| /* |
| * Read-Copy Update mechanism for mutual exclusion |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2001 |
| * |
| * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| * Manfred Spraul <manfred@colorfullife.com> |
| * |
| * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| * Papers: |
| * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf |
| * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| * |
| * For detailed explanation of Read-Copy Update mechanism see - |
| * http://lse.sourceforge.net/locking/rcupdate.html |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/rcupdate.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <asm/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| #include <linux/completion.h> |
| #include <linux/moduleparam.h> |
| #include <linux/percpu.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/mutex.h> |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key rcu_lock_key; |
| struct lockdep_map rcu_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); |
| |
| EXPORT_SYMBOL_GPL(rcu_lock_map); |
| #endif |
| |
| /* Definition for rcupdate control block. */ |
| static struct rcu_ctrlblk rcu_ctrlblk = { |
| .cur = -300, |
| .completed = -300, |
| .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), |
| .cpumask = CPU_MASK_NONE, |
| }; |
| static struct rcu_ctrlblk rcu_bh_ctrlblk = { |
| .cur = -300, |
| .completed = -300, |
| .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), |
| .cpumask = CPU_MASK_NONE, |
| }; |
| |
| DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L }; |
| DEFINE_PER_CPU(struct rcu_data, rcu_bh_data) = { 0L }; |
| |
| /* Fake initialization required by compiler */ |
| static DEFINE_PER_CPU(struct tasklet_struct, rcu_tasklet) = {NULL}; |
| static int blimit = 10; |
| static int qhimark = 10000; |
| static int qlowmark = 100; |
| |
| static atomic_t rcu_barrier_cpu_count; |
| static DEFINE_MUTEX(rcu_barrier_mutex); |
| static struct completion rcu_barrier_completion; |
| |
| #ifdef CONFIG_SMP |
| static void force_quiescent_state(struct rcu_data *rdp, |
| struct rcu_ctrlblk *rcp) |
| { |
| int cpu; |
| cpumask_t cpumask; |
| set_need_resched(); |
| if (unlikely(!rcp->signaled)) { |
| rcp->signaled = 1; |
| /* |
| * Don't send IPI to itself. With irqs disabled, |
| * rdp->cpu is the current cpu. |
| */ |
| cpumask = rcp->cpumask; |
| cpu_clear(rdp->cpu, cpumask); |
| for_each_cpu_mask(cpu, cpumask) |
| smp_send_reschedule(cpu); |
| } |
| } |
| #else |
| static inline void force_quiescent_state(struct rcu_data *rdp, |
| struct rcu_ctrlblk *rcp) |
| { |
| set_need_resched(); |
| } |
| #endif |
| |
| /** |
| * call_rcu - Queue an RCU callback for invocation after a grace period. |
| * @head: structure to be used for queueing the RCU updates. |
| * @func: actual update function to be invoked after the grace period |
| * |
| * The update function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. RCU read-side critical |
| * sections are delimited by rcu_read_lock() and rcu_read_unlock(), |
| * and may be nested. |
| */ |
| void fastcall call_rcu(struct rcu_head *head, |
| void (*func)(struct rcu_head *rcu)) |
| { |
| unsigned long flags; |
| struct rcu_data *rdp; |
| |
| head->func = func; |
| head->next = NULL; |
| local_irq_save(flags); |
| rdp = &__get_cpu_var(rcu_data); |
| *rdp->nxttail = head; |
| rdp->nxttail = &head->next; |
| if (unlikely(++rdp->qlen > qhimark)) { |
| rdp->blimit = INT_MAX; |
| force_quiescent_state(rdp, &rcu_ctrlblk); |
| } |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * call_rcu_bh - Queue an RCU for invocation after a quicker grace period. |
| * @head: structure to be used for queueing the RCU updates. |
| * @func: actual update function to be invoked after the grace period |
| * |
| * The update function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_bh() assumes |
| * that the read-side critical sections end on completion of a softirq |
| * handler. This means that read-side critical sections in process |
| * context must not be interrupted by softirqs. This interface is to be |
| * used when most of the read-side critical sections are in softirq context. |
| * RCU read-side critical sections are delimited by rcu_read_lock() and |
| * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh() |
| * and rcu_read_unlock_bh(), if in process context. These may be nested. |
| */ |
| void fastcall call_rcu_bh(struct rcu_head *head, |
| void (*func)(struct rcu_head *rcu)) |
| { |
| unsigned long flags; |
| struct rcu_data *rdp; |
| |
| head->func = func; |
| head->next = NULL; |
| local_irq_save(flags); |
| rdp = &__get_cpu_var(rcu_bh_data); |
| *rdp->nxttail = head; |
| rdp->nxttail = &head->next; |
| |
| if (unlikely(++rdp->qlen > qhimark)) { |
| rdp->blimit = INT_MAX; |
| force_quiescent_state(rdp, &rcu_bh_ctrlblk); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Return the number of RCU batches processed thus far. Useful |
| * for debug and statistics. |
| */ |
| long rcu_batches_completed(void) |
| { |
| return rcu_ctrlblk.completed; |
| } |
| |
| /* |
| * Return the number of RCU batches processed thus far. Useful |
| * for debug and statistics. |
| */ |
| long rcu_batches_completed_bh(void) |
| { |
| return rcu_bh_ctrlblk.completed; |
| } |
| |
| static void rcu_barrier_callback(struct rcu_head *notused) |
| { |
| if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
| complete(&rcu_barrier_completion); |
| } |
| |
| /* |
| * Called with preemption disabled, and from cross-cpu IRQ context. |
| */ |
| static void rcu_barrier_func(void *notused) |
| { |
| int cpu = smp_processor_id(); |
| struct rcu_data *rdp = &per_cpu(rcu_data, cpu); |
| struct rcu_head *head; |
| |
| head = &rdp->barrier; |
| atomic_inc(&rcu_barrier_cpu_count); |
| call_rcu(head, rcu_barrier_callback); |
| } |
| |
| /** |
| * rcu_barrier - Wait until all the in-flight RCUs are complete. |
| */ |
| void rcu_barrier(void) |
| { |
| BUG_ON(in_interrupt()); |
| /* Take cpucontrol mutex to protect against CPU hotplug */ |
| mutex_lock(&rcu_barrier_mutex); |
| init_completion(&rcu_barrier_completion); |
| atomic_set(&rcu_barrier_cpu_count, 0); |
| on_each_cpu(rcu_barrier_func, NULL, 0, 1); |
| wait_for_completion(&rcu_barrier_completion); |
| mutex_unlock(&rcu_barrier_mutex); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier); |
| |
| /* |
| * Invoke the completed RCU callbacks. They are expected to be in |
| * a per-cpu list. |
| */ |
| static void rcu_do_batch(struct rcu_data *rdp) |
| { |
| struct rcu_head *next, *list; |
| int count = 0; |
| |
| list = rdp->donelist; |
| while (list) { |
| next = list->next; |
| prefetch(next); |
| list->func(list); |
| list = next; |
| if (++count >= rdp->blimit) |
| break; |
| } |
| rdp->donelist = list; |
| |
| local_irq_disable(); |
| rdp->qlen -= count; |
| local_irq_enable(); |
| if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) |
| rdp->blimit = blimit; |
| |
| if (!rdp->donelist) |
| rdp->donetail = &rdp->donelist; |
| else |
| tasklet_schedule(&per_cpu(rcu_tasklet, rdp->cpu)); |
| } |
| |
| /* |
| * Grace period handling: |
| * The grace period handling consists out of two steps: |
| * - A new grace period is started. |
| * This is done by rcu_start_batch. The start is not broadcasted to |
| * all cpus, they must pick this up by comparing rcp->cur with |
| * rdp->quiescbatch. All cpus are recorded in the |
| * rcu_ctrlblk.cpumask bitmap. |
| * - All cpus must go through a quiescent state. |
| * Since the start of the grace period is not broadcasted, at least two |
| * calls to rcu_check_quiescent_state are required: |
| * The first call just notices that a new grace period is running. The |
| * following calls check if there was a quiescent state since the beginning |
| * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If |
| * the bitmap is empty, then the grace period is completed. |
| * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace |
| * period (if necessary). |
| */ |
| /* |
| * Register a new batch of callbacks, and start it up if there is currently no |
| * active batch and the batch to be registered has not already occurred. |
| * Caller must hold rcu_ctrlblk.lock. |
| */ |
| static void rcu_start_batch(struct rcu_ctrlblk *rcp) |
| { |
| if (rcp->next_pending && |
| rcp->completed == rcp->cur) { |
| rcp->next_pending = 0; |
| /* |
| * next_pending == 0 must be visible in |
| * __rcu_process_callbacks() before it can see new value of cur. |
| */ |
| smp_wmb(); |
| rcp->cur++; |
| |
| /* |
| * Accessing nohz_cpu_mask before incrementing rcp->cur needs a |
| * Barrier Otherwise it can cause tickless idle CPUs to be |
| * included in rcp->cpumask, which will extend graceperiods |
| * unnecessarily. |
| */ |
| smp_mb(); |
| cpus_andnot(rcp->cpumask, cpu_online_map, nohz_cpu_mask); |
| |
| rcp->signaled = 0; |
| } |
| } |
| |
| /* |
| * cpu went through a quiescent state since the beginning of the grace period. |
| * Clear it from the cpu mask and complete the grace period if it was the last |
| * cpu. Start another grace period if someone has further entries pending |
| */ |
| static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp) |
| { |
| cpu_clear(cpu, rcp->cpumask); |
| if (cpus_empty(rcp->cpumask)) { |
| /* batch completed ! */ |
| rcp->completed = rcp->cur; |
| rcu_start_batch(rcp); |
| } |
| } |
| |
| /* |
| * Check if the cpu has gone through a quiescent state (say context |
| * switch). If so and if it already hasn't done so in this RCU |
| * quiescent cycle, then indicate that it has done so. |
| */ |
| static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| if (rdp->quiescbatch != rcp->cur) { |
| /* start new grace period: */ |
| rdp->qs_pending = 1; |
| rdp->passed_quiesc = 0; |
| rdp->quiescbatch = rcp->cur; |
| return; |
| } |
| |
| /* Grace period already completed for this cpu? |
| * qs_pending is checked instead of the actual bitmap to avoid |
| * cacheline trashing. |
| */ |
| if (!rdp->qs_pending) |
| return; |
| |
| /* |
| * Was there a quiescent state since the beginning of the grace |
| * period? If no, then exit and wait for the next call. |
| */ |
| if (!rdp->passed_quiesc) |
| return; |
| rdp->qs_pending = 0; |
| |
| spin_lock(&rcp->lock); |
| /* |
| * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync |
| * during cpu startup. Ignore the quiescent state. |
| */ |
| if (likely(rdp->quiescbatch == rcp->cur)) |
| cpu_quiet(rdp->cpu, rcp); |
| |
| spin_unlock(&rcp->lock); |
| } |
| |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing |
| * locking requirements, the list it's pulling from has to belong to a cpu |
| * which is dead and hence not processing interrupts. |
| */ |
| static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, |
| struct rcu_head **tail) |
| { |
| local_irq_disable(); |
| *this_rdp->nxttail = list; |
| if (list) |
| this_rdp->nxttail = tail; |
| local_irq_enable(); |
| } |
| |
| static void __rcu_offline_cpu(struct rcu_data *this_rdp, |
| struct rcu_ctrlblk *rcp, struct rcu_data *rdp) |
| { |
| /* if the cpu going offline owns the grace period |
| * we can block indefinitely waiting for it, so flush |
| * it here |
| */ |
| spin_lock_bh(&rcp->lock); |
| if (rcp->cur != rcp->completed) |
| cpu_quiet(rdp->cpu, rcp); |
| spin_unlock_bh(&rcp->lock); |
| rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail); |
| rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail); |
| rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail); |
| } |
| |
| static void rcu_offline_cpu(int cpu) |
| { |
| struct rcu_data *this_rdp = &get_cpu_var(rcu_data); |
| struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data); |
| |
| __rcu_offline_cpu(this_rdp, &rcu_ctrlblk, |
| &per_cpu(rcu_data, cpu)); |
| __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, |
| &per_cpu(rcu_bh_data, cpu)); |
| put_cpu_var(rcu_data); |
| put_cpu_var(rcu_bh_data); |
| tasklet_kill_immediate(&per_cpu(rcu_tasklet, cpu), cpu); |
| } |
| |
| #else |
| |
| static void rcu_offline_cpu(int cpu) |
| { |
| } |
| |
| #endif |
| |
| /* |
| * This does the RCU processing work from tasklet context. |
| */ |
| static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) { |
| *rdp->donetail = rdp->curlist; |
| rdp->donetail = rdp->curtail; |
| rdp->curlist = NULL; |
| rdp->curtail = &rdp->curlist; |
| } |
| |
| if (rdp->nxtlist && !rdp->curlist) { |
| local_irq_disable(); |
| rdp->curlist = rdp->nxtlist; |
| rdp->curtail = rdp->nxttail; |
| rdp->nxtlist = NULL; |
| rdp->nxttail = &rdp->nxtlist; |
| local_irq_enable(); |
| |
| /* |
| * start the next batch of callbacks |
| */ |
| |
| /* determine batch number */ |
| rdp->batch = rcp->cur + 1; |
| /* see the comment and corresponding wmb() in |
| * the rcu_start_batch() |
| */ |
| smp_rmb(); |
| |
| if (!rcp->next_pending) { |
| /* and start it/schedule start if it's a new batch */ |
| spin_lock(&rcp->lock); |
| rcp->next_pending = 1; |
| rcu_start_batch(rcp); |
| spin_unlock(&rcp->lock); |
| } |
| } |
| |
| rcu_check_quiescent_state(rcp, rdp); |
| if (rdp->donelist) |
| rcu_do_batch(rdp); |
| } |
| |
| static void rcu_process_callbacks(unsigned long unused) |
| { |
| __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); |
| __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); |
| } |
| |
| static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) |
| { |
| /* This cpu has pending rcu entries and the grace period |
| * for them has completed. |
| */ |
| if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) |
| return 1; |
| |
| /* This cpu has no pending entries, but there are new entries */ |
| if (!rdp->curlist && rdp->nxtlist) |
| return 1; |
| |
| /* This cpu has finished callbacks to invoke */ |
| if (rdp->donelist) |
| return 1; |
| |
| /* The rcu core waits for a quiescent state from the cpu */ |
| if (rdp->quiescbatch != rcp->cur || rdp->qs_pending) |
| return 1; |
| |
| /* nothing to do */ |
| return 0; |
| } |
| |
| /* |
| * Check to see if there is any immediate RCU-related work to be done |
| * by the current CPU, returning 1 if so. This function is part of the |
| * RCU implementation; it is -not- an exported member of the RCU API. |
| */ |
| int rcu_pending(int cpu) |
| { |
| return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) || |
| __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu)); |
| } |
| |
| /* |
| * Check to see if any future RCU-related work will need to be done |
| * by the current CPU, even if none need be done immediately, returning |
| * 1 if so. This function is part of the RCU implementation; it is -not- |
| * an exported member of the RCU API. |
| */ |
| int rcu_needs_cpu(int cpu) |
| { |
| struct rcu_data *rdp = &per_cpu(rcu_data, cpu); |
| struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); |
| |
| return (!!rdp->curlist || !!rdp_bh->curlist || rcu_pending(cpu)); |
| } |
| |
| void rcu_check_callbacks(int cpu, int user) |
| { |
| if (user || |
| (idle_cpu(cpu) && !in_softirq() && |
| hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
| rcu_qsctr_inc(cpu); |
| rcu_bh_qsctr_inc(cpu); |
| } else if (!in_softirq()) |
| rcu_bh_qsctr_inc(cpu); |
| tasklet_schedule(&per_cpu(rcu_tasklet, cpu)); |
| } |
| |
| static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, |
| struct rcu_data *rdp) |
| { |
| memset(rdp, 0, sizeof(*rdp)); |
| rdp->curtail = &rdp->curlist; |
| rdp->nxttail = &rdp->nxtlist; |
| rdp->donetail = &rdp->donelist; |
| rdp->quiescbatch = rcp->completed; |
| rdp->qs_pending = 0; |
| rdp->cpu = cpu; |
| rdp->blimit = blimit; |
| } |
| |
| static void __cpuinit rcu_online_cpu(int cpu) |
| { |
| struct rcu_data *rdp = &per_cpu(rcu_data, cpu); |
| struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu); |
| |
| rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp); |
| rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp); |
| tasklet_init(&per_cpu(rcu_tasklet, cpu), rcu_process_callbacks, 0UL); |
| } |
| |
| static int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| long cpu = (long)hcpu; |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| rcu_online_cpu(cpu); |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| rcu_offline_cpu(cpu); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata rcu_nb = { |
| .notifier_call = rcu_cpu_notify, |
| }; |
| |
| /* |
| * Initializes rcu mechanism. Assumed to be called early. |
| * That is before local timer(SMP) or jiffie timer (uniproc) is setup. |
| * Note that rcu_qsctr and friends are implicitly |
| * initialized due to the choice of ``0'' for RCU_CTR_INVALID. |
| */ |
| void __init rcu_init(void) |
| { |
| rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| /* Register notifier for non-boot CPUs */ |
| register_cpu_notifier(&rcu_nb); |
| } |
| |
| struct rcu_synchronize { |
| struct rcu_head head; |
| struct completion completion; |
| }; |
| |
| /* Because of FASTCALL declaration of complete, we use this wrapper */ |
| static void wakeme_after_rcu(struct rcu_head *head) |
| { |
| struct rcu_synchronize *rcu; |
| |
| rcu = container_of(head, struct rcu_synchronize, head); |
| complete(&rcu->completion); |
| } |
| |
| /** |
| * synchronize_rcu - wait until a grace period has elapsed. |
| * |
| * Control will return to the caller some time after a full grace |
| * period has elapsed, in other words after all currently executing RCU |
| * read-side critical sections have completed. RCU read-side critical |
| * sections are delimited by rcu_read_lock() and rcu_read_unlock(), |
| * and may be nested. |
| * |
| * If your read-side code is not protected by rcu_read_lock(), do -not- |
| * use synchronize_rcu(). |
| */ |
| void synchronize_rcu(void) |
| { |
| struct rcu_synchronize rcu; |
| |
| init_completion(&rcu.completion); |
| /* Will wake me after RCU finished */ |
| call_rcu(&rcu.head, wakeme_after_rcu); |
| |
| /* Wait for it */ |
| wait_for_completion(&rcu.completion); |
| } |
| |
| module_param(blimit, int, 0); |
| module_param(qhimark, int, 0); |
| module_param(qlowmark, int, 0); |
| EXPORT_SYMBOL_GPL(rcu_batches_completed); |
| EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); |
| EXPORT_SYMBOL_GPL(call_rcu); |
| EXPORT_SYMBOL_GPL(call_rcu_bh); |
| EXPORT_SYMBOL_GPL(synchronize_rcu); |