blob: 53d7445a5d12c1edaaf012e4e853560ec1f75e39 [file] [log] [blame]
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Programming Atheros 802.11n analog front end radios
*
* AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
* devices have either an external AR2133 analog front end radio for single
* band 2.4 GHz communication or an AR5133 analog front end radio for dual
* band 2.4 GHz / 5 GHz communication.
*
* All devices after the AR5416 and AR5418 family starting with the AR9280
* have their analog front radios, MAC/BB and host PCIe/USB interface embedded
* into a single-chip and require less programming.
*
* The following single-chips exist with a respective embedded radio:
*
* AR9280 - 11n dual-band 2x2 MIMO for PCIe
* AR9281 - 11n single-band 1x2 MIMO for PCIe
* AR9285 - 11n single-band 1x1 for PCIe
* AR9287 - 11n single-band 2x2 MIMO for PCIe
*
* AR9220 - 11n dual-band 2x2 MIMO for PCI
* AR9223 - 11n single-band 2x2 MIMO for PCI
*
* AR9287 - 11n single-band 1x1 MIMO for USB
*/
#include "hw.h"
#include "ar9002_phy.h"
/**
* ar9002_hw_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* all devices after ar9280.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*/
static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode, aModeRefSel = 0;
u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
struct chan_centers centers;
u32 refDivA = 24;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) { /* 2 GHz, fractional mode */
u32 txctl;
int regWrites = 0;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = CHANSEL_2G(freq);
if (AR_SREV_9287_11_OR_LATER(ah)) {
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
1, regWrites);
} else {
REG_WRITE_ARRAY(&ah->iniCckfirNormal,
1, regWrites);
}
} else {
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
}
}
} else {
bMode = 0;
fracMode = 0;
switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
case 0:
if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
aModeRefSel = 0;
else if ((freq % 20) == 0)
aModeRefSel = 3;
else if ((freq % 10) == 0)
aModeRefSel = 2;
if (aModeRefSel)
break;
case 1:
default:
aModeRefSel = 0;
/*
* Enable 2G (fractional) mode for channels
* which are 5MHz spaced.
*/
fracMode = 1;
refDivA = 1;
channelSel = CHANSEL_5G(freq);
/* RefDivA setting */
ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA,
AR_AN_SYNTH9_REFDIVA_S, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 |
(bMode << 29) |
(fracMode << 28) | (aModeRefSel << 26) | (channelSel);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
ah->curchan = chan;
return 0;
}
/**
* ar9002_hw_spur_mitigate - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*/
static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int tmp, newVal;
int i;
struct chan_centers centers;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
ENABLE_REGWRITE_BUFFER(ah);
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
REGWRITE_BUFFER_FLUSH(ah);
}
static void ar9002_olc_init(struct ath_hw *ah)
{
u32 i;
if (!OLC_FOR_AR9280_20_LATER)
return;
if (OLC_FOR_AR9287_10_LATER) {
REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
AR9287_AN_TXPC0_TXPCMODE,
AR9287_AN_TXPC0_TXPCMODE_S,
AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
udelay(100);
} else {
for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
ah->originalGain[i] =
MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
AR_PHY_TX_GAIN);
ah->PDADCdelta = 0;
}
}
static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int ref_div = 5;
int pll_div = 0x2c;
u32 pll;
if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
if (AR_SREV_9280_20(ah)) {
ref_div = 10;
pll_div = 0x50;
} else {
pll_div = 0x28;
}
}
pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
return pll;
}
static void ar9002_hw_do_getnf(struct ath_hw *ah,
int16_t nfarray[NUM_NF_READINGS])
{
int16_t nf;
nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
nfarray[0] = sign_extend32(nf, 8);
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
if (IS_CHAN_HT40(ah->curchan))
nfarray[3] = sign_extend32(nf, 8);
if (!(ah->rxchainmask & BIT(1)))
return;
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
nfarray[1] = sign_extend32(nf, 8);
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
if (IS_CHAN_HT40(ah->curchan))
nfarray[4] = sign_extend32(nf, 8);
}
static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
{
if (AR_SREV_9285(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
} else if (AR_SREV_9287(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
} else if (AR_SREV_9271(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
} else {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
}
}
static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
AR_PHY_9285_FAST_DIV_BIAS_S;
antconf->lna1_lna2_switch_delta = -1;
antconf->lna1_lna2_delta = -3;
antconf->div_group = 0;
}
static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
AR_PHY_9285_ANT_DIV_ALT_LNACONF |
AR_PHY_9285_FAST_DIV_BIAS);
regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
& AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
& AR_PHY_9285_ANT_DIV_ALT_LNACONF);
regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
& AR_PHY_9285_FAST_DIV_BIAS);
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
}
#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
{
struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
u8 antdiv_ctrl1, antdiv_ctrl2;
u32 regval;
if (enable) {
antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
/*
* Don't disable BT ant to allow BB to control SWCOM.
*/
btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
} else {
/*
* Disable antenna diversity, use LNA1 only.
*/
antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
/*
* Disable BT Ant. to allow concurrent BT and WLAN receive.
*/
btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
/*
* Program SWCOM table to make sure RF switch always parks
* at BT side.
*/
REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
}
regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
/*
* Clear ant_fast_div_bias [14:9] since for WB195,
* the main LNA is always LNA1.
*/
regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
regval = REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
}
#endif
static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
struct ath_spec_scan *param)
{
u8 count;
if (!param->enabled) {
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ENABLE);
return;
}
REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
if (param->short_repeat)
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
else
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
/* on AR92xx, the highest bit of count will make the the chip send
* spectral samples endlessly. Check if this really was intended,
* and fix otherwise.
*/
count = param->count;
if (param->endless) {
if (AR_SREV_9271(ah))
count = 0;
else
count = 0x80;
} else if (count & 0x80)
count = 0x7f;
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_COUNT, count);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
return;
}
static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
/* Activate spectral scan */
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE);
}
static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Poll for spectral scan complete */
if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE,
0, AH_WAIT_TIMEOUT)) {
ath_err(common, "spectral scan wait failed\n");
return;
}
}
static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
{
REG_SET_BIT(ah, 0x9864, 0x7f000);
REG_SET_BIT(ah, 0x9924, 0x7f00fe);
REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
REG_WRITE(ah, AR_CR, AR_CR_RXD);
REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
}
static void ar9002_hw_tx99_stop(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
}
void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
priv_ops->set_rf_regs = NULL;
priv_ops->rf_set_freq = ar9002_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
priv_ops->olc_init = ar9002_olc_init;
priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
priv_ops->do_getnf = ar9002_hw_do_getnf;
ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
#endif
ops->tx99_start = ar9002_hw_tx99_start;
ops->tx99_stop = ar9002_hw_tx99_stop;
ar9002_hw_set_nf_limits(ah);
}