| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2017 |
| * Author: Amelie Delaunay <amelie.delaunay@st.com> |
| */ |
| |
| #include <linux/bcd.h> |
| #include <linux/clk.h> |
| #include <linux/iopoll.h> |
| #include <linux/ioport.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/pm_wakeirq.h> |
| #include <linux/regmap.h> |
| #include <linux/rtc.h> |
| |
| #define DRIVER_NAME "stm32_rtc" |
| |
| /* STM32_RTC_TR bit fields */ |
| #define STM32_RTC_TR_SEC_SHIFT 0 |
| #define STM32_RTC_TR_SEC GENMASK(6, 0) |
| #define STM32_RTC_TR_MIN_SHIFT 8 |
| #define STM32_RTC_TR_MIN GENMASK(14, 8) |
| #define STM32_RTC_TR_HOUR_SHIFT 16 |
| #define STM32_RTC_TR_HOUR GENMASK(21, 16) |
| |
| /* STM32_RTC_DR bit fields */ |
| #define STM32_RTC_DR_DATE_SHIFT 0 |
| #define STM32_RTC_DR_DATE GENMASK(5, 0) |
| #define STM32_RTC_DR_MONTH_SHIFT 8 |
| #define STM32_RTC_DR_MONTH GENMASK(12, 8) |
| #define STM32_RTC_DR_WDAY_SHIFT 13 |
| #define STM32_RTC_DR_WDAY GENMASK(15, 13) |
| #define STM32_RTC_DR_YEAR_SHIFT 16 |
| #define STM32_RTC_DR_YEAR GENMASK(23, 16) |
| |
| /* STM32_RTC_CR bit fields */ |
| #define STM32_RTC_CR_FMT BIT(6) |
| #define STM32_RTC_CR_ALRAE BIT(8) |
| #define STM32_RTC_CR_ALRAIE BIT(12) |
| |
| /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */ |
| #define STM32_RTC_ISR_ALRAWF BIT(0) |
| #define STM32_RTC_ISR_INITS BIT(4) |
| #define STM32_RTC_ISR_RSF BIT(5) |
| #define STM32_RTC_ISR_INITF BIT(6) |
| #define STM32_RTC_ISR_INIT BIT(7) |
| #define STM32_RTC_ISR_ALRAF BIT(8) |
| |
| /* STM32_RTC_PRER bit fields */ |
| #define STM32_RTC_PRER_PRED_S_SHIFT 0 |
| #define STM32_RTC_PRER_PRED_S GENMASK(14, 0) |
| #define STM32_RTC_PRER_PRED_A_SHIFT 16 |
| #define STM32_RTC_PRER_PRED_A GENMASK(22, 16) |
| |
| /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */ |
| #define STM32_RTC_ALRMXR_SEC_SHIFT 0 |
| #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0) |
| #define STM32_RTC_ALRMXR_SEC_MASK BIT(7) |
| #define STM32_RTC_ALRMXR_MIN_SHIFT 8 |
| #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8) |
| #define STM32_RTC_ALRMXR_MIN_MASK BIT(15) |
| #define STM32_RTC_ALRMXR_HOUR_SHIFT 16 |
| #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16) |
| #define STM32_RTC_ALRMXR_PM BIT(22) |
| #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23) |
| #define STM32_RTC_ALRMXR_DATE_SHIFT 24 |
| #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24) |
| #define STM32_RTC_ALRMXR_WDSEL BIT(30) |
| #define STM32_RTC_ALRMXR_WDAY_SHIFT 24 |
| #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24) |
| #define STM32_RTC_ALRMXR_DATE_MASK BIT(31) |
| |
| /* STM32_RTC_SR/_SCR bit fields */ |
| #define STM32_RTC_SR_ALRA BIT(0) |
| |
| /* STM32_RTC_VERR bit fields */ |
| #define STM32_RTC_VERR_MINREV_SHIFT 0 |
| #define STM32_RTC_VERR_MINREV GENMASK(3, 0) |
| #define STM32_RTC_VERR_MAJREV_SHIFT 4 |
| #define STM32_RTC_VERR_MAJREV GENMASK(7, 4) |
| |
| /* STM32_RTC_WPR key constants */ |
| #define RTC_WPR_1ST_KEY 0xCA |
| #define RTC_WPR_2ND_KEY 0x53 |
| #define RTC_WPR_WRONG_KEY 0xFF |
| |
| /* Max STM32 RTC register offset is 0x3FC */ |
| #define UNDEF_REG 0xFFFF |
| |
| struct stm32_rtc; |
| |
| struct stm32_rtc_registers { |
| u16 tr; |
| u16 dr; |
| u16 cr; |
| u16 isr; |
| u16 prer; |
| u16 alrmar; |
| u16 wpr; |
| u16 sr; |
| u16 scr; |
| u16 verr; |
| }; |
| |
| struct stm32_rtc_events { |
| u32 alra; |
| }; |
| |
| struct stm32_rtc_data { |
| const struct stm32_rtc_registers regs; |
| const struct stm32_rtc_events events; |
| void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags); |
| bool has_pclk; |
| bool need_dbp; |
| bool has_wakeirq; |
| }; |
| |
| struct stm32_rtc { |
| struct rtc_device *rtc_dev; |
| void __iomem *base; |
| struct regmap *dbp; |
| unsigned int dbp_reg; |
| unsigned int dbp_mask; |
| struct clk *pclk; |
| struct clk *rtc_ck; |
| const struct stm32_rtc_data *data; |
| int irq_alarm; |
| int wakeirq_alarm; |
| }; |
| |
| static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| |
| writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr); |
| writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr); |
| } |
| |
| static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| |
| writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr); |
| } |
| |
| static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int isr = readl_relaxed(rtc->base + regs->isr); |
| |
| if (!(isr & STM32_RTC_ISR_INITF)) { |
| isr |= STM32_RTC_ISR_INIT; |
| writel_relaxed(isr, rtc->base + regs->isr); |
| |
| /* |
| * It takes around 2 rtc_ck clock cycles to enter in |
| * initialization phase mode (and have INITF flag set). As |
| * slowest rtc_ck frequency may be 32kHz and highest should be |
| * 1MHz, we poll every 10 us with a timeout of 100ms. |
| */ |
| return readl_relaxed_poll_timeout_atomic( |
| rtc->base + regs->isr, |
| isr, (isr & STM32_RTC_ISR_INITF), |
| 10, 100000); |
| } |
| |
| return 0; |
| } |
| |
| static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int isr = readl_relaxed(rtc->base + regs->isr); |
| |
| isr &= ~STM32_RTC_ISR_INIT; |
| writel_relaxed(isr, rtc->base + regs->isr); |
| } |
| |
| static int stm32_rtc_wait_sync(struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int isr = readl_relaxed(rtc->base + regs->isr); |
| |
| isr &= ~STM32_RTC_ISR_RSF; |
| writel_relaxed(isr, rtc->base + regs->isr); |
| |
| /* |
| * Wait for RSF to be set to ensure the calendar registers are |
| * synchronised, it takes around 2 rtc_ck clock cycles |
| */ |
| return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, |
| isr, |
| (isr & STM32_RTC_ISR_RSF), |
| 10, 100000); |
| } |
| |
| static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc, |
| unsigned int flags) |
| { |
| rtc->data->clear_events(rtc, flags); |
| } |
| |
| static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id) |
| { |
| struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id; |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| const struct stm32_rtc_events *evts = &rtc->data->events; |
| unsigned int status, cr; |
| |
| mutex_lock(&rtc->rtc_dev->ops_lock); |
| |
| status = readl_relaxed(rtc->base + regs->sr); |
| cr = readl_relaxed(rtc->base + regs->cr); |
| |
| if ((status & evts->alra) && |
| (cr & STM32_RTC_CR_ALRAIE)) { |
| /* Alarm A flag - Alarm interrupt */ |
| dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n"); |
| |
| /* Pass event to the kernel */ |
| rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF); |
| |
| /* Clear event flags, otherwise new events won't be received */ |
| stm32_rtc_clear_event_flags(rtc, evts->alra); |
| } |
| |
| mutex_unlock(&rtc->rtc_dev->ops_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Convert rtc_time structure from bin to bcd format */ |
| static void tm2bcd(struct rtc_time *tm) |
| { |
| tm->tm_sec = bin2bcd(tm->tm_sec); |
| tm->tm_min = bin2bcd(tm->tm_min); |
| tm->tm_hour = bin2bcd(tm->tm_hour); |
| |
| tm->tm_mday = bin2bcd(tm->tm_mday); |
| tm->tm_mon = bin2bcd(tm->tm_mon + 1); |
| tm->tm_year = bin2bcd(tm->tm_year - 100); |
| /* |
| * Number of days since Sunday |
| * - on kernel side, 0=Sunday...6=Saturday |
| * - on rtc side, 0=invalid,1=Monday...7=Sunday |
| */ |
| tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday; |
| } |
| |
| /* Convert rtc_time structure from bcd to bin format */ |
| static void bcd2tm(struct rtc_time *tm) |
| { |
| tm->tm_sec = bcd2bin(tm->tm_sec); |
| tm->tm_min = bcd2bin(tm->tm_min); |
| tm->tm_hour = bcd2bin(tm->tm_hour); |
| |
| tm->tm_mday = bcd2bin(tm->tm_mday); |
| tm->tm_mon = bcd2bin(tm->tm_mon) - 1; |
| tm->tm_year = bcd2bin(tm->tm_year) + 100; |
| /* |
| * Number of days since Sunday |
| * - on kernel side, 0=Sunday...6=Saturday |
| * - on rtc side, 0=invalid,1=Monday...7=Sunday |
| */ |
| tm->tm_wday %= 7; |
| } |
| |
| static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int tr, dr; |
| |
| /* Time and Date in BCD format */ |
| tr = readl_relaxed(rtc->base + regs->tr); |
| dr = readl_relaxed(rtc->base + regs->dr); |
| |
| tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT; |
| tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT; |
| tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT; |
| |
| tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT; |
| tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT; |
| tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT; |
| tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT; |
| |
| /* We don't report tm_yday and tm_isdst */ |
| |
| bcd2tm(tm); |
| |
| return 0; |
| } |
| |
| static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int tr, dr; |
| int ret = 0; |
| |
| tm2bcd(tm); |
| |
| /* Time in BCD format */ |
| tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) | |
| ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) | |
| ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR); |
| |
| /* Date in BCD format */ |
| dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) | |
| ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) | |
| ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) | |
| ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY); |
| |
| stm32_rtc_wpr_unlock(rtc); |
| |
| ret = stm32_rtc_enter_init_mode(rtc); |
| if (ret) { |
| dev_err(dev, "Can't enter in init mode. Set time aborted.\n"); |
| goto end; |
| } |
| |
| writel_relaxed(tr, rtc->base + regs->tr); |
| writel_relaxed(dr, rtc->base + regs->dr); |
| |
| stm32_rtc_exit_init_mode(rtc); |
| |
| ret = stm32_rtc_wait_sync(rtc); |
| end: |
| stm32_rtc_wpr_lock(rtc); |
| |
| return ret; |
| } |
| |
| static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| const struct stm32_rtc_events *evts = &rtc->data->events; |
| struct rtc_time *tm = &alrm->time; |
| unsigned int alrmar, cr, status; |
| |
| alrmar = readl_relaxed(rtc->base + regs->alrmar); |
| cr = readl_relaxed(rtc->base + regs->cr); |
| status = readl_relaxed(rtc->base + regs->sr); |
| |
| if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) { |
| /* |
| * Date/day doesn't matter in Alarm comparison so alarm |
| * triggers every day |
| */ |
| tm->tm_mday = -1; |
| tm->tm_wday = -1; |
| } else { |
| if (alrmar & STM32_RTC_ALRMXR_WDSEL) { |
| /* Alarm is set to a day of week */ |
| tm->tm_mday = -1; |
| tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >> |
| STM32_RTC_ALRMXR_WDAY_SHIFT; |
| tm->tm_wday %= 7; |
| } else { |
| /* Alarm is set to a day of month */ |
| tm->tm_wday = -1; |
| tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >> |
| STM32_RTC_ALRMXR_DATE_SHIFT; |
| } |
| } |
| |
| if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) { |
| /* Hours don't matter in Alarm comparison */ |
| tm->tm_hour = -1; |
| } else { |
| tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >> |
| STM32_RTC_ALRMXR_HOUR_SHIFT; |
| if (alrmar & STM32_RTC_ALRMXR_PM) |
| tm->tm_hour += 12; |
| } |
| |
| if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) { |
| /* Minutes don't matter in Alarm comparison */ |
| tm->tm_min = -1; |
| } else { |
| tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >> |
| STM32_RTC_ALRMXR_MIN_SHIFT; |
| } |
| |
| if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) { |
| /* Seconds don't matter in Alarm comparison */ |
| tm->tm_sec = -1; |
| } else { |
| tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >> |
| STM32_RTC_ALRMXR_SEC_SHIFT; |
| } |
| |
| bcd2tm(tm); |
| |
| alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0; |
| alrm->pending = (status & evts->alra) ? 1 : 0; |
| |
| return 0; |
| } |
| |
| static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| const struct stm32_rtc_events *evts = &rtc->data->events; |
| unsigned int cr; |
| |
| cr = readl_relaxed(rtc->base + regs->cr); |
| |
| stm32_rtc_wpr_unlock(rtc); |
| |
| /* We expose Alarm A to the kernel */ |
| if (enabled) |
| cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); |
| else |
| cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); |
| writel_relaxed(cr, rtc->base + regs->cr); |
| |
| /* Clear event flags, otherwise new events won't be received */ |
| stm32_rtc_clear_event_flags(rtc, evts->alra); |
| |
| stm32_rtc_wpr_lock(rtc); |
| |
| return 0; |
| } |
| |
| static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec; |
| unsigned int dr = readl_relaxed(rtc->base + regs->dr); |
| unsigned int tr = readl_relaxed(rtc->base + regs->tr); |
| |
| cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT; |
| cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT; |
| cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT; |
| cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT; |
| cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT; |
| cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT; |
| |
| /* |
| * Assuming current date is M-D-Y H:M:S. |
| * RTC alarm can't be set on a specific month and year. |
| * So the valid alarm range is: |
| * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S |
| * with a specific case for December... |
| */ |
| if ((((tm->tm_year > cur_year) && |
| (tm->tm_mon == 0x1) && (cur_mon == 0x12)) || |
| ((tm->tm_year == cur_year) && |
| (tm->tm_mon <= cur_mon + 1))) && |
| ((tm->tm_mday > cur_day) || |
| ((tm->tm_mday == cur_day) && |
| ((tm->tm_hour > cur_hour) || |
| ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) || |
| ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) && |
| (tm->tm_sec >= cur_sec)))))) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| struct rtc_time *tm = &alrm->time; |
| unsigned int cr, isr, alrmar; |
| int ret = 0; |
| |
| tm2bcd(tm); |
| |
| /* |
| * RTC alarm can't be set on a specific date, unless this date is |
| * up to the same day of month next month. |
| */ |
| if (stm32_rtc_valid_alrm(rtc, tm) < 0) { |
| dev_err(dev, "Alarm can be set only on upcoming month.\n"); |
| return -EINVAL; |
| } |
| |
| alrmar = 0; |
| /* tm_year and tm_mon are not used because not supported by RTC */ |
| alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) & |
| STM32_RTC_ALRMXR_DATE; |
| /* 24-hour format */ |
| alrmar &= ~STM32_RTC_ALRMXR_PM; |
| alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) & |
| STM32_RTC_ALRMXR_HOUR; |
| alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) & |
| STM32_RTC_ALRMXR_MIN; |
| alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) & |
| STM32_RTC_ALRMXR_SEC; |
| |
| stm32_rtc_wpr_unlock(rtc); |
| |
| /* Disable Alarm */ |
| cr = readl_relaxed(rtc->base + regs->cr); |
| cr &= ~STM32_RTC_CR_ALRAE; |
| writel_relaxed(cr, rtc->base + regs->cr); |
| |
| /* |
| * Poll Alarm write flag to be sure that Alarm update is allowed: it |
| * takes around 2 rtc_ck clock cycles |
| */ |
| ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, |
| isr, |
| (isr & STM32_RTC_ISR_ALRAWF), |
| 10, 100000); |
| |
| if (ret) { |
| dev_err(dev, "Alarm update not allowed\n"); |
| goto end; |
| } |
| |
| /* Write to Alarm register */ |
| writel_relaxed(alrmar, rtc->base + regs->alrmar); |
| |
| stm32_rtc_alarm_irq_enable(dev, alrm->enabled); |
| end: |
| stm32_rtc_wpr_lock(rtc); |
| |
| return ret; |
| } |
| |
| static const struct rtc_class_ops stm32_rtc_ops = { |
| .read_time = stm32_rtc_read_time, |
| .set_time = stm32_rtc_set_time, |
| .read_alarm = stm32_rtc_read_alarm, |
| .set_alarm = stm32_rtc_set_alarm, |
| .alarm_irq_enable = stm32_rtc_alarm_irq_enable, |
| }; |
| |
| static void stm32_rtc_clear_events(struct stm32_rtc *rtc, |
| unsigned int flags) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| |
| /* Flags are cleared by writing 0 in RTC_ISR */ |
| writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags, |
| rtc->base + regs->isr); |
| } |
| |
| static const struct stm32_rtc_data stm32_rtc_data = { |
| .has_pclk = false, |
| .need_dbp = true, |
| .has_wakeirq = false, |
| .regs = { |
| .tr = 0x00, |
| .dr = 0x04, |
| .cr = 0x08, |
| .isr = 0x0C, |
| .prer = 0x10, |
| .alrmar = 0x1C, |
| .wpr = 0x24, |
| .sr = 0x0C, /* set to ISR offset to ease alarm management */ |
| .scr = UNDEF_REG, |
| .verr = UNDEF_REG, |
| }, |
| .events = { |
| .alra = STM32_RTC_ISR_ALRAF, |
| }, |
| .clear_events = stm32_rtc_clear_events, |
| }; |
| |
| static const struct stm32_rtc_data stm32h7_rtc_data = { |
| .has_pclk = true, |
| .need_dbp = true, |
| .has_wakeirq = false, |
| .regs = { |
| .tr = 0x00, |
| .dr = 0x04, |
| .cr = 0x08, |
| .isr = 0x0C, |
| .prer = 0x10, |
| .alrmar = 0x1C, |
| .wpr = 0x24, |
| .sr = 0x0C, /* set to ISR offset to ease alarm management */ |
| .scr = UNDEF_REG, |
| .verr = UNDEF_REG, |
| }, |
| .events = { |
| .alra = STM32_RTC_ISR_ALRAF, |
| }, |
| .clear_events = stm32_rtc_clear_events, |
| }; |
| |
| static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc, |
| unsigned int flags) |
| { |
| struct stm32_rtc_registers regs = rtc->data->regs; |
| |
| /* Flags are cleared by writing 1 in RTC_SCR */ |
| writel_relaxed(flags, rtc->base + regs.scr); |
| } |
| |
| static const struct stm32_rtc_data stm32mp1_data = { |
| .has_pclk = true, |
| .need_dbp = false, |
| .has_wakeirq = true, |
| .regs = { |
| .tr = 0x00, |
| .dr = 0x04, |
| .cr = 0x18, |
| .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */ |
| .prer = 0x10, |
| .alrmar = 0x40, |
| .wpr = 0x24, |
| .sr = 0x50, |
| .scr = 0x5C, |
| .verr = 0x3F4, |
| }, |
| .events = { |
| .alra = STM32_RTC_SR_ALRA, |
| }, |
| .clear_events = stm32mp1_rtc_clear_events, |
| }; |
| |
| static const struct of_device_id stm32_rtc_of_match[] = { |
| { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data }, |
| { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data }, |
| { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_rtc_of_match); |
| |
| static int stm32_rtc_init(struct platform_device *pdev, |
| struct stm32_rtc *rtc) |
| { |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr; |
| unsigned int rate; |
| int ret = 0; |
| |
| rate = clk_get_rate(rtc->rtc_ck); |
| |
| /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */ |
| pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT; |
| pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT; |
| |
| for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) { |
| pred_s = (rate / (pred_a + 1)) - 1; |
| |
| if (((pred_s + 1) * (pred_a + 1)) == rate) |
| break; |
| } |
| |
| /* |
| * Can't find a 1Hz, so give priority to RTC power consumption |
| * by choosing the higher possible value for prediv_a |
| */ |
| if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) { |
| pred_a = pred_a_max; |
| pred_s = (rate / (pred_a + 1)) - 1; |
| |
| dev_warn(&pdev->dev, "rtc_ck is %s\n", |
| (rate < ((pred_a + 1) * (pred_s + 1))) ? |
| "fast" : "slow"); |
| } |
| |
| stm32_rtc_wpr_unlock(rtc); |
| |
| ret = stm32_rtc_enter_init_mode(rtc); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "Can't enter in init mode. Prescaler config failed.\n"); |
| goto end; |
| } |
| |
| prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S; |
| writel_relaxed(prer, rtc->base + regs->prer); |
| prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A; |
| writel_relaxed(prer, rtc->base + regs->prer); |
| |
| /* Force 24h time format */ |
| cr = readl_relaxed(rtc->base + regs->cr); |
| cr &= ~STM32_RTC_CR_FMT; |
| writel_relaxed(cr, rtc->base + regs->cr); |
| |
| stm32_rtc_exit_init_mode(rtc); |
| |
| ret = stm32_rtc_wait_sync(rtc); |
| end: |
| stm32_rtc_wpr_lock(rtc); |
| |
| return ret; |
| } |
| |
| static int stm32_rtc_probe(struct platform_device *pdev) |
| { |
| struct stm32_rtc *rtc; |
| const struct stm32_rtc_registers *regs; |
| struct resource *res; |
| int ret; |
| |
| rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); |
| if (!rtc) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| rtc->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(rtc->base)) |
| return PTR_ERR(rtc->base); |
| |
| rtc->data = (struct stm32_rtc_data *) |
| of_device_get_match_data(&pdev->dev); |
| regs = &rtc->data->regs; |
| |
| if (rtc->data->need_dbp) { |
| rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, |
| "st,syscfg"); |
| if (IS_ERR(rtc->dbp)) { |
| dev_err(&pdev->dev, "no st,syscfg\n"); |
| return PTR_ERR(rtc->dbp); |
| } |
| |
| ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", |
| 1, &rtc->dbp_reg); |
| if (ret) { |
| dev_err(&pdev->dev, "can't read DBP register offset\n"); |
| return ret; |
| } |
| |
| ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", |
| 2, &rtc->dbp_mask); |
| if (ret) { |
| dev_err(&pdev->dev, "can't read DBP register mask\n"); |
| return ret; |
| } |
| } |
| |
| if (!rtc->data->has_pclk) { |
| rtc->pclk = NULL; |
| rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL); |
| } else { |
| rtc->pclk = devm_clk_get(&pdev->dev, "pclk"); |
| if (IS_ERR(rtc->pclk)) { |
| dev_err(&pdev->dev, "no pclk clock"); |
| return PTR_ERR(rtc->pclk); |
| } |
| rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck"); |
| } |
| if (IS_ERR(rtc->rtc_ck)) { |
| dev_err(&pdev->dev, "no rtc_ck clock"); |
| return PTR_ERR(rtc->rtc_ck); |
| } |
| |
| if (rtc->data->has_pclk) { |
| ret = clk_prepare_enable(rtc->pclk); |
| if (ret) |
| return ret; |
| } |
| |
| ret = clk_prepare_enable(rtc->rtc_ck); |
| if (ret) |
| goto err; |
| |
| if (rtc->data->need_dbp) |
| regmap_update_bits(rtc->dbp, rtc->dbp_reg, |
| rtc->dbp_mask, rtc->dbp_mask); |
| |
| /* |
| * After a system reset, RTC_ISR.INITS flag can be read to check if |
| * the calendar has been initialized or not. INITS flag is reset by a |
| * power-on reset (no vbat, no power-supply). It is not reset if |
| * rtc_ck parent clock has changed (so RTC prescalers need to be |
| * changed). That's why we cannot rely on this flag to know if RTC |
| * init has to be done. |
| */ |
| ret = stm32_rtc_init(pdev, rtc); |
| if (ret) |
| goto err; |
| |
| rtc->irq_alarm = platform_get_irq(pdev, 0); |
| if (rtc->irq_alarm <= 0) { |
| ret = rtc->irq_alarm; |
| goto err; |
| } |
| |
| ret = device_init_wakeup(&pdev->dev, true); |
| if (rtc->data->has_wakeirq) { |
| rtc->wakeirq_alarm = platform_get_irq(pdev, 1); |
| if (rtc->wakeirq_alarm > 0) { |
| ret = dev_pm_set_dedicated_wake_irq(&pdev->dev, |
| rtc->wakeirq_alarm); |
| } else { |
| ret = rtc->wakeirq_alarm; |
| if (rtc->wakeirq_alarm == -EPROBE_DEFER) |
| goto err; |
| } |
| } |
| if (ret) |
| dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret); |
| |
| platform_set_drvdata(pdev, rtc); |
| |
| rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name, |
| &stm32_rtc_ops, THIS_MODULE); |
| if (IS_ERR(rtc->rtc_dev)) { |
| ret = PTR_ERR(rtc->rtc_dev); |
| dev_err(&pdev->dev, "rtc device registration failed, err=%d\n", |
| ret); |
| goto err; |
| } |
| |
| /* Handle RTC alarm interrupts */ |
| ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL, |
| stm32_rtc_alarm_irq, IRQF_ONESHOT, |
| pdev->name, rtc); |
| if (ret) { |
| dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n", |
| rtc->irq_alarm); |
| goto err; |
| } |
| |
| /* |
| * If INITS flag is reset (calendar year field set to 0x00), calendar |
| * must be initialized |
| */ |
| if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS)) |
| dev_warn(&pdev->dev, "Date/Time must be initialized\n"); |
| |
| if (regs->verr != UNDEF_REG) { |
| u32 ver = readl_relaxed(rtc->base + regs->verr); |
| |
| dev_info(&pdev->dev, "registered rev:%d.%d\n", |
| (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF, |
| (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF); |
| } |
| |
| return 0; |
| err: |
| if (rtc->data->has_pclk) |
| clk_disable_unprepare(rtc->pclk); |
| clk_disable_unprepare(rtc->rtc_ck); |
| |
| if (rtc->data->need_dbp) |
| regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); |
| |
| dev_pm_clear_wake_irq(&pdev->dev); |
| device_init_wakeup(&pdev->dev, false); |
| |
| return ret; |
| } |
| |
| static int stm32_rtc_remove(struct platform_device *pdev) |
| { |
| struct stm32_rtc *rtc = platform_get_drvdata(pdev); |
| const struct stm32_rtc_registers *regs = &rtc->data->regs; |
| unsigned int cr; |
| |
| /* Disable interrupts */ |
| stm32_rtc_wpr_unlock(rtc); |
| cr = readl_relaxed(rtc->base + regs->cr); |
| cr &= ~STM32_RTC_CR_ALRAIE; |
| writel_relaxed(cr, rtc->base + regs->cr); |
| stm32_rtc_wpr_lock(rtc); |
| |
| clk_disable_unprepare(rtc->rtc_ck); |
| if (rtc->data->has_pclk) |
| clk_disable_unprepare(rtc->pclk); |
| |
| /* Enable backup domain write protection if needed */ |
| if (rtc->data->need_dbp) |
| regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); |
| |
| dev_pm_clear_wake_irq(&pdev->dev); |
| device_init_wakeup(&pdev->dev, false); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int stm32_rtc_suspend(struct device *dev) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| |
| if (rtc->data->has_pclk) |
| clk_disable_unprepare(rtc->pclk); |
| |
| if (device_may_wakeup(dev)) |
| return enable_irq_wake(rtc->irq_alarm); |
| |
| return 0; |
| } |
| |
| static int stm32_rtc_resume(struct device *dev) |
| { |
| struct stm32_rtc *rtc = dev_get_drvdata(dev); |
| int ret = 0; |
| |
| if (rtc->data->has_pclk) { |
| ret = clk_prepare_enable(rtc->pclk); |
| if (ret) |
| return ret; |
| } |
| |
| ret = stm32_rtc_wait_sync(rtc); |
| if (ret < 0) |
| return ret; |
| |
| if (device_may_wakeup(dev)) |
| return disable_irq_wake(rtc->irq_alarm); |
| |
| return ret; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops, |
| stm32_rtc_suspend, stm32_rtc_resume); |
| |
| static struct platform_driver stm32_rtc_driver = { |
| .probe = stm32_rtc_probe, |
| .remove = stm32_rtc_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .pm = &stm32_rtc_pm_ops, |
| .of_match_table = stm32_rtc_of_match, |
| }, |
| }; |
| |
| module_platform_driver(stm32_rtc_driver); |
| |
| MODULE_ALIAS("platform:" DRIVER_NAME); |
| MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver"); |
| MODULE_LICENSE("GPL v2"); |