_tick; |
| |
| /* If there are groups of the same priority waiting, we need to |
| * keep the scheduler ticking, otherwise, we'll just wait for |
| * new groups with higher priority to be queued. |
| */ |
| if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { |
| u64 resched_target = sched->last_tick + sched->tick_period; |
| |
| if (time_before64(sched->resched_target, sched->last_tick) || |
| time_before64(resched_target, sched->resched_target)) |
| sched->resched_target = resched_target; |
| |
| return sched->resched_target - sched->last_tick; |
| } |
| |
| no_tick: |
| sched->resched_target = U64_MAX; |
| return U64_MAX; |
| } |
| |
| static void tick_work(struct work_struct *work) |
| { |
| struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, |
| tick_work.work); |
| struct panthor_device *ptdev = sched->ptdev; |
| struct panthor_sched_tick_ctx ctx; |
| u64 remaining_jiffies = 0, resched_delay; |
| u64 now = get_jiffies_64(); |
| int prio, ret, cookie; |
| |
| if (!drm_dev_enter(&ptdev->base, &cookie)) |
| return; |
| |
| ret = pm_runtime_resume_and_get(ptdev->base.dev); |
| if (drm_WARN_ON(&ptdev->base, ret)) |
| goto out_dev_exit; |
| |
| if (time_before64(now, sched->resched_target)) |
| remaining_jiffies = sched->resched_target - now; |
| |
| mutex_lock(&sched->lock); |
| if (panthor_device_reset_is_pending(sched->ptdev)) |
| goto out_unlock; |
| |
| tick_ctx_init(sched, &ctx, remaining_jiffies != 0); |
| if (ctx.csg_upd_failed_mask) |
| goto out_cleanup_ctx; |
| |
| if (remaining_jiffies) { |
| /* Scheduling forced in the middle of a tick. Only RT groups |
| * can preempt non-RT ones. Currently running RT groups can't be |
| * preempted. |
| */ |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; |
| prio >= 0 && !tick_ctx_is_full(sched, &ctx); |
| prio--) { |
| tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], |
| true, true); |
| if (prio == PANTHOR_CSG_PRIORITY_RT) { |
| tick_ctx_pick_groups_from_list(sched, &ctx, |
| &sched->groups.runnable[prio], |
| true, false); |
| } |
| } |
| } |
| |
| /* First pick non-idle groups */ |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; |
| prio >= 0 && !tick_ctx_is_full(sched, &ctx); |
| prio--) { |
| tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], |
| true, false); |
| tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); |
| } |
| |
| /* If we have free CSG slots left, pick idle groups */ |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; |
| prio >= 0 && !tick_ctx_is_full(sched, &ctx); |
| prio--) { |
| /* Check the old_group queue first to avoid reprogramming the slots */ |
| tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); |
| tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], |
| false, false); |
| } |
| |
| tick_ctx_apply(sched, &ctx); |
| if (ctx.csg_upd_failed_mask) |
| goto out_cleanup_ctx; |
| |
| if (ctx.idle_group_count == ctx.group_count) { |
| panthor_devfreq_record_idle(sched->ptdev); |
| if (sched->pm.has_ref) { |
| pm_runtime_put_autosuspend(ptdev->base.dev); |
| sched->pm.has_ref = false; |
| } |
| } else { |
| panthor_devfreq_record_busy(sched->ptdev); |
| if (!sched->pm.has_ref) { |
| pm_runtime_get(ptdev->base.dev); |
| sched->pm.has_ref = true; |
| } |
| } |
| |
| sched->last_tick = now; |
| resched_delay = tick_ctx_update_resched_target(sched, &ctx); |
| if (ctx.immediate_tick) |
| resched_delay = 0; |
| |
| if (resched_delay != U64_MAX) |
| sched_queue_delayed_work(sched, tick, resched_delay); |
| |
| out_cleanup_ctx: |
| tick_ctx_cleanup(sched, &ctx); |
| |
| out_unlock: |
| mutex_unlock(&sched->lock); |
| pm_runtime_mark_last_busy(ptdev->base.dev); |
| pm_runtime_put_autosuspend(ptdev->base.dev); |
| |
| out_dev_exit: |
| drm_dev_exit(cookie); |
| } |
| |
| static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) |
| { |
| struct panthor_queue *queue = group->queues[queue_idx]; |
| union { |
| struct panthor_syncobj_64b sync64; |
| struct panthor_syncobj_32b sync32; |
| } *syncobj; |
| bool result; |
| u64 value; |
| |
| syncobj = panthor_queue_get_syncwait_obj(group, queue); |
| if (!syncobj) |
| return -EINVAL; |
| |
| value = queue->syncwait.sync64 ? |
| syncobj->sync64.seqno : |
| syncobj->sync32.seqno; |
| |
| if (queue->syncwait.gt) |
| result = value > queue->syncwait.ref; |
| else |
| result = value <= queue->syncwait.ref; |
| |
| if (result) |
| panthor_queue_put_syncwait_obj(queue); |
| |
| return result; |
| } |
| |
| static void sync_upd_work(struct work_struct *work) |
| { |
| struct panthor_scheduler *sched = container_of(work, |
| struct panthor_scheduler, |
| sync_upd_work); |
| struct panthor_group *group, *tmp; |
| bool immediate_tick = false; |
| |
| mutex_lock(&sched->lock); |
| list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { |
| u32 tested_queues = group->blocked_queues; |
| u32 unblocked_queues = 0; |
| |
| while (tested_queues) { |
| u32 cs_id = ffs(tested_queues) - 1; |
| int ret; |
| |
| ret = panthor_queue_eval_syncwait(group, cs_id); |
| drm_WARN_ON(&group->ptdev->base, ret < 0); |
| if (ret) |
| unblocked_queues |= BIT(cs_id); |
| |
| tested_queues &= ~BIT(cs_id); |
| } |
| |
| if (unblocked_queues) { |
| group->blocked_queues &= ~unblocked_queues; |
| |
| if (group->csg_id < 0) { |
| list_move(&group->run_node, |
| &sched->groups.runnable[group->priority]); |
| if (group->priority == PANTHOR_CSG_PRIORITY_RT) |
| immediate_tick = true; |
| } |
| } |
| |
| if (!group->blocked_queues) |
| list_del_init(&group->wait_node); |
| } |
| mutex_unlock(&sched->lock); |
| |
| if (immediate_tick) |
| sched_queue_delayed_work(sched, tick, 0); |
| } |
| |
| static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) |
| { |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct list_head *queue = &sched->groups.runnable[group->priority]; |
| u64 delay_jiffies = 0; |
| bool was_idle; |
| u64 now; |
| |
| if (!group_can_run(group)) |
| return; |
| |
| /* All updated queues are blocked, no need to wake up the scheduler. */ |
| if ((queue_mask & group->blocked_queues) == queue_mask) |
| return; |
| |
| was_idle = group_is_idle(group); |
| group->idle_queues &= ~queue_mask; |
| |
| /* Don't mess up with the lists if we're in a middle of a reset. */ |
| if (atomic_read(&sched->reset.in_progress)) |
| return; |
| |
| if (was_idle && !group_is_idle(group)) |
| list_move_tail(&group->run_node, queue); |
| |
| /* RT groups are preemptive. */ |
| if (group->priority == PANTHOR_CSG_PRIORITY_RT) { |
| sched_queue_delayed_work(sched, tick, 0); |
| return; |
| } |
| |
| /* Some groups might be idle, force an immediate tick to |
| * re-evaluate. |
| */ |
| if (sched->might_have_idle_groups) { |
| sched_queue_delayed_work(sched, tick, 0); |
| return; |
| } |
| |
| /* Scheduler is ticking, nothing to do. */ |
| if (sched->resched_target != U64_MAX) { |
| /* If there are free slots, force immediating ticking. */ |
| if (sched->used_csg_slot_count < sched->csg_slot_count) |
| sched_queue_delayed_work(sched, tick, 0); |
| |
| return; |
| } |
| |
| /* Scheduler tick was off, recalculate the resched_target based on the |
| * last tick event, and queue the scheduler work. |
| */ |
| now = get_jiffies_64(); |
| sched->resched_target = sched->last_tick + sched->tick_period; |
| if (sched->used_csg_slot_count == sched->csg_slot_count && |
| time_before64(now, sched->resched_target)) |
| delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); |
| |
| sched_queue_delayed_work(sched, tick, delay_jiffies); |
| } |
| |
| static void queue_stop(struct panthor_queue *queue, |
| struct panthor_job *bad_job) |
| { |
| drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); |
| } |
| |
| static void queue_start(struct panthor_queue *queue) |
| { |
| struct panthor_job *job; |
| |
| /* Re-assign the parent fences. */ |
| list_for_each_entry(job, &queue->scheduler.pending_list, base.list) |
| job->base.s_fence->parent = dma_fence_get(job->done_fence); |
| |
| drm_sched_start(&queue->scheduler, true); |
| } |
| |
| static void panthor_group_stop(struct panthor_group *group) |
| { |
| struct panthor_scheduler *sched = group->ptdev->scheduler; |
| |
| lockdep_assert_held(&sched->reset.lock); |
| |
| for (u32 i = 0; i < group->queue_count; i++) |
| queue_stop(group->queues[i], NULL); |
| |
| group_get(group); |
| list_move_tail(&group->run_node, &sched->reset.stopped_groups); |
| } |
| |
| static void panthor_group_start(struct panthor_group *group) |
| { |
| struct panthor_scheduler *sched = group->ptdev->scheduler; |
| |
| lockdep_assert_held(&group->ptdev->scheduler->reset.lock); |
| |
| for (u32 i = 0; i < group->queue_count; i++) |
| queue_start(group->queues[i]); |
| |
| if (group_can_run(group)) { |
| list_move_tail(&group->run_node, |
| group_is_idle(group) ? |
| &sched->groups.idle[group->priority] : |
| &sched->groups.runnable[group->priority]); |
| } else { |
| list_del_init(&group->run_node); |
| list_del_init(&group->wait_node); |
| group_queue_work(group, term); |
| } |
| |
| group_put(group); |
| } |
| |
| static void panthor_sched_immediate_tick(struct panthor_device *ptdev) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| |
| sched_queue_delayed_work(sched, tick, 0); |
| } |
| |
| /** |
| * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. |
| */ |
| void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) |
| { |
| /* Force a tick to immediately kill faulty groups. */ |
| if (ptdev->scheduler) |
| panthor_sched_immediate_tick(ptdev); |
| } |
| |
| void panthor_sched_resume(struct panthor_device *ptdev) |
| { |
| /* Force a tick to re-evaluate after a resume. */ |
| panthor_sched_immediate_tick(ptdev); |
| } |
| |
| void panthor_sched_suspend(struct panthor_device *ptdev) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_csg_slots_upd_ctx upd_ctx; |
| struct panthor_group *group; |
| u32 suspended_slots; |
| u32 i; |
| |
| mutex_lock(&sched->lock); |
| csgs_upd_ctx_init(&upd_ctx); |
| for (i = 0; i < sched->csg_slot_count; i++) { |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; |
| |
| if (csg_slot->group) { |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, |
| group_can_run(csg_slot->group) ? |
| CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, |
| CSG_STATE_MASK); |
| } |
| } |
| |
| suspended_slots = upd_ctx.update_mask; |
| |
| csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); |
| suspended_slots &= ~upd_ctx.timedout_mask; |
| |
| if (upd_ctx.timedout_mask) { |
| u32 slot_mask = upd_ctx.timedout_mask; |
| |
| drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); |
| csgs_upd_ctx_init(&upd_ctx); |
| while (slot_mask) { |
| u32 csg_id = ffs(slot_mask) - 1; |
| |
| csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, |
| CSG_STATE_TERMINATE, |
| CSG_STATE_MASK); |
| slot_mask &= ~BIT(csg_id); |
| } |
| |
| csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); |
| |
| slot_mask = upd_ctx.timedout_mask; |
| while (slot_mask) { |
| u32 csg_id = ffs(slot_mask) - 1; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| |
| /* Terminate command timedout, but the soft-reset will |
| * automatically terminate all active groups, so let's |
| * force the state to halted here. |
| */ |
| if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) |
| csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; |
| slot_mask &= ~BIT(csg_id); |
| } |
| } |
| |
| /* Flush L2 and LSC caches to make sure suspend state is up-to-date. |
| * If the flush fails, flag all queues for termination. |
| */ |
| if (suspended_slots) { |
| bool flush_caches_failed = false; |
| u32 slot_mask = suspended_slots; |
| |
| if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) |
| flush_caches_failed = true; |
| |
| while (slot_mask) { |
| u32 csg_id = ffs(slot_mask) - 1; |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; |
| |
| if (flush_caches_failed) |
| csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; |
| else |
| csg_slot_sync_update_locked(ptdev, csg_id); |
| |
| slot_mask &= ~BIT(csg_id); |
| } |
| } |
| |
| for (i = 0; i < sched->csg_slot_count; i++) { |
| struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; |
| |
| group = csg_slot->group; |
| if (!group) |
| continue; |
| |
| group_get(group); |
| |
| if (group->csg_id >= 0) |
| sched_process_csg_irq_locked(ptdev, group->csg_id); |
| |
| group_unbind_locked(group); |
| |
| drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); |
| |
| if (group_can_run(group)) { |
| list_add(&group->run_node, |
| &sched->groups.idle[group->priority]); |
| } else { |
| /* We don't bother stopping the scheduler if the group is |
| * faulty, the group termination work will finish the job. |
| */ |
| list_del_init(&group->wait_node); |
| group_queue_work(group, term); |
| } |
| group_put(group); |
| } |
| mutex_unlock(&sched->lock); |
| } |
| |
| void panthor_sched_pre_reset(struct panthor_device *ptdev) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_group *group, *group_tmp; |
| u32 i; |
| |
| mutex_lock(&sched->reset.lock); |
| atomic_set(&sched->reset.in_progress, true); |
| |
| /* Cancel all scheduler works. Once this is done, these works can't be |
| * scheduled again until the reset operation is complete. |
| */ |
| cancel_work_sync(&sched->sync_upd_work); |
| cancel_delayed_work_sync(&sched->tick_work); |
| |
| panthor_sched_suspend(ptdev); |
| |
| /* Stop all groups that might still accept jobs, so we don't get passed |
| * new jobs while we're resetting. |
| */ |
| for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { |
| /* All groups should be in the idle lists. */ |
| drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); |
| list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) |
| panthor_group_stop(group); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { |
| list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) |
| panthor_group_stop(group); |
| } |
| |
| mutex_unlock(&sched->reset.lock); |
| } |
| |
| void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_group *group, *group_tmp; |
| |
| mutex_lock(&sched->reset.lock); |
| |
| list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { |
| /* Consider all previously running group as terminated if the |
| * reset failed. |
| */ |
| if (reset_failed) |
| group->state = PANTHOR_CS_GROUP_TERMINATED; |
| |
| panthor_group_start(group); |
| } |
| |
| /* We're done resetting the GPU, clear the reset.in_progress bit so we can |
| * kick the scheduler. |
| */ |
| atomic_set(&sched->reset.in_progress, false); |
| mutex_unlock(&sched->reset.lock); |
| |
| /* No need to queue a tick and update syncs if the reset failed. */ |
| if (!reset_failed) { |
| sched_queue_delayed_work(sched, tick, 0); |
| sched_queue_work(sched, sync_upd); |
| } |
| } |
| |
| static void group_sync_upd_work(struct work_struct *work) |
| { |
| struct panthor_group *group = |
| container_of(work, struct panthor_group, sync_upd_work); |
| struct panthor_job *job, *job_tmp; |
| LIST_HEAD(done_jobs); |
| u32 queue_idx; |
| bool cookie; |
| |
| cookie = dma_fence_begin_signalling(); |
| for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { |
| struct panthor_queue *queue = group->queues[queue_idx]; |
| struct panthor_syncobj_64b *syncobj; |
| |
| if (!queue) |
| continue; |
| |
| syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); |
| |
| spin_lock(&queue->fence_ctx.lock); |
| list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { |
| if (syncobj->seqno < job->done_fence->seqno) |
| break; |
| |
| list_move_tail(&job->node, &done_jobs); |
| dma_fence_signal_locked(job->done_fence); |
| } |
| spin_unlock(&queue->fence_ctx.lock); |
| } |
| dma_fence_end_signalling(cookie); |
| |
| list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { |
| list_del_init(&job->node); |
| panthor_job_put(&job->base); |
| } |
| |
| group_put(group); |
| } |
| |
| static struct dma_fence * |
| queue_run_job(struct drm_sched_job *sched_job) |
| { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| struct panthor_group *group = job->group; |
| struct panthor_queue *queue = group->queues[job->queue_idx]; |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); |
| u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1); |
| u64 addr_reg = ptdev->csif_info.cs_reg_count - |
| ptdev->csif_info.unpreserved_cs_reg_count; |
| u64 val_reg = addr_reg + 2; |
| u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + |
| job->queue_idx * sizeof(struct panthor_syncobj_64b); |
| u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); |
| struct dma_fence *done_fence; |
| int ret; |
| |
| u64 call_instrs[NUM_INSTRS_PER_SLOT] = { |
| /* MOV32 rX+2, cs.latest_flush */ |
| (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush, |
| |
| /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ |
| (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233, |
| |
| /* MOV48 rX:rX+1, cs.start */ |
| (1ull << 56) | (addr_reg << 48) | job->call_info.start, |
| |
| /* MOV32 rX+2, cs.size */ |
| (2ull << 56) | (val_reg << 48) | job->call_info.size, |
| |
| /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ |
| (3ull << 56) | (1 << 16), |
| |
| /* CALL rX:rX+1, rX+2 */ |
| (32ull << 56) | (addr_reg << 40) | (val_reg << 32), |
| |
| /* MOV48 rX:rX+1, sync_addr */ |
| (1ull << 56) | (addr_reg << 48) | sync_addr, |
| |
| /* MOV48 rX+2, #1 */ |
| (1ull << 56) | (val_reg << 48) | 1, |
| |
| /* WAIT(all) */ |
| (3ull << 56) | (waitall_mask << 16), |
| |
| /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ |
| (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1, |
| |
| /* ERROR_BARRIER, so we can recover from faults at job |
| * boundaries. |
| */ |
| (47ull << 56), |
| }; |
| |
| /* Need to be cacheline aligned to please the prefetcher. */ |
| static_assert(sizeof(call_instrs) % 64 == 0, |
| "call_instrs is not aligned on a cacheline"); |
| |
| /* Stream size is zero, nothing to do except making sure all previously |
| * submitted jobs are done before we signal the |
| * drm_sched_job::s_fence::finished fence. |
| */ |
| if (!job->call_info.size) { |
| job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); |
| return dma_fence_get(job->done_fence); |
| } |
| |
| ret = pm_runtime_resume_and_get(ptdev->base.dev); |
| if (drm_WARN_ON(&ptdev->base, ret)) |
| return ERR_PTR(ret); |
| |
| mutex_lock(&sched->lock); |
| if (!group_can_run(group)) { |
| done_fence = ERR_PTR(-ECANCELED); |
| goto out_unlock; |
| } |
| |
| dma_fence_init(job->done_fence, |
| &panthor_queue_fence_ops, |
| &queue->fence_ctx.lock, |
| queue->fence_ctx.id, |
| atomic64_inc_return(&queue->fence_ctx.seqno)); |
| |
| memcpy(queue->ringbuf->kmap + ringbuf_insert, |
| call_instrs, sizeof(call_instrs)); |
| |
| panthor_job_get(&job->base); |
| spin_lock(&queue->fence_ctx.lock); |
| list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); |
| spin_unlock(&queue->fence_ctx.lock); |
| |
| job->ringbuf.start = queue->iface.input->insert; |
| job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs); |
| |
| /* Make sure the ring buffer is updated before the INSERT |
| * register. |
| */ |
| wmb(); |
| |
| queue->iface.input->extract = queue->iface.output->extract; |
| queue->iface.input->insert = job->ringbuf.end; |
| |
| if (group->csg_id < 0) { |
| /* If the queue is blocked, we want to keep the timeout running, so we |
| * can detect unbounded waits and kill the group when that happens. |
| * Otherwise, we suspend the timeout so the time we spend waiting for |
| * a CSG slot is not counted. |
| */ |
| if (!(group->blocked_queues & BIT(job->queue_idx)) && |
| !queue->timeout_suspended) { |
| queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); |
| queue->timeout_suspended = true; |
| } |
| |
| group_schedule_locked(group, BIT(job->queue_idx)); |
| } else { |
| gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); |
| if (!sched->pm.has_ref && |
| !(group->blocked_queues & BIT(job->queue_idx))) { |
| pm_runtime_get(ptdev->base.dev); |
| sched->pm.has_ref = true; |
| } |
| panthor_devfreq_record_busy(sched->ptdev); |
| } |
| |
| /* Update the last fence. */ |
| dma_fence_put(queue->fence_ctx.last_fence); |
| queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); |
| |
| done_fence = dma_fence_get(job->done_fence); |
| |
| out_unlock: |
| mutex_unlock(&sched->lock); |
| pm_runtime_mark_last_busy(ptdev->base.dev); |
| pm_runtime_put_autosuspend(ptdev->base.dev); |
| |
| return done_fence; |
| } |
| |
| static enum drm_gpu_sched_stat |
| queue_timedout_job(struct drm_sched_job *sched_job) |
| { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| struct panthor_group *group = job->group; |
| struct panthor_device *ptdev = group->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_queue *queue = group->queues[job->queue_idx]; |
| |
| drm_warn(&ptdev->base, "job timeout\n"); |
| |
| drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); |
| |
| queue_stop(queue, job); |
| |
| mutex_lock(&sched->lock); |
| group->timedout = true; |
| if (group->csg_id >= 0) { |
| sched_queue_delayed_work(ptdev->scheduler, tick, 0); |
| } else { |
| /* Remove from the run queues, so the scheduler can't |
| * pick the group on the next tick. |
| */ |
| list_del_init(&group->run_node); |
| list_del_init(&group->wait_node); |
| |
| group_queue_work(group, term); |
| } |
| mutex_unlock(&sched->lock); |
| |
| queue_start(queue); |
| |
| return DRM_GPU_SCHED_STAT_NOMINAL; |
| } |
| |
| static void queue_free_job(struct drm_sched_job *sched_job) |
| { |
| drm_sched_job_cleanup(sched_job); |
| panthor_job_put(sched_job); |
| } |
| |
| static const struct drm_sched_backend_ops panthor_queue_sched_ops = { |
| .run_job = queue_run_job, |
| .timedout_job = queue_timedout_job, |
| .free_job = queue_free_job, |
| }; |
| |
| static struct panthor_queue * |
| group_create_queue(struct panthor_group *group, |
| const struct drm_panthor_queue_create *args) |
| { |
| struct drm_gpu_scheduler *drm_sched; |
| struct panthor_queue *queue; |
| int ret; |
| |
| if (args->pad[0] || args->pad[1] || args->pad[2]) |
| return ERR_PTR(-EINVAL); |
| |
| if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || |
| !is_power_of_2(args->ringbuf_size)) |
| return ERR_PTR(-EINVAL); |
| |
| if (args->priority > CSF_MAX_QUEUE_PRIO) |
| return ERR_PTR(-EINVAL); |
| |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) |
| return ERR_PTR(-ENOMEM); |
| |
| queue->fence_ctx.id = dma_fence_context_alloc(1); |
| spin_lock_init(&queue->fence_ctx.lock); |
| INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); |
| |
| queue->priority = args->priority; |
| |
| queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, |
| args->ringbuf_size, |
| DRM_PANTHOR_BO_NO_MMAP, |
| DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | |
| DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, |
| PANTHOR_VM_KERNEL_AUTO_VA); |
| if (IS_ERR(queue->ringbuf)) { |
| ret = PTR_ERR(queue->ringbuf); |
| goto err_free_queue; |
| } |
| |
| ret = panthor_kernel_bo_vmap(queue->ringbuf); |
| if (ret) |
| goto err_free_queue; |
| |
| queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, |
| &queue->iface.input, |
| &queue->iface.output, |
| &queue->iface.input_fw_va, |
| &queue->iface.output_fw_va); |
| if (IS_ERR(queue->iface.mem)) { |
| ret = PTR_ERR(queue->iface.mem); |
| goto err_free_queue; |
| } |
| |
| ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, |
| group->ptdev->scheduler->wq, 1, |
| args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)), |
| 0, msecs_to_jiffies(JOB_TIMEOUT_MS), |
| group->ptdev->reset.wq, |
| NULL, "panthor-queue", group->ptdev->base.dev); |
| if (ret) |
| goto err_free_queue; |
| |
| drm_sched = &queue->scheduler; |
| ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); |
| |
| return queue; |
| |
| err_free_queue: |
| group_free_queue(group, queue); |
| return ERR_PTR(ret); |
| } |
| |
| #define MAX_GROUPS_PER_POOL 128 |
| |
| int panthor_group_create(struct panthor_file *pfile, |
| const struct drm_panthor_group_create *group_args, |
| const struct drm_panthor_queue_create *queue_args) |
| { |
| struct panthor_device *ptdev = pfile->ptdev; |
| struct panthor_group_pool *gpool = pfile->groups; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); |
| struct panthor_group *group = NULL; |
| u32 gid, i, suspend_size; |
| int ret; |
| |
| if (group_args->pad) |
| return -EINVAL; |
| |
| if (group_args->priority > PANTHOR_CSG_PRIORITY_HIGH) |
| return -EINVAL; |
| |
| if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || |
| (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || |
| (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) |
| return -EINVAL; |
| |
| if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || |
| hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || |
| hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) |
| return -EINVAL; |
| |
| group = kzalloc(sizeof(*group), GFP_KERNEL); |
| if (!group) |
| return -ENOMEM; |
| |
| spin_lock_init(&group->fatal_lock); |
| kref_init(&group->refcount); |
| group->state = PANTHOR_CS_GROUP_CREATED; |
| group->csg_id = -1; |
| |
| group->ptdev = ptdev; |
| group->max_compute_cores = group_args->max_compute_cores; |
| group->compute_core_mask = group_args->compute_core_mask; |
| group->max_fragment_cores = group_args->max_fragment_cores; |
| group->fragment_core_mask = group_args->fragment_core_mask; |
| group->max_tiler_cores = group_args->max_tiler_cores; |
| group->tiler_core_mask = group_args->tiler_core_mask; |
| group->priority = group_args->priority; |
| |
| INIT_LIST_HEAD(&group->wait_node); |
| INIT_LIST_HEAD(&group->run_node); |
| INIT_WORK(&group->term_work, group_term_work); |
| INIT_WORK(&group->sync_upd_work, group_sync_upd_work); |
| INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); |
| INIT_WORK(&group->release_work, group_release_work); |
| |
| group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); |
| if (!group->vm) { |
| ret = -EINVAL; |
| goto err_put_group; |
| } |
| |
| suspend_size = csg_iface->control->suspend_size; |
| group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); |
| if (IS_ERR(group->suspend_buf)) { |
| ret = PTR_ERR(group->suspend_buf); |
| group->suspend_buf = NULL; |
| goto err_put_group; |
| } |
| |
| suspend_size = csg_iface->control->protm_suspend_size; |
| group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); |
| if (IS_ERR(group->protm_suspend_buf)) { |
| ret = PTR_ERR(group->protm_suspend_buf); |
| group->protm_suspend_buf = NULL; |
| goto err_put_group; |
| } |
| |
| group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, |
| group_args->queues.count * |
| sizeof(struct panthor_syncobj_64b), |
| DRM_PANTHOR_BO_NO_MMAP, |
| DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | |
| DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, |
| PANTHOR_VM_KERNEL_AUTO_VA); |
| if (IS_ERR(group->syncobjs)) { |
| ret = PTR_ERR(group->syncobjs); |
| goto err_put_group; |
| } |
| |
| ret = panthor_kernel_bo_vmap(group->syncobjs); |
| if (ret) |
| goto err_put_group; |
| |
| memset(group->syncobjs->kmap, 0, |
| group_args->queues.count * sizeof(struct panthor_syncobj_64b)); |
| |
| for (i = 0; i < group_args->queues.count; i++) { |
| group->queues[i] = group_create_queue(group, &queue_args[i]); |
| if (IS_ERR(group->queues[i])) { |
| ret = PTR_ERR(group->queues[i]); |
| group->queues[i] = NULL; |
| goto err_put_group; |
| } |
| |
| group->queue_count++; |
| } |
| |
| group->idle_queues = GENMASK(group->queue_count - 1, 0); |
| |
| ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); |
| if (ret) |
| goto err_put_group; |
| |
| mutex_lock(&sched->reset.lock); |
| if (atomic_read(&sched->reset.in_progress)) { |
| panthor_group_stop(group); |
| } else { |
| mutex_lock(&sched->lock); |
| list_add_tail(&group->run_node, |
| &sched->groups.idle[group->priority]); |
| mutex_unlock(&sched->lock); |
| } |
| mutex_unlock(&sched->reset.lock); |
| |
| return gid; |
| |
| err_put_group: |
| group_put(group); |
| return ret; |
| } |
| |
| int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) |
| { |
| struct panthor_group_pool *gpool = pfile->groups; |
| struct panthor_device *ptdev = pfile->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_group *group; |
| |
| group = xa_erase(&gpool->xa, group_handle); |
| if (!group) |
| return -EINVAL; |
| |
| for (u32 i = 0; i < group->queue_count; i++) { |
| if (group->queues[i]) |
| drm_sched_entity_destroy(&group->queues[i]->entity); |
| } |
| |
| mutex_lock(&sched->reset.lock); |
| mutex_lock(&sched->lock); |
| group->destroyed = true; |
| if (group->csg_id >= 0) { |
| sched_queue_delayed_work(sched, tick, 0); |
| } else if (!atomic_read(&sched->reset.in_progress)) { |
| /* Remove from the run queues, so the scheduler can't |
| * pick the group on the next tick. |
| */ |
| list_del_init(&group->run_node); |
| list_del_init(&group->wait_node); |
| group_queue_work(group, term); |
| } |
| mutex_unlock(&sched->lock); |
| mutex_unlock(&sched->reset.lock); |
| |
| group_put(group); |
| return 0; |
| } |
| |
| int panthor_group_get_state(struct panthor_file *pfile, |
| struct drm_panthor_group_get_state *get_state) |
| { |
| struct panthor_group_pool *gpool = pfile->groups; |
| struct panthor_device *ptdev = pfile->ptdev; |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| struct panthor_group *group; |
| |
| if (get_state->pad) |
| return -EINVAL; |
| |
| group = group_get(xa_load(&gpool->xa, get_state->group_handle)); |
| if (!group) |
| return -EINVAL; |
| |
| memset(get_state, 0, sizeof(*get_state)); |
| |
| mutex_lock(&sched->lock); |
| if (group->timedout) |
| get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; |
| if (group->fatal_queues) { |
| get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; |
| get_state->fatal_queues = group->fatal_queues; |
| } |
| mutex_unlock(&sched->lock); |
| |
| group_put(group); |
| return 0; |
| } |
| |
| int panthor_group_pool_create(struct panthor_file *pfile) |
| { |
| struct panthor_group_pool *gpool; |
| |
| gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); |
| if (!gpool) |
| return -ENOMEM; |
| |
| xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); |
| pfile->groups = gpool; |
| return 0; |
| } |
| |
| void panthor_group_pool_destroy(struct panthor_file *pfile) |
| { |
| struct panthor_group_pool *gpool = pfile->groups; |
| struct panthor_group *group; |
| unsigned long i; |
| |
| if (IS_ERR_OR_NULL(gpool)) |
| return; |
| |
| xa_for_each(&gpool->xa, i, group) |
| panthor_group_destroy(pfile, i); |
| |
| xa_destroy(&gpool->xa); |
| kfree(gpool); |
| pfile->groups = NULL; |
| } |
| |
| static void job_release(struct kref *ref) |
| { |
| struct panthor_job *job = container_of(ref, struct panthor_job, refcount); |
| |
| drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); |
| |
| if (job->base.s_fence) |
| drm_sched_job_cleanup(&job->base); |
| |
| if (job->done_fence && job->done_fence->ops) |
| dma_fence_put(job->done_fence); |
| else |
| dma_fence_free(job->done_fence); |
| |
| group_put(job->group); |
| |
| kfree(job); |
| } |
| |
| struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) |
| { |
| if (sched_job) { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| |
| kref_get(&job->refcount); |
| } |
| |
| return sched_job; |
| } |
| |
| void panthor_job_put(struct drm_sched_job *sched_job) |
| { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| |
| if (sched_job) |
| kref_put(&job->refcount, job_release); |
| } |
| |
| struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) |
| { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| |
| return job->group->vm; |
| } |
| |
| struct drm_sched_job * |
| panthor_job_create(struct panthor_file *pfile, |
| u16 group_handle, |
| const struct drm_panthor_queue_submit *qsubmit) |
| { |
| struct panthor_group_pool *gpool = pfile->groups; |
| struct panthor_job *job; |
| int ret; |
| |
| if (qsubmit->pad) |
| return ERR_PTR(-EINVAL); |
| |
| /* If stream_addr is zero, so stream_size should be. */ |
| if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) |
| return ERR_PTR(-EINVAL); |
| |
| /* Make sure the address is aligned on 64-byte (cacheline) and the size is |
| * aligned on 8-byte (instruction size). |
| */ |
| if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) |
| return ERR_PTR(-EINVAL); |
| |
| /* bits 24:30 must be zero. */ |
| if (qsubmit->latest_flush & GENMASK(30, 24)) |
| return ERR_PTR(-EINVAL); |
| |
| job = kzalloc(sizeof(*job), GFP_KERNEL); |
| if (!job) |
| return ERR_PTR(-ENOMEM); |
| |
| kref_init(&job->refcount); |
| job->queue_idx = qsubmit->queue_index; |
| job->call_info.size = qsubmit->stream_size; |
| job->call_info.start = qsubmit->stream_addr; |
| job->call_info.latest_flush = qsubmit->latest_flush; |
| INIT_LIST_HEAD(&job->node); |
| |
| job->group = group_get(xa_load(&gpool->xa, group_handle)); |
| if (!job->group) { |
| ret = -EINVAL; |
| goto err_put_job; |
| } |
| |
| if (job->queue_idx >= job->group->queue_count || |
| !job->group->queues[job->queue_idx]) { |
| ret = -EINVAL; |
| goto err_put_job; |
| } |
| |
| /* Empty command streams don't need a fence, they'll pick the one from |
| * the previously submitted job. |
| */ |
| if (job->call_info.size) { |
| job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); |
| if (!job->done_fence) { |
| ret = -ENOMEM; |
| goto err_put_job; |
| } |
| } |
| |
| ret = drm_sched_job_init(&job->base, |
| &job->group->queues[job->queue_idx]->entity, |
| 1, job->group); |
| if (ret) |
| goto err_put_job; |
| |
| return &job->base; |
| |
| err_put_job: |
| panthor_job_put(&job->base); |
| return ERR_PTR(ret); |
| } |
| |
| void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) |
| { |
| struct panthor_job *job = container_of(sched_job, struct panthor_job, base); |
| |
| /* Still not sure why we want USAGE_WRITE for external objects, since I |
| * was assuming this would be handled through explicit syncs being imported |
| * to external BOs with DMA_BUF_IOCTL_IMPORT_SYNC_FILE, but other drivers |
| * seem to pass DMA_RESV_USAGE_WRITE, so there must be a good reason. |
| */ |
| panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, |
| DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE); |
| } |
| |
| void panthor_sched_unplug(struct panthor_device *ptdev) |
| { |
| struct panthor_scheduler *sched = ptdev->scheduler; |
| |
| cancel_delayed_work_sync(&sched->tick_work); |
| |
| mutex_lock(&sched->lock); |
| if (sched->pm.has_ref) { |
| pm_runtime_put(ptdev->base.dev); |
| sched->pm.has_ref = false; |
| } |
| mutex_unlock(&sched->lock); |
| } |
| |
| static void panthor_sched_fini(struct drm_device *ddev, void *res) |
| { |
| struct panthor_scheduler *sched = res; |
| int prio; |
| |
| if (!sched || !sched->csg_slot_count) |
| return; |
| |
| cancel_delayed_work_sync(&sched->tick_work); |
| |
| if (sched->wq) |
| destroy_workqueue(sched->wq); |
| |
| if (sched->heap_alloc_wq) |
| destroy_workqueue(sched->heap_alloc_wq); |
| |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); |
| drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); |
| } |
| |
| drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); |
| } |
| |
| int panthor_sched_init(struct panthor_device *ptdev) |
| { |
| struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); |
| struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); |
| struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); |
| struct panthor_scheduler *sched; |
| u32 gpu_as_count, num_groups; |
| int prio, ret; |
| |
| sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); |
| if (!sched) |
| return -ENOMEM; |
| |
| /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That |
| * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. |
| */ |
| num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); |
| |
| /* The FW-side scheduler might deadlock if two groups with the same |
| * priority try to access a set of resources that overlaps, with part |
| * of the resources being allocated to one group and the other part to |
| * the other group, both groups waiting for the remaining resources to |
| * be allocated. To avoid that, it is recommended to assign each CSG a |
| * different priority. In theory we could allow several groups to have |
| * the same CSG priority if they don't request the same resources, but |
| * that makes the scheduling logic more complicated, so let's clamp |
| * the number of CSG slots to MAX_CSG_PRIO + 1 for now. |
| */ |
| num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); |
| |
| /* We need at least one AS for the MCU and one for the GPU contexts. */ |
| gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); |
| if (!gpu_as_count) { |
| drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", |
| gpu_as_count + 1); |
| return -EINVAL; |
| } |
| |
| sched->ptdev = ptdev; |
| sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); |
| sched->csg_slot_count = num_groups; |
| sched->cs_slot_count = csg_iface->control->stream_num; |
| sched->as_slot_count = gpu_as_count; |
| ptdev->csif_info.csg_slot_count = sched->csg_slot_count; |
| ptdev->csif_info.cs_slot_count = sched->cs_slot_count; |
| ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; |
| |
| sched->last_tick = 0; |
| sched->resched_target = U64_MAX; |
| sched->tick_period = msecs_to_jiffies(10); |
| INIT_DELAYED_WORK(&sched->tick_work, tick_work); |
| INIT_WORK(&sched->sync_upd_work, sync_upd_work); |
| INIT_WORK(&sched->fw_events_work, process_fw_events_work); |
| |
| ret = drmm_mutex_init(&ptdev->base, &sched->lock); |
| if (ret) |
| return ret; |
| |
| for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { |
| INIT_LIST_HEAD(&sched->groups.runnable[prio]); |
| INIT_LIST_HEAD(&sched->groups.idle[prio]); |
| } |
| INIT_LIST_HEAD(&sched->groups.waiting); |
| |
| ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); |
| if (ret) |
| return ret; |
| |
| INIT_LIST_HEAD(&sched->reset.stopped_groups); |
| |
| /* sched->heap_alloc_wq will be used for heap chunk allocation on |
| * tiler OOM events, which means we can't use the same workqueue for |
| * the scheduler because works queued by the scheduler are in |
| * the dma-signalling path. Allocate a dedicated heap_alloc_wq to |
| * work around this limitation. |
| * |
| * FIXME: Ultimately, what we need is a failable/non-blocking GEM |
| * allocation path that we can call when a heap OOM is reported. The |
| * FW is smart enough to fall back on other methods if the kernel can't |
| * allocate memory, and fail the tiling job if none of these |
| * countermeasures worked. |
| * |
| * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the |
| * system is running out of memory. |
| */ |
| sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); |
| sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); |
| if (!sched->wq || !sched->heap_alloc_wq) { |
| panthor_sched_fini(&ptdev->base, sched); |
| drm_err(&ptdev->base, "Failed to allocate the workqueues"); |
| return -ENOMEM; |
| } |
| |
| ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); |
| if (ret) |
| return ret; |
| |
| ptdev->scheduler = sched; |
| return 0; |
| } |