| /* |
| * linux/kernel/time/ntp.c |
| * |
| * NTP state machine interfaces and logic. |
| * |
| * This code was mainly moved from kernel/timer.c and kernel/time.c |
| * Please see those files for relevant copyright info and historical |
| * changelogs. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/time.h> |
| #include <linux/timer.h> |
| #include <linux/timex.h> |
| #include <linux/jiffies.h> |
| #include <linux/hrtimer.h> |
| #include <linux/capability.h> |
| #include <asm/div64.h> |
| #include <asm/timex.h> |
| |
| /* |
| * Timekeeping variables |
| */ |
| unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ |
| unsigned long tick_nsec; /* ACTHZ period (nsec) */ |
| static u64 tick_length, tick_length_base; |
| |
| #define MAX_TICKADJ 500 /* microsecs */ |
| #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ |
| TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ) |
| |
| /* |
| * phase-lock loop variables |
| */ |
| /* TIME_ERROR prevents overwriting the CMOS clock */ |
| static int time_state = TIME_OK; /* clock synchronization status */ |
| int time_status = STA_UNSYNC; /* clock status bits */ |
| static s64 time_offset; /* time adjustment (ns) */ |
| static long time_constant = 2; /* pll time constant */ |
| long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
| long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
| long time_freq; /* frequency offset (scaled ppm)*/ |
| static long time_reftime; /* time at last adjustment (s) */ |
| long time_adjust; |
| |
| #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE) |
| #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \ |
| (s64)CLOCK_TICK_RATE) |
| |
| static void ntp_update_frequency(void) |
| { |
| u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
| << TICK_LENGTH_SHIFT; |
| second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT; |
| second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC); |
| |
| tick_length_base = second_length; |
| |
| do_div(second_length, HZ); |
| tick_nsec = second_length >> TICK_LENGTH_SHIFT; |
| |
| do_div(tick_length_base, NTP_INTERVAL_FREQ); |
| } |
| |
| /** |
| * ntp_clear - Clears the NTP state variables |
| * |
| * Must be called while holding a write on the xtime_lock |
| */ |
| void ntp_clear(void) |
| { |
| time_adjust = 0; /* stop active adjtime() */ |
| time_status |= STA_UNSYNC; |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_esterror = NTP_PHASE_LIMIT; |
| |
| ntp_update_frequency(); |
| |
| tick_length = tick_length_base; |
| time_offset = 0; |
| } |
| |
| /* |
| * this routine handles the overflow of the microsecond field |
| * |
| * The tricky bits of code to handle the accurate clock support |
| * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
| * They were originally developed for SUN and DEC kernels. |
| * All the kudos should go to Dave for this stuff. |
| */ |
| void second_overflow(void) |
| { |
| long time_adj; |
| |
| /* Bump the maxerror field */ |
| time_maxerror += MAXFREQ >> SHIFT_USEC; |
| if (time_maxerror > NTP_PHASE_LIMIT) { |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_status |= STA_UNSYNC; |
| } |
| |
| /* |
| * Leap second processing. If in leap-insert state at the end of the |
| * day, the system clock is set back one second; if in leap-delete |
| * state, the system clock is set ahead one second. The microtime() |
| * routine or external clock driver will insure that reported time is |
| * always monotonic. The ugly divides should be replaced. |
| */ |
| switch (time_state) { |
| case TIME_OK: |
| if (time_status & STA_INS) |
| time_state = TIME_INS; |
| else if (time_status & STA_DEL) |
| time_state = TIME_DEL; |
| break; |
| case TIME_INS: |
| if (xtime.tv_sec % 86400 == 0) { |
| xtime.tv_sec--; |
| wall_to_monotonic.tv_sec++; |
| time_state = TIME_OOP; |
| printk(KERN_NOTICE "Clock: inserting leap second " |
| "23:59:60 UTC\n"); |
| } |
| break; |
| case TIME_DEL: |
| if ((xtime.tv_sec + 1) % 86400 == 0) { |
| xtime.tv_sec++; |
| wall_to_monotonic.tv_sec--; |
| time_state = TIME_WAIT; |
| printk(KERN_NOTICE "Clock: deleting leap second " |
| "23:59:59 UTC\n"); |
| } |
| break; |
| case TIME_OOP: |
| time_state = TIME_WAIT; |
| break; |
| case TIME_WAIT: |
| if (!(time_status & (STA_INS | STA_DEL))) |
| time_state = TIME_OK; |
| } |
| |
| /* |
| * Compute the phase adjustment for the next second. The offset is |
| * reduced by a fixed factor times the time constant. |
| */ |
| tick_length = tick_length_base; |
| time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); |
| time_offset -= time_adj; |
| tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); |
| |
| if (unlikely(time_adjust)) { |
| if (time_adjust > MAX_TICKADJ) { |
| time_adjust -= MAX_TICKADJ; |
| tick_length += MAX_TICKADJ_SCALED; |
| } else if (time_adjust < -MAX_TICKADJ) { |
| time_adjust += MAX_TICKADJ; |
| tick_length -= MAX_TICKADJ_SCALED; |
| } else { |
| tick_length += (s64)(time_adjust * NSEC_PER_USEC / |
| NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT; |
| time_adjust = 0; |
| } |
| } |
| } |
| |
| /* |
| * Return how long ticks are at the moment, that is, how much time |
| * update_wall_time_one_tick will add to xtime next time we call it |
| * (assuming no calls to do_adjtimex in the meantime). |
| * The return value is in fixed-point nanoseconds shifted by the |
| * specified number of bits to the right of the binary point. |
| * This function has no side-effects. |
| */ |
| u64 current_tick_length(void) |
| { |
| return tick_length; |
| } |
| |
| #ifdef CONFIG_GENERIC_CMOS_UPDATE |
| |
| /* Disable the cmos update - used by virtualization and embedded */ |
| int no_sync_cmos_clock __read_mostly; |
| |
| static void sync_cmos_clock(unsigned long dummy); |
| |
| static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0); |
| |
| static void sync_cmos_clock(unsigned long dummy) |
| { |
| struct timespec now, next; |
| int fail = 1; |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * This code is run on a timer. If the clock is set, that timer |
| * may not expire at the correct time. Thus, we adjust... |
| */ |
| if (!ntp_synced()) |
| /* |
| * Not synced, exit, do not restart a timer (if one is |
| * running, let it run out). |
| */ |
| return; |
| |
| getnstimeofday(&now); |
| if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) |
| fail = update_persistent_clock(now); |
| |
| next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec; |
| if (next.tv_nsec <= 0) |
| next.tv_nsec += NSEC_PER_SEC; |
| |
| if (!fail) |
| next.tv_sec = 659; |
| else |
| next.tv_sec = 0; |
| |
| if (next.tv_nsec >= NSEC_PER_SEC) { |
| next.tv_sec++; |
| next.tv_nsec -= NSEC_PER_SEC; |
| } |
| mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next)); |
| } |
| |
| static void notify_cmos_timer(void) |
| { |
| if (!no_sync_cmos_clock) |
| mod_timer(&sync_cmos_timer, jiffies + 1); |
| } |
| |
| #else |
| static inline void notify_cmos_timer(void) { } |
| #endif |
| |
| /* adjtimex mainly allows reading (and writing, if superuser) of |
| * kernel time-keeping variables. used by xntpd. |
| */ |
| int do_adjtimex(struct timex *txc) |
| { |
| long mtemp, save_adjust, rem; |
| s64 freq_adj, temp64; |
| int result; |
| |
| /* In order to modify anything, you gotta be super-user! */ |
| if (txc->modes && !capable(CAP_SYS_TIME)) |
| return -EPERM; |
| |
| /* Now we validate the data before disabling interrupts */ |
| |
| if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { |
| /* singleshot must not be used with any other mode bits */ |
| if (txc->modes != ADJ_OFFSET_SINGLESHOT && |
| txc->modes != ADJ_OFFSET_SS_READ) |
| return -EINVAL; |
| } |
| |
| if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) |
| /* adjustment Offset limited to +- .512 seconds */ |
| if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) |
| return -EINVAL; |
| |
| /* if the quartz is off by more than 10% something is VERY wrong ! */ |
| if (txc->modes & ADJ_TICK) |
| if (txc->tick < 900000/USER_HZ || |
| txc->tick > 1100000/USER_HZ) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| result = time_state; /* mostly `TIME_OK' */ |
| |
| /* Save for later - semantics of adjtime is to return old value */ |
| save_adjust = time_adjust; |
| |
| #if 0 /* STA_CLOCKERR is never set yet */ |
| time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ |
| #endif |
| /* If there are input parameters, then process them */ |
| if (txc->modes) |
| { |
| if (txc->modes & ADJ_STATUS) /* only set allowed bits */ |
| time_status = (txc->status & ~STA_RONLY) | |
| (time_status & STA_RONLY); |
| |
| if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ |
| if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_freq = ((s64)txc->freq * NSEC_PER_USEC) |
| >> (SHIFT_USEC - SHIFT_NSEC); |
| } |
| |
| if (txc->modes & ADJ_MAXERROR) { |
| if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_maxerror = txc->maxerror; |
| } |
| |
| if (txc->modes & ADJ_ESTERROR) { |
| if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_esterror = txc->esterror; |
| } |
| |
| if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ |
| if (txc->constant < 0) { /* NTP v4 uses values > 6 */ |
| result = -EINVAL; |
| goto leave; |
| } |
| time_constant = min(txc->constant + 4, (long)MAXTC); |
| } |
| |
| if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ |
| if (txc->modes == ADJ_OFFSET_SINGLESHOT) { |
| /* adjtime() is independent from ntp_adjtime() */ |
| time_adjust = txc->offset; |
| } |
| else if (time_status & STA_PLL) { |
| time_offset = txc->offset * NSEC_PER_USEC; |
| |
| /* |
| * Scale the phase adjustment and |
| * clamp to the operating range. |
| */ |
| time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC); |
| time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC); |
| |
| /* |
| * Select whether the frequency is to be controlled |
| * and in which mode (PLL or FLL). Clamp to the operating |
| * range. Ugly multiply/divide should be replaced someday. |
| */ |
| |
| if (time_status & STA_FREQHOLD || time_reftime == 0) |
| time_reftime = xtime.tv_sec; |
| mtemp = xtime.tv_sec - time_reftime; |
| time_reftime = xtime.tv_sec; |
| |
| freq_adj = time_offset * mtemp; |
| freq_adj = shift_right(freq_adj, time_constant * 2 + |
| (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); |
| if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { |
| temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL); |
| if (time_offset < 0) { |
| temp64 = -temp64; |
| do_div(temp64, mtemp); |
| freq_adj -= temp64; |
| } else { |
| do_div(temp64, mtemp); |
| freq_adj += temp64; |
| } |
| } |
| freq_adj += time_freq; |
| freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); |
| time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC); |
| time_offset = div_long_long_rem_signed(time_offset, |
| NTP_INTERVAL_FREQ, |
| &rem); |
| time_offset <<= SHIFT_UPDATE; |
| } /* STA_PLL */ |
| } /* txc->modes & ADJ_OFFSET */ |
| if (txc->modes & ADJ_TICK) |
| tick_usec = txc->tick; |
| |
| if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
| ntp_update_frequency(); |
| } /* txc->modes */ |
| leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) |
| result = TIME_ERROR; |
| |
| if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || |
| (txc->modes == ADJ_OFFSET_SS_READ)) |
| txc->offset = save_adjust; |
| else |
| txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) * |
| NTP_INTERVAL_FREQ / 1000; |
| txc->freq = (time_freq / NSEC_PER_USEC) << |
| (SHIFT_USEC - SHIFT_NSEC); |
| txc->maxerror = time_maxerror; |
| txc->esterror = time_esterror; |
| txc->status = time_status; |
| txc->constant = time_constant; |
| txc->precision = 1; |
| txc->tolerance = MAXFREQ; |
| txc->tick = tick_usec; |
| |
| /* PPS is not implemented, so these are zero */ |
| txc->ppsfreq = 0; |
| txc->jitter = 0; |
| txc->shift = 0; |
| txc->stabil = 0; |
| txc->jitcnt = 0; |
| txc->calcnt = 0; |
| txc->errcnt = 0; |
| txc->stbcnt = 0; |
| write_sequnlock_irq(&xtime_lock); |
| do_gettimeofday(&txc->time); |
| notify_cmos_timer(); |
| return(result); |
| } |