| /********************************************************************** |
| * Author: Cavium, Inc. |
| * |
| * Contact: support@cavium.com |
| * Please include "LiquidIO" in the subject. |
| * |
| * Copyright (c) 2003-2016 Cavium, Inc. |
| * |
| * This file is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, Version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or |
| * NONINFRINGEMENT. See the GNU General Public License for more details. |
| ***********************************************************************/ |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include "liquidio_common.h" |
| #include "octeon_droq.h" |
| #include "octeon_iq.h" |
| #include "response_manager.h" |
| #include "octeon_device.h" |
| #include "octeon_main.h" |
| #include "cn66xx_regs.h" |
| #include "cn66xx_device.h" |
| |
| int lio_cn6xxx_soft_reset(struct octeon_device *oct) |
| { |
| octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF); |
| |
| dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n"); |
| |
| lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST); |
| octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL); |
| |
| lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST); |
| lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST); |
| |
| /* Wait for 10ms as Octeon resets. */ |
| mdelay(100); |
| |
| if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) { |
| dev_err(&oct->pci_dev->dev, "Soft reset failed\n"); |
| return 1; |
| } |
| |
| dev_dbg(&oct->pci_dev->dev, "Reset completed\n"); |
| octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF); |
| |
| return 0; |
| } |
| |
| void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct) |
| { |
| u32 val; |
| |
| pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); |
| if (val & 0x000c0000) { |
| dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n", |
| val & 0x000c0000); |
| } |
| |
| val |= 0xf; /* Enable Link error reporting */ |
| |
| dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n"); |
| pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); |
| } |
| |
| void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct, |
| enum octeon_pcie_mps mps) |
| { |
| u32 val; |
| u64 r64; |
| |
| /* Read config register for MPS */ |
| pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); |
| |
| if (mps == PCIE_MPS_DEFAULT) { |
| mps = ((val & (0x7 << 5)) >> 5); |
| } else { |
| val &= ~(0x7 << 5); /* Turn off any MPS bits */ |
| val |= (mps << 5); /* Set MPS */ |
| pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); |
| } |
| |
| /* Set MPS in DPI_SLI_PRT0_CFG to the same value. */ |
| r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); |
| r64 |= (mps << 4); |
| lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); |
| } |
| |
| void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct, |
| enum octeon_pcie_mrrs mrrs) |
| { |
| u32 val; |
| u64 r64; |
| |
| /* Read config register for MRRS */ |
| pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); |
| |
| if (mrrs == PCIE_MRRS_DEFAULT) { |
| mrrs = ((val & (0x7 << 12)) >> 12); |
| } else { |
| val &= ~(0x7 << 12); /* Turn off any MRRS bits */ |
| val |= (mrrs << 12); /* Set MRRS */ |
| pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); |
| } |
| |
| /* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */ |
| r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port)); |
| r64 |= mrrs; |
| octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64); |
| |
| /* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */ |
| r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); |
| r64 |= mrrs; |
| lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); |
| } |
| |
| u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct) |
| { |
| /* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier |
| * for SLI. |
| */ |
| return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50; |
| } |
| |
| u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct, |
| u32 time_intr_in_us) |
| { |
| /* This gives the SLI clock per microsec */ |
| u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct); |
| |
| /* core clock per us / oq ticks will be fractional. TO avoid that |
| * we use the method below. |
| */ |
| |
| /* This gives the clock cycles per millisecond */ |
| oqticks_per_us *= 1000; |
| |
| /* This gives the oq ticks (1024 core clock cycles) per millisecond */ |
| oqticks_per_us /= 1024; |
| |
| /* time_intr is in microseconds. The next 2 steps gives the oq ticks |
| * corressponding to time_intr. |
| */ |
| oqticks_per_us *= time_intr_in_us; |
| oqticks_per_us /= 1000; |
| |
| return oqticks_per_us; |
| } |
| |
| void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct) |
| { |
| /* Select Round-Robin Arb, ES, RO, NS for Input Queues */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL, |
| CN6XXX_INPUT_CTL_MASK); |
| |
| /* Instruction Read Size - Max 4 instructions per PCIE Read */ |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE, |
| 0xFFFFFFFFFFFFFFFFULL); |
| |
| /* Select PCIE Port for all Input rings. */ |
| octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT, |
| (oct->pcie_port * 0x5555555555555555ULL)); |
| } |
| |
| static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct) |
| { |
| u64 pktctl; |
| |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| |
| pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL); |
| |
| /* 66XX SPECIFIC */ |
| if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4) |
| /* Disable RING_EN if only upto 4 rings are used. */ |
| pktctl &= ~(1 << 4); |
| else |
| pktctl |= (1 << 4); |
| |
| if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) |
| pktctl |= 0xF; |
| else |
| /* Disable per-port backpressure. */ |
| pktctl &= ~0xF; |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl); |
| } |
| |
| void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct) |
| { |
| u32 time_threshold; |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| |
| /* / Select PCI-E Port for all Output queues */ |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64, |
| (oct->pcie_port * 0x5555555555555555ULL)); |
| |
| if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) { |
| octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32); |
| } else { |
| /* / Set Output queue watermark to 0 to disable backpressure */ |
| octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0); |
| } |
| |
| /* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0); |
| |
| /* Select ES, RO, NS setting from register for Output Queue Packet |
| * Address |
| */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF); |
| |
| /* No Relaxed Ordering, No Snoop, 64-bit swap for Output |
| * Queue ScatterList |
| */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0); |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0); |
| |
| /* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */ |
| #ifdef __BIG_ENDIAN_BITFIELD |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, |
| 0x5555555555555555ULL); |
| #else |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL); |
| #endif |
| |
| /* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0); |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0); |
| octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64, |
| 0x5555555555555555ULL); |
| |
| /* / Set up interrupt packet and time threshold */ |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS, |
| (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf)); |
| time_threshold = |
| lio_cn6xxx_get_oq_ticks(oct, (u32) |
| CFG_GET_OQ_INTR_TIME(cn6xxx->conf)); |
| |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold); |
| } |
| |
| static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct) |
| { |
| lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT); |
| lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B); |
| lio_cn6xxx_enable_error_reporting(oct); |
| |
| lio_cn6xxx_setup_global_input_regs(oct); |
| lio_cn66xx_setup_pkt_ctl_regs(oct); |
| lio_cn6xxx_setup_global_output_regs(oct); |
| |
| /* Default error timeout value should be 0x200000 to avoid host hang |
| * when reads invalid register |
| */ |
| octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL); |
| return 0; |
| } |
| |
| void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) |
| { |
| struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; |
| |
| octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0); |
| |
| /* Write the start of the input queue's ring and its size */ |
| octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no), |
| iq->base_addr_dma); |
| octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count); |
| |
| /* Remember the doorbell & instruction count register addr for this |
| * queue |
| */ |
| iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no); |
| iq->inst_cnt_reg = oct->mmio[0].hw_addr |
| + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no); |
| dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", |
| iq_no, iq->doorbell_reg, iq->inst_cnt_reg); |
| |
| /* Store the current instruction counter |
| * (used in flush_iq calculation) |
| */ |
| iq->reset_instr_cnt = readl(iq->inst_cnt_reg); |
| } |
| |
| static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) |
| { |
| lio_cn6xxx_setup_iq_regs(oct, iq_no); |
| |
| /* Backpressure for this queue - WMARK set to all F's. This effectively |
| * disables the backpressure mechanism. |
| */ |
| octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no), |
| (0xFFFFFFFFULL << 32)); |
| } |
| |
| void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) |
| { |
| u32 intr; |
| struct octeon_droq *droq = oct->droq[oq_no]; |
| |
| octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no), |
| droq->desc_ring_dma); |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count); |
| |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no), |
| droq->buffer_size); |
| |
| /* Get the mapped address of the pkt_sent and pkts_credit regs */ |
| droq->pkts_sent_reg = |
| oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no); |
| droq->pkts_credit_reg = |
| oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no); |
| |
| /* Enable this output queue to generate Packet Timer Interrupt */ |
| intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB); |
| intr |= (1 << oq_no); |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr); |
| |
| /* Enable this output queue to generate Packet Timer Interrupt */ |
| intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB); |
| intr |= (1 << oq_no); |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr); |
| } |
| |
| int lio_cn6xxx_enable_io_queues(struct octeon_device *oct) |
| { |
| u32 mask; |
| |
| mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE); |
| mask |= oct->io_qmask.iq64B; |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask); |
| |
| mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB); |
| mask |= oct->io_qmask.iq; |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask); |
| |
| mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB); |
| mask |= oct->io_qmask.oq; |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask); |
| |
| return 0; |
| } |
| |
| void lio_cn6xxx_disable_io_queues(struct octeon_device *oct) |
| { |
| int i; |
| u32 mask, loop = HZ; |
| u32 d32; |
| |
| /* Reset the Enable bits for Input Queues. */ |
| mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB); |
| mask ^= oct->io_qmask.iq; |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask); |
| |
| /* Wait until hardware indicates that the queues are out of reset. */ |
| mask = (u32)oct->io_qmask.iq; |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ); |
| while (((d32 & mask) != mask) && loop--) { |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ); |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| /* Reset the doorbell register for each Input queue. */ |
| for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { |
| if (!(oct->io_qmask.iq & BIT_ULL(i))) |
| continue; |
| octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF); |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i)); |
| } |
| |
| /* Reset the Enable bits for Output Queues. */ |
| mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB); |
| mask ^= oct->io_qmask.oq; |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask); |
| |
| /* Wait until hardware indicates that the queues are out of reset. */ |
| loop = HZ; |
| mask = (u32)oct->io_qmask.oq; |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ); |
| while (((d32 & mask) != mask) && loop--) { |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ); |
| schedule_timeout_uninterruptible(1); |
| } |
| ; |
| |
| /* Reset the doorbell register for each Output queue. */ |
| for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { |
| if (!(oct->io_qmask.oq & BIT_ULL(i))) |
| continue; |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF); |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i)); |
| |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i)); |
| octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32); |
| } |
| |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT); |
| if (d32) |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32); |
| |
| d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT); |
| if (d32) |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32); |
| } |
| |
| void |
| lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct, |
| u64 core_addr, |
| u32 idx, |
| int valid) |
| { |
| u64 bar1; |
| |
| if (valid == 0) { |
| bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL), |
| CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| return; |
| } |
| |
| /* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of |
| * the Core Addr |
| */ |
| lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), |
| CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| |
| bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| } |
| |
| void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct, |
| u32 idx, |
| u32 mask) |
| { |
| lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| } |
| |
| u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx) |
| { |
| return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); |
| } |
| |
| u32 |
| lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq) |
| { |
| u32 new_idx = readl(iq->inst_cnt_reg); |
| |
| /* The new instr cnt reg is a 32-bit counter that can roll over. We have |
| * noted the counter's initial value at init time into |
| * reset_instr_cnt |
| */ |
| if (iq->reset_instr_cnt < new_idx) |
| new_idx -= iq->reset_instr_cnt; |
| else |
| new_idx += (0xffffffff - iq->reset_instr_cnt) + 1; |
| |
| /* Modulo of the new index with the IQ size will give us |
| * the new index. |
| */ |
| new_idx %= iq->max_count; |
| |
| return new_idx; |
| } |
| |
| void lio_cn6xxx_enable_interrupt(struct octeon_device *oct, |
| u8 unused __attribute__((unused))) |
| { |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE; |
| |
| /* Enable Interrupt */ |
| writeq(mask, cn6xxx->intr_enb_reg64); |
| } |
| |
| void lio_cn6xxx_disable_interrupt(struct octeon_device *oct, |
| u8 unused __attribute__((unused))) |
| { |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| |
| /* Disable Interrupts */ |
| writeq(0, cn6xxx->intr_enb_reg64); |
| } |
| |
| static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct) |
| { |
| /* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register |
| * to determine the PCIE port # |
| */ |
| oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff; |
| |
| dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port); |
| } |
| |
| static void |
| lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64) |
| { |
| dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n", |
| CVM_CAST64(intr64)); |
| } |
| |
| static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct) |
| { |
| struct octeon_droq *droq; |
| int oq_no; |
| u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb; |
| u32 droq_cnt_enb, droq_cnt_mask; |
| |
| droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB); |
| droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT); |
| droq_mask = droq_cnt_mask & droq_cnt_enb; |
| |
| droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT); |
| droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB); |
| droq_mask |= (droq_time_mask & droq_int_enb); |
| |
| droq_mask &= oct->io_qmask.oq; |
| |
| oct->droq_intr = 0; |
| |
| for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) { |
| if (!(droq_mask & BIT_ULL(oq_no))) |
| continue; |
| |
| droq = oct->droq[oq_no]; |
| pkt_count = octeon_droq_check_hw_for_pkts(droq); |
| if (pkt_count) { |
| oct->droq_intr |= BIT_ULL(oq_no); |
| if (droq->ops.poll_mode) { |
| u32 value; |
| u32 reg; |
| |
| struct octeon_cn6xxx *cn6xxx = |
| (struct octeon_cn6xxx *)oct->chip; |
| |
| /* disable interrupts for this droq */ |
| spin_lock |
| (&cn6xxx->lock_for_droq_int_enb_reg); |
| reg = CN6XXX_SLI_PKT_TIME_INT_ENB; |
| value = octeon_read_csr(oct, reg); |
| value &= ~(1 << oq_no); |
| octeon_write_csr(oct, reg, value); |
| reg = CN6XXX_SLI_PKT_CNT_INT_ENB; |
| value = octeon_read_csr(oct, reg); |
| value &= ~(1 << oq_no); |
| octeon_write_csr(oct, reg, value); |
| |
| spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg); |
| } |
| } |
| } |
| |
| droq_time_mask &= oct->io_qmask.oq; |
| droq_cnt_mask &= oct->io_qmask.oq; |
| |
| /* Reset the PKT_CNT/TIME_INT registers. */ |
| if (droq_time_mask) |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask); |
| |
| if (droq_cnt_mask) /* reset PKT_CNT register:66xx */ |
| octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask); |
| |
| return 0; |
| } |
| |
| irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev) |
| { |
| struct octeon_device *oct = (struct octeon_device *)dev; |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| u64 intr64; |
| |
| intr64 = readq(cn6xxx->intr_sum_reg64); |
| |
| /* If our device has interrupted, then proceed. |
| * Also check for all f's if interrupt was triggered on an error |
| * and the PCI read fails. |
| */ |
| if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL)) |
| return IRQ_NONE; |
| |
| oct->int_status = 0; |
| |
| if (intr64 & CN6XXX_INTR_ERR) |
| lio_cn6xxx_process_pcie_error_intr(oct, intr64); |
| |
| if (intr64 & CN6XXX_INTR_PKT_DATA) { |
| lio_cn6xxx_process_droq_intr_regs(oct); |
| oct->int_status |= OCT_DEV_INTR_PKT_DATA; |
| } |
| |
| if (intr64 & CN6XXX_INTR_DMA0_FORCE) |
| oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; |
| |
| if (intr64 & CN6XXX_INTR_DMA1_FORCE) |
| oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; |
| |
| /* Clear the current interrupts */ |
| writeq(intr64, cn6xxx->intr_sum_reg64); |
| |
| return IRQ_HANDLED; |
| } |
| |
| void lio_cn6xxx_setup_reg_address(struct octeon_device *oct, |
| void *chip, |
| struct octeon_reg_list *reg_list) |
| { |
| u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip; |
| |
| reg_list->pci_win_wr_addr_hi = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI); |
| reg_list->pci_win_wr_addr_lo = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO); |
| reg_list->pci_win_wr_addr = |
| (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64); |
| |
| reg_list->pci_win_rd_addr_hi = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI); |
| reg_list->pci_win_rd_addr_lo = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO); |
| reg_list->pci_win_rd_addr = |
| (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64); |
| |
| reg_list->pci_win_wr_data_hi = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI); |
| reg_list->pci_win_wr_data_lo = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO); |
| reg_list->pci_win_wr_data = |
| (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64); |
| |
| reg_list->pci_win_rd_data_hi = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI); |
| reg_list->pci_win_rd_data_lo = |
| (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO); |
| reg_list->pci_win_rd_data = |
| (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64); |
| |
| lio_cn6xxx_get_pcie_qlmport(oct); |
| |
| cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64; |
| cn6xxx->intr_mask64 = CN6XXX_INTR_MASK; |
| cn6xxx->intr_enb_reg64 = |
| bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port); |
| } |
| |
| int lio_setup_cn66xx_octeon_device(struct octeon_device *oct) |
| { |
| struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; |
| |
| if (octeon_map_pci_barx(oct, 0, 0)) |
| return 1; |
| |
| if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { |
| dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n", |
| __func__); |
| octeon_unmap_pci_barx(oct, 0); |
| return 1; |
| } |
| |
| spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg); |
| |
| oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs; |
| oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs; |
| |
| oct->fn_list.soft_reset = lio_cn6xxx_soft_reset; |
| oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs; |
| oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index; |
| |
| oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup; |
| oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write; |
| oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read; |
| |
| oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs; |
| oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt; |
| oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt; |
| |
| oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues; |
| oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues; |
| |
| lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list); |
| |
| cn6xxx->conf = (struct octeon_config *) |
| oct_get_config_info(oct, LIO_210SV); |
| if (!cn6xxx->conf) { |
| dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n", |
| __func__); |
| octeon_unmap_pci_barx(oct, 0); |
| octeon_unmap_pci_barx(oct, 1); |
| return 1; |
| } |
| |
| oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct); |
| |
| return 0; |
| } |
| |
| int lio_validate_cn6xxx_config_info(struct octeon_device *oct, |
| struct octeon_config *conf6xxx) |
| { |
| if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) { |
| dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", |
| __func__, CFG_GET_IQ_MAX_Q(conf6xxx), |
| CN6XXX_MAX_INPUT_QUEUES); |
| return 1; |
| } |
| |
| if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) { |
| dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", |
| __func__, CFG_GET_OQ_MAX_Q(conf6xxx), |
| CN6XXX_MAX_OUTPUT_QUEUES); |
| return 1; |
| } |
| |
| if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR && |
| CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) { |
| dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", |
| __func__); |
| return 1; |
| } |
| if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) { |
| dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", |
| __func__); |
| return 1; |
| } |
| |
| if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) { |
| dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n", |
| __func__); |
| return 1; |
| } |
| |
| return 0; |
| } |