| /* |
| * Copyright (C) 2014 Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> |
| * Copyright (C) 2017 Stafford Horne <shorne@gmail.com> |
| * |
| * Based on arm64 and arc implementations |
| * Copyright (C) 2013 ARM Ltd. |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| */ |
| |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/irq.h> |
| #include <linux/of.h> |
| #include <asm/cpuinfo.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/time.h> |
| |
| asmlinkage __init void secondary_start_kernel(void); |
| |
| static void (*smp_cross_call)(const struct cpumask *, unsigned int); |
| |
| unsigned long secondary_release = -1; |
| struct thread_info *secondary_thread_info; |
| |
| enum ipi_msg_type { |
| IPI_WAKEUP, |
| IPI_RESCHEDULE, |
| IPI_CALL_FUNC, |
| IPI_CALL_FUNC_SINGLE, |
| }; |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| static void boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| /* |
| * set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| secondary_release = cpu; |
| smp_cross_call(cpumask_of(cpu), IPI_WAKEUP); |
| |
| /* |
| * now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| } |
| |
| void __init smp_init_cpus(void) |
| { |
| struct device_node *cpu; |
| u32 cpu_id; |
| |
| for_each_of_cpu_node(cpu) { |
| cpu_id = of_get_cpu_hwid(cpu, 0); |
| if (cpu_id < NR_CPUS) |
| set_cpu_possible(cpu_id, true); |
| } |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int cpu; |
| |
| /* |
| * Initialise the present map, which describes the set of CPUs |
| * actually populated at the present time. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (cpu < max_cpus) |
| set_cpu_present(cpu, true); |
| } |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| static DECLARE_COMPLETION(cpu_running); |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *idle) |
| { |
| if (smp_cross_call == NULL) { |
| pr_warn("CPU%u: failed to start, IPI controller missing", |
| cpu); |
| return -EIO; |
| } |
| |
| secondary_thread_info = task_thread_info(idle); |
| current_pgd[cpu] = init_mm.pgd; |
| |
| boot_secondary(cpu, idle); |
| if (!wait_for_completion_timeout(&cpu_running, |
| msecs_to_jiffies(1000))) { |
| pr_crit("CPU%u: failed to start\n", cpu); |
| return -EIO; |
| } |
| synchronise_count_master(cpu); |
| |
| return 0; |
| } |
| |
| asmlinkage __init void secondary_start_kernel(void) |
| { |
| struct mm_struct *mm = &init_mm; |
| unsigned int cpu = smp_processor_id(); |
| /* |
| * All kernel threads share the same mm context; grab a |
| * reference and switch to it. |
| */ |
| mmgrab(mm); |
| current->active_mm = mm; |
| cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| |
| pr_info("CPU%u: Booted secondary processor\n", cpu); |
| |
| setup_cpuinfo(); |
| openrisc_clockevent_init(); |
| |
| notify_cpu_starting(cpu); |
| |
| /* |
| * OK, now it's safe to let the boot CPU continue |
| */ |
| complete(&cpu_running); |
| |
| synchronise_count_slave(cpu); |
| set_cpu_online(cpu, true); |
| |
| local_irq_enable(); |
| /* |
| * OK, it's off to the idle thread for us |
| */ |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| } |
| |
| void handle_IPI(unsigned int ipi_msg) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| switch (ipi_msg) { |
| case IPI_WAKEUP: |
| break; |
| |
| case IPI_RESCHEDULE: |
| scheduler_ipi(); |
| break; |
| |
| case IPI_CALL_FUNC: |
| generic_smp_call_function_interrupt(); |
| break; |
| |
| case IPI_CALL_FUNC_SINGLE: |
| generic_smp_call_function_single_interrupt(); |
| break; |
| |
| default: |
| WARN(1, "CPU%u: Unknown IPI message 0x%x\n", cpu, ipi_msg); |
| break; |
| } |
| } |
| |
| void arch_smp_send_reschedule(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); |
| } |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| /* Remove this CPU */ |
| set_cpu_online(smp_processor_id(), false); |
| |
| local_irq_disable(); |
| /* CPU Doze */ |
| if (mfspr(SPR_UPR) & SPR_UPR_PMP) |
| mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME); |
| /* If that didn't work, infinite loop */ |
| while (1) |
| ; |
| } |
| |
| void smp_send_stop(void) |
| { |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| |
| void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) |
| { |
| smp_cross_call = fn; |
| } |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_CALL_FUNC); |
| } |
| |
| /* TLB flush operations - Performed on each CPU*/ |
| static inline void ipi_flush_tlb_all(void *ignored) |
| { |
| local_flush_tlb_all(); |
| } |
| |
| static inline void ipi_flush_tlb_mm(void *info) |
| { |
| struct mm_struct *mm = (struct mm_struct *)info; |
| |
| local_flush_tlb_mm(mm); |
| } |
| |
| static void smp_flush_tlb_mm(struct cpumask *cmask, struct mm_struct *mm) |
| { |
| unsigned int cpuid; |
| |
| if (cpumask_empty(cmask)) |
| return; |
| |
| cpuid = get_cpu(); |
| |
| if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { |
| /* local cpu is the only cpu present in cpumask */ |
| local_flush_tlb_mm(mm); |
| } else { |
| on_each_cpu_mask(cmask, ipi_flush_tlb_mm, mm, 1); |
| } |
| put_cpu(); |
| } |
| |
| struct flush_tlb_data { |
| unsigned long addr1; |
| unsigned long addr2; |
| }; |
| |
| static inline void ipi_flush_tlb_page(void *info) |
| { |
| struct flush_tlb_data *fd = (struct flush_tlb_data *)info; |
| |
| local_flush_tlb_page(NULL, fd->addr1); |
| } |
| |
| static inline void ipi_flush_tlb_range(void *info) |
| { |
| struct flush_tlb_data *fd = (struct flush_tlb_data *)info; |
| |
| local_flush_tlb_range(NULL, fd->addr1, fd->addr2); |
| } |
| |
| static void smp_flush_tlb_range(const struct cpumask *cmask, unsigned long start, |
| unsigned long end) |
| { |
| unsigned int cpuid; |
| |
| if (cpumask_empty(cmask)) |
| return; |
| |
| cpuid = get_cpu(); |
| |
| if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { |
| /* local cpu is the only cpu present in cpumask */ |
| if ((end - start) <= PAGE_SIZE) |
| local_flush_tlb_page(NULL, start); |
| else |
| local_flush_tlb_range(NULL, start, end); |
| } else { |
| struct flush_tlb_data fd; |
| |
| fd.addr1 = start; |
| fd.addr2 = end; |
| |
| if ((end - start) <= PAGE_SIZE) |
| on_each_cpu_mask(cmask, ipi_flush_tlb_page, &fd, 1); |
| else |
| on_each_cpu_mask(cmask, ipi_flush_tlb_range, &fd, 1); |
| } |
| put_cpu(); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu(ipi_flush_tlb_all, NULL, 1); |
| } |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| smp_flush_tlb_mm(mm_cpumask(mm), mm); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) |
| { |
| smp_flush_tlb_range(mm_cpumask(vma->vm_mm), uaddr, uaddr + PAGE_SIZE); |
| } |
| |
| void flush_tlb_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end) |
| { |
| const struct cpumask *cmask = vma ? mm_cpumask(vma->vm_mm) |
| : cpu_online_mask; |
| smp_flush_tlb_range(cmask, start, end); |
| } |
| |
| /* Instruction cache invalidate - performed on each cpu */ |
| static void ipi_icache_page_inv(void *arg) |
| { |
| struct page *page = arg; |
| |
| local_icache_page_inv(page); |
| } |
| |
| void smp_icache_page_inv(struct page *page) |
| { |
| on_each_cpu(ipi_icache_page_inv, page, 1); |
| } |
| EXPORT_SYMBOL(smp_icache_page_inv); |