| /* |
| * Copyright (C) 2011 |
| * Boaz Harrosh <bharrosh@panasas.com> |
| * |
| * This file is part of the objects raid engine (ore). |
| * |
| * It is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with "ore". If not, write to the Free Software Foundation, Inc: |
| * "Free Software Foundation <info@fsf.org>" |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/async_tx.h> |
| |
| #include "ore_raid.h" |
| |
| #undef ORE_DBGMSG2 |
| #define ORE_DBGMSG2 ORE_DBGMSG |
| |
| struct page *_raid_page_alloc(void) |
| { |
| return alloc_page(GFP_KERNEL); |
| } |
| |
| void _raid_page_free(struct page *p) |
| { |
| __free_page(p); |
| } |
| |
| /* This struct is forward declare in ore_io_state, but is private to here. |
| * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit. |
| * |
| * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn. |
| * Ascending page index access is sp2d(p-minor, c-major). But storage is |
| * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor |
| * API. |
| */ |
| struct __stripe_pages_2d { |
| /* Cache some hot path repeated calculations */ |
| unsigned parity; |
| unsigned data_devs; |
| unsigned pages_in_unit; |
| |
| bool needed ; |
| |
| /* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */ |
| struct __1_page_stripe { |
| bool alloc; |
| unsigned write_count; |
| struct async_submit_ctl submit; |
| struct dma_async_tx_descriptor *tx; |
| |
| /* The size of this array is data_devs + parity */ |
| struct page **pages; |
| struct page **scribble; |
| /* bool array, size of this array is data_devs */ |
| char *page_is_read; |
| } _1p_stripes[]; |
| }; |
| |
| /* This can get bigger then a page. So support multiple page allocations |
| * _sp2d_free should be called even if _sp2d_alloc fails (by returning |
| * none-zero). |
| */ |
| static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width, |
| unsigned parity, struct __stripe_pages_2d **psp2d) |
| { |
| struct __stripe_pages_2d *sp2d; |
| unsigned data_devs = group_width - parity; |
| struct _alloc_all_bytes { |
| struct __alloc_stripe_pages_2d { |
| struct __stripe_pages_2d sp2d; |
| struct __1_page_stripe _1p_stripes[pages_in_unit]; |
| } __asp2d; |
| struct __alloc_1p_arrays { |
| struct page *pages[group_width]; |
| struct page *scribble[group_width]; |
| char page_is_read[data_devs]; |
| } __a1pa[pages_in_unit]; |
| } *_aab; |
| struct __alloc_1p_arrays *__a1pa; |
| struct __alloc_1p_arrays *__a1pa_end; |
| const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]); |
| unsigned num_a1pa, alloc_size, i; |
| |
| /* FIXME: check these numbers in ore_verify_layout */ |
| BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE); |
| BUG_ON(sizeof__a1pa > PAGE_SIZE); |
| |
| if (sizeof(*_aab) > PAGE_SIZE) { |
| num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa; |
| alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa; |
| } else { |
| num_a1pa = pages_in_unit; |
| alloc_size = sizeof(*_aab); |
| } |
| |
| _aab = kzalloc(alloc_size, GFP_KERNEL); |
| if (unlikely(!_aab)) { |
| ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size); |
| return -ENOMEM; |
| } |
| |
| sp2d = &_aab->__asp2d.sp2d; |
| *psp2d = sp2d; /* From here Just call _sp2d_free */ |
| |
| __a1pa = _aab->__a1pa; |
| __a1pa_end = __a1pa + num_a1pa; |
| |
| for (i = 0; i < pages_in_unit; ++i) { |
| if (unlikely(__a1pa >= __a1pa_end)) { |
| num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa, |
| pages_in_unit - i); |
| |
| __a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL); |
| if (unlikely(!__a1pa)) { |
| ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n", |
| num_a1pa); |
| return -ENOMEM; |
| } |
| __a1pa_end = __a1pa + num_a1pa; |
| /* First *pages is marked for kfree of the buffer */ |
| sp2d->_1p_stripes[i].alloc = true; |
| } |
| |
| sp2d->_1p_stripes[i].pages = __a1pa->pages; |
| sp2d->_1p_stripes[i].scribble = __a1pa->scribble ; |
| sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read; |
| ++__a1pa; |
| } |
| |
| sp2d->parity = parity; |
| sp2d->data_devs = data_devs; |
| sp2d->pages_in_unit = pages_in_unit; |
| return 0; |
| } |
| |
| static void _sp2d_reset(struct __stripe_pages_2d *sp2d, |
| const struct _ore_r4w_op *r4w, void *priv) |
| { |
| unsigned data_devs = sp2d->data_devs; |
| unsigned group_width = data_devs + sp2d->parity; |
| unsigned p; |
| |
| if (!sp2d->needed) |
| return; |
| |
| for (p = 0; p < sp2d->pages_in_unit; p++) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| |
| if (_1ps->write_count < group_width) { |
| unsigned c; |
| |
| for (c = 0; c < data_devs; c++) |
| if (_1ps->page_is_read[c]) { |
| struct page *page = _1ps->pages[c]; |
| |
| r4w->put_page(priv, page); |
| _1ps->page_is_read[c] = false; |
| } |
| } |
| |
| memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages)); |
| _1ps->write_count = 0; |
| _1ps->tx = NULL; |
| } |
| |
| sp2d->needed = false; |
| } |
| |
| static void _sp2d_free(struct __stripe_pages_2d *sp2d) |
| { |
| unsigned i; |
| |
| if (!sp2d) |
| return; |
| |
| for (i = 0; i < sp2d->pages_in_unit; ++i) { |
| if (sp2d->_1p_stripes[i].alloc) |
| kfree(sp2d->_1p_stripes[i].pages); |
| } |
| |
| kfree(sp2d); |
| } |
| |
| static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d) |
| { |
| unsigned p; |
| |
| for (p = 0; p < sp2d->pages_in_unit; p++) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| |
| if (_1ps->write_count) |
| return p; |
| } |
| |
| return ~0; |
| } |
| |
| static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d) |
| { |
| unsigned p; |
| |
| for (p = sp2d->pages_in_unit - 1; p >= 0; --p) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| |
| if (_1ps->write_count) |
| return p; |
| } |
| |
| return ~0; |
| } |
| |
| static void _gen_xor_unit(struct __stripe_pages_2d *sp2d) |
| { |
| unsigned p; |
| for (p = 0; p < sp2d->pages_in_unit; p++) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| |
| if (!_1ps->write_count) |
| continue; |
| |
| init_async_submit(&_1ps->submit, |
| ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK, |
| NULL, |
| NULL, NULL, |
| (addr_conv_t *)_1ps->scribble); |
| |
| /* TODO: raid6 */ |
| _1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages, |
| 0, sp2d->data_devs, PAGE_SIZE, |
| &_1ps->submit); |
| } |
| |
| for (p = 0; p < sp2d->pages_in_unit; p++) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| /* NOTE: We wait for HW synchronously (I don't have such HW |
| * to test with.) Is parallelism needed with today's multi |
| * cores? |
| */ |
| async_tx_issue_pending(_1ps->tx); |
| } |
| } |
| |
| void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d, |
| struct ore_striping_info *si, struct page *page) |
| { |
| struct __1_page_stripe *_1ps; |
| |
| sp2d->needed = true; |
| |
| _1ps = &sp2d->_1p_stripes[si->cur_pg]; |
| _1ps->pages[si->cur_comp] = page; |
| ++_1ps->write_count; |
| |
| si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit; |
| /* si->cur_comp is advanced outside at main loop */ |
| } |
| |
| void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len, |
| bool not_last) |
| { |
| struct osd_sg_entry *sge; |
| |
| ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d " |
| "offset=0x%llx length=0x%x last_sgs_total=0x%x\n", |
| per_dev->dev, cur_len, not_last, per_dev->cur_sg, |
| _LLU(per_dev->offset), per_dev->length, |
| per_dev->last_sgs_total); |
| |
| if (!per_dev->cur_sg) { |
| sge = per_dev->sglist; |
| |
| /* First time we prepare two entries */ |
| if (per_dev->length) { |
| ++per_dev->cur_sg; |
| sge->offset = per_dev->offset; |
| sge->len = per_dev->length; |
| } else { |
| /* Here the parity is the first unit of this object. |
| * This happens every time we reach a parity device on |
| * the same stripe as the per_dev->offset. We need to |
| * just skip this unit. |
| */ |
| per_dev->offset += cur_len; |
| return; |
| } |
| } else { |
| /* finalize the last one */ |
| sge = &per_dev->sglist[per_dev->cur_sg - 1]; |
| sge->len = per_dev->length - per_dev->last_sgs_total; |
| } |
| |
| if (not_last) { |
| /* Partly prepare the next one */ |
| struct osd_sg_entry *next_sge = sge + 1; |
| |
| ++per_dev->cur_sg; |
| next_sge->offset = sge->offset + sge->len + cur_len; |
| /* Save cur len so we know how mutch was added next time */ |
| per_dev->last_sgs_total = per_dev->length; |
| next_sge->len = 0; |
| } else if (!sge->len) { |
| /* Optimize for when the last unit is a parity */ |
| --per_dev->cur_sg; |
| } |
| } |
| |
| static int _alloc_read_4_write(struct ore_io_state *ios) |
| { |
| struct ore_layout *layout = ios->layout; |
| int ret; |
| /* We want to only read those pages not in cache so worst case |
| * is a stripe populated with every other page |
| */ |
| unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2; |
| |
| ret = _ore_get_io_state(layout, ios->oc, |
| layout->group_width * layout->mirrors_p1, |
| sgs_per_dev, 0, &ios->ios_read_4_write); |
| return ret; |
| } |
| |
| /* @si contains info of the to-be-inserted page. Update of @si should be |
| * maintained by caller. Specificaly si->dev, si->obj_offset, ... |
| */ |
| static int _add_to_read_4_write(struct ore_io_state *ios, |
| struct ore_striping_info *si, struct page *page) |
| { |
| struct request_queue *q; |
| struct ore_per_dev_state *per_dev; |
| struct ore_io_state *read_ios; |
| unsigned first_dev = si->dev - (si->dev % |
| (ios->layout->group_width * ios->layout->mirrors_p1)); |
| unsigned comp = si->dev - first_dev; |
| unsigned added_len; |
| |
| if (!ios->ios_read_4_write) { |
| int ret = _alloc_read_4_write(ios); |
| |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| read_ios = ios->ios_read_4_write; |
| read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1; |
| |
| per_dev = &read_ios->per_dev[comp]; |
| if (!per_dev->length) { |
| per_dev->bio = bio_kmalloc(GFP_KERNEL, |
| ios->sp2d->pages_in_unit); |
| if (unlikely(!per_dev->bio)) { |
| ORE_DBGMSG("Failed to allocate BIO size=%u\n", |
| ios->sp2d->pages_in_unit); |
| return -ENOMEM; |
| } |
| per_dev->offset = si->obj_offset; |
| per_dev->dev = si->dev; |
| } else if (si->obj_offset != (per_dev->offset + per_dev->length)) { |
| u64 gap = si->obj_offset - (per_dev->offset + per_dev->length); |
| |
| _ore_add_sg_seg(per_dev, gap, true); |
| } |
| q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev)); |
| added_len = bio_add_pc_page(q, per_dev->bio, page, PAGE_SIZE, 0); |
| if (unlikely(added_len != PAGE_SIZE)) { |
| ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n", |
| per_dev->bio->bi_vcnt); |
| return -ENOMEM; |
| } |
| |
| per_dev->length += PAGE_SIZE; |
| return 0; |
| } |
| |
| static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret) |
| { |
| struct bio_vec *bv; |
| unsigned i, d; |
| |
| /* loop on all devices all pages */ |
| for (d = 0; d < ios->numdevs; d++) { |
| struct bio *bio = ios->per_dev[d].bio; |
| |
| if (!bio) |
| continue; |
| |
| __bio_for_each_segment(bv, bio, i, 0) { |
| struct page *page = bv->bv_page; |
| |
| SetPageUptodate(page); |
| if (PageError(page)) |
| ClearPageError(page); |
| } |
| } |
| } |
| |
| /* read_4_write is hacked to read the start of the first stripe and/or |
| * the end of the last stripe. If needed, with an sg-gap at each device/page. |
| * It is assumed to be called after the to_be_written pages of the first stripe |
| * are populating ios->sp2d[][] |
| * |
| * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations |
| * These pages are held at sp2d[p].pages[c] but with |
| * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are |
| * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is |
| * @uptodate=true, so we don't need to read it, only unlock, after IO. |
| * |
| * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then |
| * to-be-written count, we should consider the xor-in-place mode. |
| * need_to_read_pages_count is the actual number of pages not present in cache. |
| * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough |
| * approximation? In this mode the read pages are put in the empty places of |
| * ios->sp2d[p][*], xor is calculated the same way. These pages are |
| * allocated/freed and don't go through cache |
| */ |
| static int _read_4_write(struct ore_io_state *ios) |
| { |
| struct ore_io_state *ios_read; |
| struct ore_striping_info read_si; |
| struct __stripe_pages_2d *sp2d = ios->sp2d; |
| u64 offset = ios->si.first_stripe_start; |
| u64 last_stripe_end; |
| unsigned bytes_in_stripe = ios->si.bytes_in_stripe; |
| unsigned i, c, p, min_p = sp2d->pages_in_unit, max_p = -1; |
| int ret; |
| |
| if (offset == ios->offset) /* Go to start collect $200 */ |
| goto read_last_stripe; |
| |
| min_p = _sp2d_min_pg(sp2d); |
| max_p = _sp2d_max_pg(sp2d); |
| |
| for (c = 0; ; c++) { |
| ore_calc_stripe_info(ios->layout, offset, 0, &read_si); |
| read_si.obj_offset += min_p * PAGE_SIZE; |
| offset += min_p * PAGE_SIZE; |
| for (p = min_p; p <= max_p; p++) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| struct page **pp = &_1ps->pages[c]; |
| bool uptodate; |
| |
| if (*pp) |
| /* to-be-written pages start here */ |
| goto read_last_stripe; |
| |
| *pp = ios->r4w->get_page(ios->private, offset, |
| &uptodate); |
| if (unlikely(!*pp)) |
| return -ENOMEM; |
| |
| if (!uptodate) |
| _add_to_read_4_write(ios, &read_si, *pp); |
| |
| /* Mark read-pages to be cache_released */ |
| _1ps->page_is_read[c] = true; |
| read_si.obj_offset += PAGE_SIZE; |
| offset += PAGE_SIZE; |
| } |
| offset += (sp2d->pages_in_unit - p) * PAGE_SIZE; |
| } |
| |
| read_last_stripe: |
| offset = ios->offset + (ios->length + PAGE_SIZE - 1) / |
| PAGE_SIZE * PAGE_SIZE; |
| last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe) |
| * bytes_in_stripe; |
| if (offset == last_stripe_end) /* Optimize for the aligned case */ |
| goto read_it; |
| |
| ore_calc_stripe_info(ios->layout, offset, 0, &read_si); |
| p = read_si.unit_off / PAGE_SIZE; |
| c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1, |
| ios->layout->mirrors_p1, read_si.par_dev, read_si.dev); |
| |
| BUG_ON(ios->si.first_stripe_start + bytes_in_stripe != last_stripe_end); |
| /* unaligned IO must be within a single stripe */ |
| |
| if (min_p == sp2d->pages_in_unit) { |
| /* Didn't do it yet */ |
| min_p = _sp2d_min_pg(sp2d); |
| max_p = _sp2d_max_pg(sp2d); |
| } |
| |
| while (offset < last_stripe_end) { |
| struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; |
| |
| if ((min_p <= p) && (p <= max_p)) { |
| struct page *page; |
| bool uptodate; |
| |
| BUG_ON(_1ps->pages[c]); |
| page = ios->r4w->get_page(ios->private, offset, |
| &uptodate); |
| if (unlikely(!page)) |
| return -ENOMEM; |
| |
| _1ps->pages[c] = page; |
| /* Mark read-pages to be cache_released */ |
| _1ps->page_is_read[c] = true; |
| if (!uptodate) |
| _add_to_read_4_write(ios, &read_si, page); |
| } |
| |
| offset += PAGE_SIZE; |
| if (p == (sp2d->pages_in_unit - 1)) { |
| ++c; |
| p = 0; |
| ore_calc_stripe_info(ios->layout, offset, 0, &read_si); |
| } else { |
| read_si.obj_offset += PAGE_SIZE; |
| ++p; |
| } |
| } |
| |
| read_it: |
| ios_read = ios->ios_read_4_write; |
| if (!ios_read) |
| return 0; |
| |
| /* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change |
| * to check for per_dev->bio |
| */ |
| ios_read->pages = ios->pages; |
| |
| /* Now read these devices */ |
| for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) { |
| ret = _ore_read_mirror(ios_read, i); |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| ret = ore_io_execute(ios_read); /* Synchronus execution */ |
| if (unlikely(ret)) { |
| ORE_DBGMSG("!! ore_io_execute => %d\n", ret); |
| return ret; |
| } |
| |
| _mark_read4write_pages_uptodate(ios_read, ret); |
| return 0; |
| } |
| |
| /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */ |
| int _ore_add_parity_unit(struct ore_io_state *ios, |
| struct ore_striping_info *si, |
| struct ore_per_dev_state *per_dev, |
| unsigned cur_len) |
| { |
| if (ios->reading) { |
| if (per_dev->cur_sg >= ios->sgs_per_dev) { |
| ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" , |
| per_dev->cur_sg, ios->sgs_per_dev); |
| return -ENOMEM; |
| } |
| _ore_add_sg_seg(per_dev, cur_len, true); |
| } else { |
| struct __stripe_pages_2d *sp2d = ios->sp2d; |
| struct page **pages = ios->parity_pages + ios->cur_par_page; |
| unsigned num_pages; |
| unsigned array_start = 0; |
| unsigned i; |
| int ret; |
| |
| si->cur_pg = _sp2d_min_pg(sp2d); |
| num_pages = _sp2d_max_pg(sp2d) + 1 - si->cur_pg; |
| |
| if (!cur_len) /* If last stripe operate on parity comp */ |
| si->cur_comp = sp2d->data_devs; |
| |
| if (!per_dev->length) { |
| per_dev->offset += si->cur_pg * PAGE_SIZE; |
| /* If first stripe, Read in all read4write pages |
| * (if needed) before we calculate the first parity. |
| */ |
| _read_4_write(ios); |
| } |
| |
| for (i = 0; i < num_pages; i++) { |
| pages[i] = _raid_page_alloc(); |
| if (unlikely(!pages[i])) |
| return -ENOMEM; |
| |
| ++(ios->cur_par_page); |
| } |
| |
| BUG_ON(si->cur_comp != sp2d->data_devs); |
| BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit); |
| |
| ret = _ore_add_stripe_unit(ios, &array_start, 0, pages, |
| per_dev, num_pages * PAGE_SIZE); |
| if (unlikely(ret)) |
| return ret; |
| |
| /* TODO: raid6 if (last_parity_dev) */ |
| _gen_xor_unit(sp2d); |
| _sp2d_reset(sp2d, ios->r4w, ios->private); |
| } |
| return 0; |
| } |
| |
| int _ore_post_alloc_raid_stuff(struct ore_io_state *ios) |
| { |
| struct ore_layout *layout = ios->layout; |
| |
| if (ios->parity_pages) { |
| unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE; |
| unsigned stripe_size = ios->si.bytes_in_stripe; |
| u64 last_stripe, first_stripe; |
| |
| if (_sp2d_alloc(pages_in_unit, layout->group_width, |
| layout->parity, &ios->sp2d)) { |
| return -ENOMEM; |
| } |
| |
| BUG_ON(ios->offset % PAGE_SIZE); |
| |
| /* Round io down to last full strip */ |
| first_stripe = div_u64(ios->offset, stripe_size); |
| last_stripe = div_u64(ios->offset + ios->length, stripe_size); |
| |
| /* If an IO spans more then a single stripe it must end at |
| * a stripe boundary. The reminder at the end is pushed into the |
| * next IO. |
| */ |
| if (last_stripe != first_stripe) { |
| ios->length = last_stripe * stripe_size - ios->offset; |
| |
| BUG_ON(!ios->length); |
| ios->nr_pages = (ios->length + PAGE_SIZE - 1) / |
| PAGE_SIZE; |
| ios->si.length = ios->length; /*make it consistent */ |
| } |
| } |
| return 0; |
| } |
| |
| void _ore_free_raid_stuff(struct ore_io_state *ios) |
| { |
| if (ios->sp2d) { /* writing and raid */ |
| unsigned i; |
| |
| for (i = 0; i < ios->cur_par_page; i++) { |
| struct page *page = ios->parity_pages[i]; |
| |
| if (page) |
| _raid_page_free(page); |
| } |
| if (ios->extra_part_alloc) |
| kfree(ios->parity_pages); |
| /* If IO returned an error pages might need unlocking */ |
| _sp2d_reset(ios->sp2d, ios->r4w, ios->private); |
| _sp2d_free(ios->sp2d); |
| } else { |
| /* Will only be set if raid reading && sglist is big */ |
| if (ios->extra_part_alloc) |
| kfree(ios->per_dev[0].sglist); |
| } |
| if (ios->ios_read_4_write) |
| ore_put_io_state(ios->ios_read_4_write); |
| } |