| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * linux/percpu-defs.h - basic definitions for percpu areas |
| * |
| * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER. |
| * |
| * This file is separate from linux/percpu.h to avoid cyclic inclusion |
| * dependency from arch header files. Only to be included from |
| * asm/percpu.h. |
| * |
| * This file includes macros necessary to declare percpu sections and |
| * variables, and definitions of percpu accessors and operations. It |
| * should provide enough percpu features to arch header files even when |
| * they can only include asm/percpu.h to avoid cyclic inclusion dependency. |
| */ |
| |
| #ifndef _LINUX_PERCPU_DEFS_H |
| #define _LINUX_PERCPU_DEFS_H |
| |
| #ifdef CONFIG_SMP |
| |
| #ifdef MODULE |
| #define PER_CPU_SHARED_ALIGNED_SECTION "" |
| #define PER_CPU_ALIGNED_SECTION "" |
| #else |
| #define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned" |
| #define PER_CPU_ALIGNED_SECTION "..shared_aligned" |
| #endif |
| #define PER_CPU_FIRST_SECTION "..first" |
| |
| #else |
| |
| #define PER_CPU_SHARED_ALIGNED_SECTION "" |
| #define PER_CPU_ALIGNED_SECTION "..shared_aligned" |
| #define PER_CPU_FIRST_SECTION "" |
| |
| #endif |
| |
| /* |
| * Base implementations of per-CPU variable declarations and definitions, where |
| * the section in which the variable is to be placed is provided by the |
| * 'sec' argument. This may be used to affect the parameters governing the |
| * variable's storage. |
| * |
| * NOTE! The sections for the DECLARE and for the DEFINE must match, lest |
| * linkage errors occur due the compiler generating the wrong code to access |
| * that section. |
| */ |
| #define __PCPU_ATTRS(sec) \ |
| __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \ |
| PER_CPU_ATTRIBUTES |
| |
| #define __PCPU_DUMMY_ATTRS \ |
| __section(".discard") __attribute__((unused)) |
| |
| /* |
| * s390 and alpha modules require percpu variables to be defined as |
| * weak to force the compiler to generate GOT based external |
| * references for them. This is necessary because percpu sections |
| * will be located outside of the usually addressable area. |
| * |
| * This definition puts the following two extra restrictions when |
| * defining percpu variables. |
| * |
| * 1. The symbol must be globally unique, even the static ones. |
| * 2. Static percpu variables cannot be defined inside a function. |
| * |
| * Archs which need weak percpu definitions should define |
| * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary. |
| * |
| * To ensure that the generic code observes the above two |
| * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak |
| * definition is used for all cases. |
| */ |
| #if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU) |
| /* |
| * __pcpu_scope_* dummy variable is used to enforce scope. It |
| * receives the static modifier when it's used in front of |
| * DEFINE_PER_CPU() and will trigger build failure if |
| * DECLARE_PER_CPU() is used for the same variable. |
| * |
| * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness |
| * such that hidden weak symbol collision, which will cause unrelated |
| * variables to share the same address, can be detected during build. |
| */ |
| #define DECLARE_PER_CPU_SECTION(type, name, sec) \ |
| extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ |
| extern __PCPU_ATTRS(sec) __typeof__(type) name |
| |
| #define DEFINE_PER_CPU_SECTION(type, name, sec) \ |
| __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ |
| extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ |
| __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ |
| extern __PCPU_ATTRS(sec) __typeof__(type) name; \ |
| __PCPU_ATTRS(sec) __weak __typeof__(type) name |
| #else |
| /* |
| * Normal declaration and definition macros. |
| */ |
| #define DECLARE_PER_CPU_SECTION(type, name, sec) \ |
| extern __PCPU_ATTRS(sec) __typeof__(type) name |
| |
| #define DEFINE_PER_CPU_SECTION(type, name, sec) \ |
| __PCPU_ATTRS(sec) __typeof__(type) name |
| #endif |
| |
| /* |
| * Variant on the per-CPU variable declaration/definition theme used for |
| * ordinary per-CPU variables. |
| */ |
| #define DECLARE_PER_CPU(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, "") |
| |
| #define DEFINE_PER_CPU(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, "") |
| |
| /* |
| * Declaration/definition used for per-CPU variables that must come first in |
| * the set of variables. |
| */ |
| #define DECLARE_PER_CPU_FIRST(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION) |
| |
| #define DEFINE_PER_CPU_FIRST(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION) |
| |
| /* |
| * Declaration/definition used for per-CPU variables that must be cacheline |
| * aligned under SMP conditions so that, whilst a particular instance of the |
| * data corresponds to a particular CPU, inefficiencies due to direct access by |
| * other CPUs are reduced by preventing the data from unnecessarily spanning |
| * cachelines. |
| * |
| * An example of this would be statistical data, where each CPU's set of data |
| * is updated by that CPU alone, but the data from across all CPUs is collated |
| * by a CPU processing a read from a proc file. |
| */ |
| #define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ |
| ____cacheline_aligned_in_smp |
| |
| #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ |
| ____cacheline_aligned_in_smp |
| |
| #define DECLARE_PER_CPU_ALIGNED(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ |
| ____cacheline_aligned |
| |
| #define DEFINE_PER_CPU_ALIGNED(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ |
| ____cacheline_aligned |
| |
| /* |
| * Declaration/definition used for per-CPU variables that must be page aligned. |
| */ |
| #define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \ |
| __aligned(PAGE_SIZE) |
| |
| #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \ |
| __aligned(PAGE_SIZE) |
| |
| /* |
| * Declaration/definition used for per-CPU variables that must be read mostly. |
| */ |
| #define DECLARE_PER_CPU_READ_MOSTLY(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, "..read_mostly") |
| |
| #define DEFINE_PER_CPU_READ_MOSTLY(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, "..read_mostly") |
| |
| /* |
| * Declaration/definition used for per-CPU variables that should be accessed |
| * as decrypted when memory encryption is enabled in the guest. |
| */ |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| #define DECLARE_PER_CPU_DECRYPTED(type, name) \ |
| DECLARE_PER_CPU_SECTION(type, name, "..decrypted") |
| |
| #define DEFINE_PER_CPU_DECRYPTED(type, name) \ |
| DEFINE_PER_CPU_SECTION(type, name, "..decrypted") |
| #else |
| #define DEFINE_PER_CPU_DECRYPTED(type, name) DEFINE_PER_CPU(type, name) |
| #endif |
| |
| /* |
| * Intermodule exports for per-CPU variables. sparse forgets about |
| * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to |
| * noop if __CHECKER__. |
| */ |
| #ifndef __CHECKER__ |
| #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var) |
| #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var) |
| #else |
| #define EXPORT_PER_CPU_SYMBOL(var) |
| #define EXPORT_PER_CPU_SYMBOL_GPL(var) |
| #endif |
| |
| /* |
| * Accessors and operations. |
| */ |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating |
| * @ptr and is invoked once before a percpu area is accessed by all |
| * accessors and operations. This is performed in the generic part of |
| * percpu and arch overrides don't need to worry about it; however, if an |
| * arch wants to implement an arch-specific percpu accessor or operation, |
| * it may use __verify_pcpu_ptr() to verify the parameters. |
| * |
| * + 0 is required in order to convert the pointer type from a |
| * potential array type to a pointer to a single item of the array. |
| */ |
| #define __verify_pcpu_ptr(ptr) \ |
| do { \ |
| const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ |
| (void)__vpp_verify; \ |
| } while (0) |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * Add an offset to a pointer but keep the pointer as-is. Use RELOC_HIDE() |
| * to prevent the compiler from making incorrect assumptions about the |
| * pointer value. The weird cast keeps both GCC and sparse happy. |
| */ |
| #define SHIFT_PERCPU_PTR(__p, __offset) \ |
| RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset)) |
| |
| #define per_cpu_ptr(ptr, cpu) \ |
| ({ \ |
| __verify_pcpu_ptr(ptr); \ |
| SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \ |
| }) |
| |
| #define raw_cpu_ptr(ptr) \ |
| ({ \ |
| __verify_pcpu_ptr(ptr); \ |
| arch_raw_cpu_ptr(ptr); \ |
| }) |
| |
| #ifdef CONFIG_DEBUG_PREEMPT |
| #define this_cpu_ptr(ptr) \ |
| ({ \ |
| __verify_pcpu_ptr(ptr); \ |
| SHIFT_PERCPU_PTR(ptr, my_cpu_offset); \ |
| }) |
| #else |
| #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) |
| #endif |
| |
| #else /* CONFIG_SMP */ |
| |
| #define VERIFY_PERCPU_PTR(__p) \ |
| ({ \ |
| __verify_pcpu_ptr(__p); \ |
| (typeof(*(__p)) __kernel __force *)(__p); \ |
| }) |
| |
| #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) |
| #define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0) |
| #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) |
| |
| #endif /* CONFIG_SMP */ |
| |
| #define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu)) |
| |
| /* |
| * Must be an lvalue. Since @var must be a simple identifier, |
| * we force a syntax error here if it isn't. |
| */ |
| #define get_cpu_var(var) \ |
| (*({ \ |
| preempt_disable(); \ |
| this_cpu_ptr(&var); \ |
| })) |
| |
| /* |
| * The weird & is necessary because sparse considers (void)(var) to be |
| * a direct dereference of percpu variable (var). |
| */ |
| #define put_cpu_var(var) \ |
| do { \ |
| (void)&(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| #define get_cpu_ptr(var) \ |
| ({ \ |
| preempt_disable(); \ |
| this_cpu_ptr(var); \ |
| }) |
| |
| #define put_cpu_ptr(var) \ |
| do { \ |
| (void)(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| /* |
| * Branching function to split up a function into a set of functions that |
| * are called for different scalar sizes of the objects handled. |
| */ |
| |
| extern void __bad_size_call_parameter(void); |
| |
| #ifdef CONFIG_DEBUG_PREEMPT |
| extern void __this_cpu_preempt_check(const char *op); |
| #else |
| static __always_inline void __this_cpu_preempt_check(const char *op) { } |
| #endif |
| |
| #define __pcpu_size_call_return(stem, variable) \ |
| ({ \ |
| typeof(variable) pscr_ret__; \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: pscr_ret__ = stem##1(variable); break; \ |
| case 2: pscr_ret__ = stem##2(variable); break; \ |
| case 4: pscr_ret__ = stem##4(variable); break; \ |
| case 8: pscr_ret__ = stem##8(variable); break; \ |
| default: \ |
| __bad_size_call_parameter(); break; \ |
| } \ |
| pscr_ret__; \ |
| }) |
| |
| #define __pcpu_size_call_return2(stem, variable, ...) \ |
| ({ \ |
| typeof(variable) pscr2_ret__; \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ |
| case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ |
| case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ |
| case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ |
| default: \ |
| __bad_size_call_parameter(); break; \ |
| } \ |
| pscr2_ret__; \ |
| }) |
| |
| /* |
| * Special handling for cmpxchg_double. cmpxchg_double is passed two |
| * percpu variables. The first has to be aligned to a double word |
| * boundary and the second has to follow directly thereafter. |
| * We enforce this on all architectures even if they don't support |
| * a double cmpxchg instruction, since it's a cheap requirement, and it |
| * avoids breaking the requirement for architectures with the instruction. |
| */ |
| #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ |
| ({ \ |
| bool pdcrb_ret__; \ |
| __verify_pcpu_ptr(&(pcp1)); \ |
| BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ |
| VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1))); \ |
| VM_BUG_ON((unsigned long)(&(pcp2)) != \ |
| (unsigned long)(&(pcp1)) + sizeof(pcp1)); \ |
| switch(sizeof(pcp1)) { \ |
| case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ |
| default: \ |
| __bad_size_call_parameter(); break; \ |
| } \ |
| pdcrb_ret__; \ |
| }) |
| |
| #define __pcpu_size_call(stem, variable, ...) \ |
| do { \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: stem##1(variable, __VA_ARGS__);break; \ |
| case 2: stem##2(variable, __VA_ARGS__);break; \ |
| case 4: stem##4(variable, __VA_ARGS__);break; \ |
| case 8: stem##8(variable, __VA_ARGS__);break; \ |
| default: \ |
| __bad_size_call_parameter();break; \ |
| } \ |
| } while (0) |
| |
| /* |
| * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com> |
| * |
| * Optimized manipulation for memory allocated through the per cpu |
| * allocator or for addresses of per cpu variables. |
| * |
| * These operation guarantee exclusivity of access for other operations |
| * on the *same* processor. The assumption is that per cpu data is only |
| * accessed by a single processor instance (the current one). |
| * |
| * The arch code can provide optimized implementation by defining macros |
| * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per |
| * cpu atomic operations for 2 byte sized RMW actions. If arch code does |
| * not provide operations for a scalar size then the fallback in the |
| * generic code will be used. |
| * |
| * cmpxchg_double replaces two adjacent scalars at once. The first two |
| * parameters are per cpu variables which have to be of the same size. A |
| * truth value is returned to indicate success or failure (since a double |
| * register result is difficult to handle). There is very limited hardware |
| * support for these operations, so only certain sizes may work. |
| */ |
| |
| /* |
| * Operations for contexts where we do not want to do any checks for |
| * preemptions. Unless strictly necessary, always use [__]this_cpu_*() |
| * instead. |
| * |
| * If there is no other protection through preempt disable and/or disabling |
| * interrupts then one of these RMW operations can show unexpected behavior |
| * because the execution thread was rescheduled on another processor or an |
| * interrupt occurred and the same percpu variable was modified from the |
| * interrupt context. |
| */ |
| #define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp) |
| #define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val) |
| #define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val) |
| #define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val) |
| #define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val) |
| #define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val) |
| #define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval) |
| #define raw_cpu_cmpxchg(pcp, oval, nval) \ |
| __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval) |
| #define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2) |
| |
| #define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val)) |
| #define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1) |
| #define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1) |
| #define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1) |
| #define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1) |
| |
| /* |
| * Operations for contexts that are safe from preemption/interrupts. These |
| * operations verify that preemption is disabled. |
| */ |
| #define __this_cpu_read(pcp) \ |
| ({ \ |
| __this_cpu_preempt_check("read"); \ |
| raw_cpu_read(pcp); \ |
| }) |
| |
| #define __this_cpu_write(pcp, val) \ |
| ({ \ |
| __this_cpu_preempt_check("write"); \ |
| raw_cpu_write(pcp, val); \ |
| }) |
| |
| #define __this_cpu_add(pcp, val) \ |
| ({ \ |
| __this_cpu_preempt_check("add"); \ |
| raw_cpu_add(pcp, val); \ |
| }) |
| |
| #define __this_cpu_and(pcp, val) \ |
| ({ \ |
| __this_cpu_preempt_check("and"); \ |
| raw_cpu_and(pcp, val); \ |
| }) |
| |
| #define __this_cpu_or(pcp, val) \ |
| ({ \ |
| __this_cpu_preempt_check("or"); \ |
| raw_cpu_or(pcp, val); \ |
| }) |
| |
| #define __this_cpu_add_return(pcp, val) \ |
| ({ \ |
| __this_cpu_preempt_check("add_return"); \ |
| raw_cpu_add_return(pcp, val); \ |
| }) |
| |
| #define __this_cpu_xchg(pcp, nval) \ |
| ({ \ |
| __this_cpu_preempt_check("xchg"); \ |
| raw_cpu_xchg(pcp, nval); \ |
| }) |
| |
| #define __this_cpu_cmpxchg(pcp, oval, nval) \ |
| ({ \ |
| __this_cpu_preempt_check("cmpxchg"); \ |
| raw_cpu_cmpxchg(pcp, oval, nval); \ |
| }) |
| |
| #define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| ({ __this_cpu_preempt_check("cmpxchg_double"); \ |
| raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \ |
| }) |
| |
| #define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val)) |
| #define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1) |
| #define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1) |
| #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) |
| #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) |
| |
| /* |
| * Operations with implied preemption/interrupt protection. These |
| * operations can be used without worrying about preemption or interrupt. |
| */ |
| #define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp) |
| #define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val) |
| #define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val) |
| #define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val) |
| #define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val) |
| #define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) |
| #define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval) |
| #define this_cpu_cmpxchg(pcp, oval, nval) \ |
| __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) |
| #define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2) |
| |
| #define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val)) |
| #define this_cpu_inc(pcp) this_cpu_add(pcp, 1) |
| #define this_cpu_dec(pcp) this_cpu_sub(pcp, 1) |
| #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) |
| #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _LINUX_PERCPU_DEFS_H */ |