| // SPDX-License-Identifier: Apache-2.0 OR MIT |
| |
| #[cfg(not(no_global_oom_handling))] |
| use super::AsVecIntoIter; |
| use crate::alloc::{Allocator, Global}; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::collections::VecDeque; |
| use crate::raw_vec::RawVec; |
| use core::array; |
| use core::fmt; |
| use core::iter::{ |
| FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce, |
| }; |
| use core::marker::PhantomData; |
| use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
| use core::num::NonZeroUsize; |
| #[cfg(not(no_global_oom_handling))] |
| use core::ops::Deref; |
| use core::ptr::{self, NonNull}; |
| use core::slice::{self}; |
| |
| /// An iterator that moves out of a vector. |
| /// |
| /// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) |
| /// (provided by the [`IntoIterator`] trait). |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// let v = vec![0, 1, 2]; |
| /// let iter: std::vec::IntoIter<_> = v.into_iter(); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_insignificant_dtor] |
| pub struct IntoIter< |
| T, |
| #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
| > { |
| pub(super) buf: NonNull<T>, |
| pub(super) phantom: PhantomData<T>, |
| pub(super) cap: usize, |
| // the drop impl reconstructs a RawVec from buf, cap and alloc |
| // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop |
| pub(super) alloc: ManuallyDrop<A>, |
| pub(super) ptr: *const T, |
| pub(super) end: *const T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that |
| // ptr == end is a quick test for the Iterator being empty, that works |
| // for both ZST and non-ZST. |
| } |
| |
| #[stable(feature = "vec_intoiter_debug", since = "1.13.0")] |
| impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_tuple("IntoIter").field(&self.as_slice()).finish() |
| } |
| } |
| |
| impl<T, A: Allocator> IntoIter<T, A> { |
| /// Returns the remaining items of this iterator as a slice. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let vec = vec!['a', 'b', 'c']; |
| /// let mut into_iter = vec.into_iter(); |
| /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); |
| /// let _ = into_iter.next().unwrap(); |
| /// assert_eq!(into_iter.as_slice(), &['b', 'c']); |
| /// ``` |
| #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] |
| pub fn as_slice(&self) -> &[T] { |
| unsafe { slice::from_raw_parts(self.ptr, self.len()) } |
| } |
| |
| /// Returns the remaining items of this iterator as a mutable slice. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let vec = vec!['a', 'b', 'c']; |
| /// let mut into_iter = vec.into_iter(); |
| /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); |
| /// into_iter.as_mut_slice()[2] = 'z'; |
| /// assert_eq!(into_iter.next().unwrap(), 'a'); |
| /// assert_eq!(into_iter.next().unwrap(), 'b'); |
| /// assert_eq!(into_iter.next().unwrap(), 'z'); |
| /// ``` |
| #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] |
| pub fn as_mut_slice(&mut self) -> &mut [T] { |
| unsafe { &mut *self.as_raw_mut_slice() } |
| } |
| |
| /// Returns a reference to the underlying allocator. |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| #[inline] |
| pub fn allocator(&self) -> &A { |
| &self.alloc |
| } |
| |
| fn as_raw_mut_slice(&mut self) -> *mut [T] { |
| ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len()) |
| } |
| |
| /// Drops remaining elements and relinquishes the backing allocation. |
| /// This method guarantees it won't panic before relinquishing |
| /// the backing allocation. |
| /// |
| /// This is roughly equivalent to the following, but more efficient |
| /// |
| /// ``` |
| /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter(); |
| /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter()); |
| /// (&mut into_iter).for_each(drop); |
| /// std::mem::forget(into_iter); |
| /// ``` |
| /// |
| /// This method is used by in-place iteration, refer to the vec::in_place_collect |
| /// documentation for an overview. |
| #[cfg(not(no_global_oom_handling))] |
| pub(super) fn forget_allocation_drop_remaining(&mut self) { |
| let remaining = self.as_raw_mut_slice(); |
| |
| // overwrite the individual fields instead of creating a new |
| // struct and then overwriting &mut self. |
| // this creates less assembly |
| self.cap = 0; |
| self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) }; |
| self.ptr = self.buf.as_ptr(); |
| self.end = self.buf.as_ptr(); |
| |
| // Dropping the remaining elements can panic, so this needs to be |
| // done only after updating the other fields. |
| unsafe { |
| ptr::drop_in_place(remaining); |
| } |
| } |
| |
| /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed. |
| pub(crate) fn forget_remaining_elements(&mut self) { |
| // For th ZST case, it is crucial that we mutate `end` here, not `ptr`. |
| // `ptr` must stay aligned, while `end` may be unaligned. |
| self.end = self.ptr; |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> { |
| // Keep our `Drop` impl from dropping the elements and the allocator |
| let mut this = ManuallyDrop::new(self); |
| |
| // SAFETY: This allocation originally came from a `Vec`, so it passes |
| // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`, |
| // so the `sub_ptr`s below cannot wrap, and will produce a well-formed |
| // range. `end` ≤ `buf + cap`, so the range will be in-bounds. |
| // Taking `alloc` is ok because nothing else is going to look at it, |
| // since our `Drop` impl isn't going to run so there's no more code. |
| unsafe { |
| let buf = this.buf.as_ptr(); |
| let initialized = if T::IS_ZST { |
| // All the pointers are the same for ZSTs, so it's fine to |
| // say that they're all at the beginning of the "allocation". |
| 0..this.len() |
| } else { |
| this.ptr.sub_ptr(buf)..this.end.sub_ptr(buf) |
| }; |
| let cap = this.cap; |
| let alloc = ManuallyDrop::take(&mut this.alloc); |
| VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc) |
| } |
| } |
| } |
| |
| #[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")] |
| impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { |
| fn as_ref(&self) -> &[T] { |
| self.as_slice() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} |
| #[stable(feature = "rust1", since = "1.0.0")] |
| unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T, A: Allocator> Iterator for IntoIter<T, A> { |
| type Item = T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<T> { |
| if self.ptr == self.end { |
| None |
| } else if T::IS_ZST { |
| // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by |
| // reducing the `end`. |
| self.end = self.end.wrapping_byte_sub(1); |
| |
| // Make up a value of this ZST. |
| Some(unsafe { mem::zeroed() }) |
| } else { |
| let old = self.ptr; |
| self.ptr = unsafe { self.ptr.add(1) }; |
| |
| Some(unsafe { ptr::read(old) }) |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let exact = if T::IS_ZST { |
| self.end.addr().wrapping_sub(self.ptr.addr()) |
| } else { |
| unsafe { self.end.sub_ptr(self.ptr) } |
| }; |
| (exact, Some(exact)) |
| } |
| |
| #[inline] |
| fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { |
| let step_size = self.len().min(n); |
| let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size); |
| if T::IS_ZST { |
| // See `next` for why we sub `end` here. |
| self.end = self.end.wrapping_byte_sub(step_size); |
| } else { |
| // SAFETY: the min() above ensures that step_size is in bounds |
| self.ptr = unsafe { self.ptr.add(step_size) }; |
| } |
| // SAFETY: the min() above ensures that step_size is in bounds |
| unsafe { |
| ptr::drop_in_place(to_drop); |
| } |
| NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) |
| } |
| |
| #[inline] |
| fn count(self) -> usize { |
| self.len() |
| } |
| |
| #[inline] |
| fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> { |
| let mut raw_ary = MaybeUninit::uninit_array(); |
| |
| let len = self.len(); |
| |
| if T::IS_ZST { |
| if len < N { |
| self.forget_remaining_elements(); |
| // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct |
| return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) }); |
| } |
| |
| self.end = self.end.wrapping_byte_sub(N); |
| // Safety: ditto |
| return Ok(unsafe { raw_ary.transpose().assume_init() }); |
| } |
| |
| if len < N { |
| // Safety: `len` indicates that this many elements are available and we just checked that |
| // it fits into the array. |
| unsafe { |
| ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, len); |
| self.forget_remaining_elements(); |
| return Err(array::IntoIter::new_unchecked(raw_ary, 0..len)); |
| } |
| } |
| |
| // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize |
| // the array. |
| return unsafe { |
| ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, N); |
| self.ptr = self.ptr.add(N); |
| Ok(raw_ary.transpose().assume_init()) |
| }; |
| } |
| |
| unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item |
| where |
| Self: TrustedRandomAccessNoCoerce, |
| { |
| // SAFETY: the caller must guarantee that `i` is in bounds of the |
| // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)` |
| // is guaranteed to pointer to an element of the `Vec<T>` and |
| // thus guaranteed to be valid to dereference. |
| // |
| // Also note the implementation of `Self: TrustedRandomAccess` requires |
| // that `T: Copy` so reading elements from the buffer doesn't invalidate |
| // them for `Drop`. |
| unsafe { |
| if T::IS_ZST { mem::zeroed() } else { ptr::read(self.ptr.add(i)) } |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { |
| #[inline] |
| fn next_back(&mut self) -> Option<T> { |
| if self.end == self.ptr { |
| None |
| } else if T::IS_ZST { |
| // See above for why 'ptr.offset' isn't used |
| self.end = self.end.wrapping_byte_sub(1); |
| |
| // Make up a value of this ZST. |
| Some(unsafe { mem::zeroed() }) |
| } else { |
| self.end = unsafe { self.end.sub(1) }; |
| |
| Some(unsafe { ptr::read(self.end) }) |
| } |
| } |
| |
| #[inline] |
| fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { |
| let step_size = self.len().min(n); |
| if T::IS_ZST { |
| // SAFETY: same as for advance_by() |
| self.end = self.end.wrapping_byte_sub(step_size); |
| } else { |
| // SAFETY: same as for advance_by() |
| self.end = unsafe { self.end.sub(step_size) }; |
| } |
| let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size); |
| // SAFETY: same as for advance_by() |
| unsafe { |
| ptr::drop_in_place(to_drop); |
| } |
| NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { |
| fn is_empty(&self) -> bool { |
| self.ptr == self.end |
| } |
| } |
| |
| #[stable(feature = "fused", since = "1.26.0")] |
| impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} |
| |
| #[unstable(feature = "trusted_len", issue = "37572")] |
| unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {} |
| |
| #[stable(feature = "default_iters", since = "1.70.0")] |
| impl<T, A> Default for IntoIter<T, A> |
| where |
| A: Allocator + Default, |
| { |
| /// Creates an empty `vec::IntoIter`. |
| /// |
| /// ``` |
| /// # use std::vec; |
| /// let iter: vec::IntoIter<u8> = Default::default(); |
| /// assert_eq!(iter.len(), 0); |
| /// assert_eq!(iter.as_slice(), &[]); |
| /// ``` |
| fn default() -> Self { |
| super::Vec::new_in(Default::default()).into_iter() |
| } |
| } |
| |
| #[doc(hidden)] |
| #[unstable(issue = "none", feature = "std_internals")] |
| #[rustc_unsafe_specialization_marker] |
| pub trait NonDrop {} |
| |
| // T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr |
| // and thus we can't implement drop-handling |
| #[unstable(issue = "none", feature = "std_internals")] |
| impl<T: Copy> NonDrop for T {} |
| |
| #[doc(hidden)] |
| #[unstable(issue = "none", feature = "std_internals")] |
| // TrustedRandomAccess (without NoCoerce) must not be implemented because |
| // subtypes/supertypes of `T` might not be `NonDrop` |
| unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A> |
| where |
| T: NonDrop, |
| { |
| const MAY_HAVE_SIDE_EFFECT: bool = false; |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "vec_into_iter_clone", since = "1.8.0")] |
| impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { |
| #[cfg(not(test))] |
| fn clone(&self) -> Self { |
| self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter() |
| } |
| #[cfg(test)] |
| fn clone(&self) -> Self { |
| crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> { |
| fn drop(&mut self) { |
| struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); |
| |
| impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { |
| fn drop(&mut self) { |
| unsafe { |
| // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec |
| let alloc = ManuallyDrop::take(&mut self.0.alloc); |
| // RawVec handles deallocation |
| let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc); |
| } |
| } |
| } |
| |
| let guard = DropGuard(self); |
| // destroy the remaining elements |
| unsafe { |
| ptr::drop_in_place(guard.0.as_raw_mut_slice()); |
| } |
| // now `guard` will be dropped and do the rest |
| } |
| } |
| |
| // In addition to the SAFETY invariants of the following three unsafe traits |
| // also refer to the vec::in_place_collect module documentation to get an overview |
| #[unstable(issue = "none", feature = "inplace_iteration")] |
| #[doc(hidden)] |
| unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {} |
| |
| #[unstable(issue = "none", feature = "inplace_iteration")] |
| #[doc(hidden)] |
| unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { |
| type Source = Self; |
| |
| #[inline] |
| unsafe fn as_inner(&mut self) -> &mut Self::Source { |
| self |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| unsafe impl<T> AsVecIntoIter for IntoIter<T> { |
| type Item = T; |
| |
| fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> { |
| self |
| } |
| } |