| /* |
| * SuperH MSIOF SPI Master Interface |
| * |
| * Copyright (c) 2009 Magnus Damm |
| * Copyright (C) 2014 Renesas Electronics Corporation |
| * Copyright (C) 2014-2017 Glider bvba |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/gpio.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sh_dma.h> |
| |
| #include <linux/spi/sh_msiof.h> |
| #include <linux/spi/spi.h> |
| |
| #include <asm/unaligned.h> |
| |
| struct sh_msiof_chipdata { |
| u16 tx_fifo_size; |
| u16 rx_fifo_size; |
| u16 master_flags; |
| u16 min_div; |
| }; |
| |
| struct sh_msiof_spi_priv { |
| struct spi_master *master; |
| void __iomem *mapbase; |
| struct clk *clk; |
| struct platform_device *pdev; |
| struct sh_msiof_spi_info *info; |
| struct completion done; |
| unsigned int tx_fifo_size; |
| unsigned int rx_fifo_size; |
| unsigned int min_div; |
| void *tx_dma_page; |
| void *rx_dma_page; |
| dma_addr_t tx_dma_addr; |
| dma_addr_t rx_dma_addr; |
| unsigned short unused_ss; |
| bool native_cs_inited; |
| bool native_cs_high; |
| bool slave_aborted; |
| }; |
| |
| #define MAX_SS 3 /* Maximum number of native chip selects */ |
| |
| #define TMDR1 0x00 /* Transmit Mode Register 1 */ |
| #define TMDR2 0x04 /* Transmit Mode Register 2 */ |
| #define TMDR3 0x08 /* Transmit Mode Register 3 */ |
| #define RMDR1 0x10 /* Receive Mode Register 1 */ |
| #define RMDR2 0x14 /* Receive Mode Register 2 */ |
| #define RMDR3 0x18 /* Receive Mode Register 3 */ |
| #define TSCR 0x20 /* Transmit Clock Select Register */ |
| #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ |
| #define CTR 0x28 /* Control Register */ |
| #define FCTR 0x30 /* FIFO Control Register */ |
| #define STR 0x40 /* Status Register */ |
| #define IER 0x44 /* Interrupt Enable Register */ |
| #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ |
| #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ |
| #define TFDR 0x50 /* Transmit FIFO Data Register */ |
| #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ |
| #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ |
| #define RFDR 0x60 /* Receive FIFO Data Register */ |
| |
| /* TMDR1 and RMDR1 */ |
| #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ |
| #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ |
| #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ |
| #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ |
| #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ |
| #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ |
| #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ |
| #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ |
| #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ |
| #define MDR1_FLD_SHIFT 2 |
| #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ |
| /* TMDR1 */ |
| #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ |
| #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */ |
| #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ |
| |
| /* TMDR2 and RMDR2 */ |
| #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ |
| #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ |
| #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ |
| |
| /* TSCR and RSCR */ |
| #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ |
| #define SCR_BRPS(i) (((i) - 1) << 8) |
| #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ |
| #define SCR_BRDV_DIV_2 0x0000 |
| #define SCR_BRDV_DIV_4 0x0001 |
| #define SCR_BRDV_DIV_8 0x0002 |
| #define SCR_BRDV_DIV_16 0x0003 |
| #define SCR_BRDV_DIV_32 0x0004 |
| #define SCR_BRDV_DIV_1 0x0007 |
| |
| /* CTR */ |
| #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ |
| #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ |
| #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ |
| #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ |
| #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ |
| #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ |
| #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ |
| #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ |
| #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ |
| #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ |
| #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ |
| #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ |
| #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ |
| #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ |
| #define CTR_TXE 0x00000200 /* Transmit Enable */ |
| #define CTR_RXE 0x00000100 /* Receive Enable */ |
| |
| /* FCTR */ |
| #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ |
| #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ |
| #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ |
| #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ |
| #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ |
| #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ |
| #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ |
| #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ |
| #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ |
| #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ |
| #define FCTR_TFUA_SHIFT 20 |
| #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) |
| #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ |
| #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ |
| #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ |
| #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ |
| #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ |
| #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ |
| #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ |
| #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ |
| #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ |
| #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ |
| #define FCTR_RFUA_SHIFT 4 |
| #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) |
| |
| /* STR */ |
| #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ |
| #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ |
| #define STR_TEOF 0x00800000 /* Frame Transmission End */ |
| #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ |
| #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ |
| #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ |
| #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ |
| #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ |
| #define STR_REOF 0x00000080 /* Frame Reception End */ |
| #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ |
| #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ |
| #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ |
| |
| /* IER */ |
| #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ |
| #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ |
| #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ |
| #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ |
| #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ |
| #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ |
| #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ |
| #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ |
| #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ |
| #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ |
| #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ |
| #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ |
| #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ |
| #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ |
| |
| |
| static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) |
| { |
| switch (reg_offs) { |
| case TSCR: |
| case RSCR: |
| return ioread16(p->mapbase + reg_offs); |
| default: |
| return ioread32(p->mapbase + reg_offs); |
| } |
| } |
| |
| static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, |
| u32 value) |
| { |
| switch (reg_offs) { |
| case TSCR: |
| case RSCR: |
| iowrite16(value, p->mapbase + reg_offs); |
| break; |
| default: |
| iowrite32(value, p->mapbase + reg_offs); |
| break; |
| } |
| } |
| |
| static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, |
| u32 clr, u32 set) |
| { |
| u32 mask = clr | set; |
| u32 data; |
| int k; |
| |
| data = sh_msiof_read(p, CTR); |
| data &= ~clr; |
| data |= set; |
| sh_msiof_write(p, CTR, data); |
| |
| for (k = 100; k > 0; k--) { |
| if ((sh_msiof_read(p, CTR) & mask) == set) |
| break; |
| |
| udelay(10); |
| } |
| |
| return k > 0 ? 0 : -ETIMEDOUT; |
| } |
| |
| static irqreturn_t sh_msiof_spi_irq(int irq, void *data) |
| { |
| struct sh_msiof_spi_priv *p = data; |
| |
| /* just disable the interrupt and wake up */ |
| sh_msiof_write(p, IER, 0); |
| complete(&p->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct { |
| unsigned short div; |
| unsigned short brdv; |
| } const sh_msiof_spi_div_table[] = { |
| { 1, SCR_BRDV_DIV_1 }, |
| { 2, SCR_BRDV_DIV_2 }, |
| { 4, SCR_BRDV_DIV_4 }, |
| { 8, SCR_BRDV_DIV_8 }, |
| { 16, SCR_BRDV_DIV_16 }, |
| { 32, SCR_BRDV_DIV_32 }, |
| }; |
| |
| static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, |
| unsigned long parent_rate, u32 spi_hz) |
| { |
| unsigned long div = 1024; |
| u32 brps, scr; |
| size_t k; |
| |
| if (!WARN_ON(!spi_hz || !parent_rate)) |
| div = DIV_ROUND_UP(parent_rate, spi_hz); |
| |
| div = max_t(unsigned long, div, p->min_div); |
| |
| for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) { |
| brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div); |
| /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ |
| if (sh_msiof_spi_div_table[k].div == 1 && brps > 2) |
| continue; |
| if (brps <= 32) /* max of brdv is 32 */ |
| break; |
| } |
| |
| k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1); |
| |
| scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps); |
| sh_msiof_write(p, TSCR, scr); |
| if (!(p->master->flags & SPI_MASTER_MUST_TX)) |
| sh_msiof_write(p, RSCR, scr); |
| } |
| |
| static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) |
| { |
| /* |
| * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl |
| * b'000 : 0 |
| * b'001 : 100 |
| * b'010 : 200 |
| * b'011 (SYNCDL only) : 300 |
| * b'101 : 50 |
| * b'110 : 150 |
| */ |
| if (dtdl_or_syncdl % 100) |
| return dtdl_or_syncdl / 100 + 5; |
| else |
| return dtdl_or_syncdl / 100; |
| } |
| |
| static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) |
| { |
| u32 val; |
| |
| if (!p->info) |
| return 0; |
| |
| /* check if DTDL and SYNCDL is allowed value */ |
| if (p->info->dtdl > 200 || p->info->syncdl > 300) { |
| dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); |
| return 0; |
| } |
| |
| /* check if the sum of DTDL and SYNCDL becomes an integer value */ |
| if ((p->info->dtdl + p->info->syncdl) % 100) { |
| dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); |
| return 0; |
| } |
| |
| val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; |
| val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; |
| |
| return val; |
| } |
| |
| static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, |
| u32 cpol, u32 cpha, |
| u32 tx_hi_z, u32 lsb_first, u32 cs_high) |
| { |
| u32 tmp; |
| int edge; |
| |
| /* |
| * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG |
| * 0 0 10 10 1 1 |
| * 0 1 10 10 0 0 |
| * 1 0 11 11 0 0 |
| * 1 1 11 11 1 1 |
| */ |
| tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; |
| tmp |= !cs_high << MDR1_SYNCAC_SHIFT; |
| tmp |= lsb_first << MDR1_BITLSB_SHIFT; |
| tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); |
| if (spi_controller_is_slave(p->master)) { |
| sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); |
| } else { |
| sh_msiof_write(p, TMDR1, |
| tmp | MDR1_TRMD | TMDR1_PCON | |
| (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); |
| } |
| if (p->master->flags & SPI_MASTER_MUST_TX) { |
| /* These bits are reserved if RX needs TX */ |
| tmp &= ~0x0000ffff; |
| } |
| sh_msiof_write(p, RMDR1, tmp); |
| |
| tmp = 0; |
| tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; |
| tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; |
| |
| edge = cpol ^ !cpha; |
| |
| tmp |= edge << CTR_TEDG_SHIFT; |
| tmp |= edge << CTR_REDG_SHIFT; |
| tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; |
| sh_msiof_write(p, CTR, tmp); |
| } |
| |
| static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, void *rx_buf, |
| u32 bits, u32 words) |
| { |
| u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); |
| |
| if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX)) |
| sh_msiof_write(p, TMDR2, dr2); |
| else |
| sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); |
| |
| if (rx_buf) |
| sh_msiof_write(p, RMDR2, dr2); |
| } |
| |
| static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) |
| { |
| sh_msiof_write(p, STR, sh_msiof_read(p, STR)); |
| } |
| |
| static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u8 *buf_8 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, buf_8[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u16 *buf_16 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, buf_16[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u16 *buf_16 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, buf_32[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); |
| } |
| |
| static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); |
| } |
| |
| static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u8 *buf_8 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_8[k] = sh_msiof_read(p, RFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u16 *buf_16 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_16[k] = sh_msiof_read(p, RFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u16 *buf_16 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); |
| } |
| |
| static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_32[k] = sh_msiof_read(p, RFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); |
| } |
| |
| static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); |
| } |
| |
| static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); |
| } |
| |
| static int sh_msiof_spi_setup(struct spi_device *spi) |
| { |
| struct device_node *np = spi->master->dev.of_node; |
| struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); |
| u32 clr, set, tmp; |
| |
| if (!np) { |
| /* |
| * Use spi->controller_data for CS (same strategy as spi_gpio), |
| * if any. otherwise let HW control CS |
| */ |
| spi->cs_gpio = (uintptr_t)spi->controller_data; |
| } |
| |
| if (gpio_is_valid(spi->cs_gpio)) { |
| gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); |
| return 0; |
| } |
| |
| if (spi_controller_is_slave(p->master)) |
| return 0; |
| |
| if (p->native_cs_inited && |
| (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) |
| return 0; |
| |
| /* Configure native chip select mode/polarity early */ |
| clr = MDR1_SYNCMD_MASK; |
| set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI; |
| if (spi->mode & SPI_CS_HIGH) |
| clr |= BIT(MDR1_SYNCAC_SHIFT); |
| else |
| set |= BIT(MDR1_SYNCAC_SHIFT); |
| pm_runtime_get_sync(&p->pdev->dev); |
| tmp = sh_msiof_read(p, TMDR1) & ~clr; |
| sh_msiof_write(p, TMDR1, tmp | set); |
| pm_runtime_put(&p->pdev->dev); |
| p->native_cs_high = spi->mode & SPI_CS_HIGH; |
| p->native_cs_inited = true; |
| return 0; |
| } |
| |
| static int sh_msiof_prepare_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); |
| const struct spi_device *spi = msg->spi; |
| u32 ss, cs_high; |
| |
| /* Configure pins before asserting CS */ |
| if (gpio_is_valid(spi->cs_gpio)) { |
| ss = p->unused_ss; |
| cs_high = p->native_cs_high; |
| } else { |
| ss = spi->chip_select; |
| cs_high = !!(spi->mode & SPI_CS_HIGH); |
| } |
| sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), |
| !!(spi->mode & SPI_CPHA), |
| !!(spi->mode & SPI_3WIRE), |
| !!(spi->mode & SPI_LSB_FIRST), cs_high); |
| return 0; |
| } |
| |
| static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) |
| { |
| bool slave = spi_controller_is_slave(p->master); |
| int ret = 0; |
| |
| /* setup clock and rx/tx signals */ |
| if (!slave) |
| ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); |
| if (rx_buf && !ret) |
| ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); |
| if (!ret) |
| ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); |
| |
| /* start by setting frame bit */ |
| if (!ret && !slave) |
| ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); |
| |
| return ret; |
| } |
| |
| static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) |
| { |
| bool slave = spi_controller_is_slave(p->master); |
| int ret = 0; |
| |
| /* shut down frame, rx/tx and clock signals */ |
| if (!slave) |
| ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); |
| if (!ret) |
| ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); |
| if (rx_buf && !ret) |
| ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); |
| if (!ret && !slave) |
| ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); |
| |
| return ret; |
| } |
| |
| static int sh_msiof_slave_abort(struct spi_master *master) |
| { |
| struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); |
| |
| p->slave_aborted = true; |
| complete(&p->done); |
| return 0; |
| } |
| |
| static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p) |
| { |
| if (spi_controller_is_slave(p->master)) { |
| if (wait_for_completion_interruptible(&p->done) || |
| p->slave_aborted) { |
| dev_dbg(&p->pdev->dev, "interrupted\n"); |
| return -EINTR; |
| } |
| } else { |
| if (!wait_for_completion_timeout(&p->done, HZ)) { |
| dev_err(&p->pdev->dev, "timeout\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, |
| void (*tx_fifo)(struct sh_msiof_spi_priv *, |
| const void *, int, int), |
| void (*rx_fifo)(struct sh_msiof_spi_priv *, |
| void *, int, int), |
| const void *tx_buf, void *rx_buf, |
| int words, int bits) |
| { |
| int fifo_shift; |
| int ret; |
| |
| /* limit maximum word transfer to rx/tx fifo size */ |
| if (tx_buf) |
| words = min_t(int, words, p->tx_fifo_size); |
| if (rx_buf) |
| words = min_t(int, words, p->rx_fifo_size); |
| |
| /* the fifo contents need shifting */ |
| fifo_shift = 32 - bits; |
| |
| /* default FIFO watermarks for PIO */ |
| sh_msiof_write(p, FCTR, 0); |
| |
| /* setup msiof transfer mode registers */ |
| sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); |
| sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); |
| |
| /* write tx fifo */ |
| if (tx_buf) |
| tx_fifo(p, tx_buf, words, fifo_shift); |
| |
| reinit_completion(&p->done); |
| p->slave_aborted = false; |
| |
| ret = sh_msiof_spi_start(p, rx_buf); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to start hardware\n"); |
| goto stop_ier; |
| } |
| |
| /* wait for tx fifo to be emptied / rx fifo to be filled */ |
| ret = sh_msiof_wait_for_completion(p); |
| if (ret) |
| goto stop_reset; |
| |
| /* read rx fifo */ |
| if (rx_buf) |
| rx_fifo(p, rx_buf, words, fifo_shift); |
| |
| /* clear status bits */ |
| sh_msiof_reset_str(p); |
| |
| ret = sh_msiof_spi_stop(p, rx_buf); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to shut down hardware\n"); |
| return ret; |
| } |
| |
| return words; |
| |
| stop_reset: |
| sh_msiof_reset_str(p); |
| sh_msiof_spi_stop(p, rx_buf); |
| stop_ier: |
| sh_msiof_write(p, IER, 0); |
| return ret; |
| } |
| |
| static void sh_msiof_dma_complete(void *arg) |
| { |
| struct sh_msiof_spi_priv *p = arg; |
| |
| sh_msiof_write(p, IER, 0); |
| complete(&p->done); |
| } |
| |
| static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, |
| void *rx, unsigned int len) |
| { |
| u32 ier_bits = 0; |
| struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; |
| dma_cookie_t cookie; |
| int ret; |
| |
| /* First prepare and submit the DMA request(s), as this may fail */ |
| if (rx) { |
| ier_bits |= IER_RDREQE | IER_RDMAE; |
| desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, |
| p->rx_dma_addr, len, DMA_FROM_DEVICE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc_rx) |
| return -EAGAIN; |
| |
| desc_rx->callback = sh_msiof_dma_complete; |
| desc_rx->callback_param = p; |
| cookie = dmaengine_submit(desc_rx); |
| if (dma_submit_error(cookie)) |
| return cookie; |
| } |
| |
| if (tx) { |
| ier_bits |= IER_TDREQE | IER_TDMAE; |
| dma_sync_single_for_device(p->master->dma_tx->device->dev, |
| p->tx_dma_addr, len, DMA_TO_DEVICE); |
| desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, |
| p->tx_dma_addr, len, DMA_TO_DEVICE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc_tx) { |
| ret = -EAGAIN; |
| goto no_dma_tx; |
| } |
| |
| if (rx) { |
| /* No callback */ |
| desc_tx->callback = NULL; |
| } else { |
| desc_tx->callback = sh_msiof_dma_complete; |
| desc_tx->callback_param = p; |
| } |
| cookie = dmaengine_submit(desc_tx); |
| if (dma_submit_error(cookie)) { |
| ret = cookie; |
| goto no_dma_tx; |
| } |
| } |
| |
| /* 1 stage FIFO watermarks for DMA */ |
| sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); |
| |
| /* setup msiof transfer mode registers (32-bit words) */ |
| sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); |
| |
| sh_msiof_write(p, IER, ier_bits); |
| |
| reinit_completion(&p->done); |
| p->slave_aborted = false; |
| |
| /* Now start DMA */ |
| if (rx) |
| dma_async_issue_pending(p->master->dma_rx); |
| if (tx) |
| dma_async_issue_pending(p->master->dma_tx); |
| |
| ret = sh_msiof_spi_start(p, rx); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to start hardware\n"); |
| goto stop_dma; |
| } |
| |
| /* wait for tx/rx DMA completion */ |
| ret = sh_msiof_wait_for_completion(p); |
| if (ret) |
| goto stop_reset; |
| |
| if (!rx) { |
| reinit_completion(&p->done); |
| sh_msiof_write(p, IER, IER_TEOFE); |
| |
| /* wait for tx fifo to be emptied */ |
| ret = sh_msiof_wait_for_completion(p); |
| if (ret) |
| goto stop_reset; |
| } |
| |
| /* clear status bits */ |
| sh_msiof_reset_str(p); |
| |
| ret = sh_msiof_spi_stop(p, rx); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to shut down hardware\n"); |
| return ret; |
| } |
| |
| if (rx) |
| dma_sync_single_for_cpu(p->master->dma_rx->device->dev, |
| p->rx_dma_addr, len, |
| DMA_FROM_DEVICE); |
| |
| return 0; |
| |
| stop_reset: |
| sh_msiof_reset_str(p); |
| sh_msiof_spi_stop(p, rx); |
| stop_dma: |
| if (tx) |
| dmaengine_terminate_all(p->master->dma_tx); |
| no_dma_tx: |
| if (rx) |
| dmaengine_terminate_all(p->master->dma_rx); |
| sh_msiof_write(p, IER, 0); |
| return ret; |
| } |
| |
| static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| /* src or dst can be unaligned, but not both */ |
| if ((unsigned long)src & 3) { |
| while (words--) { |
| *dst++ = swab32(get_unaligned(src)); |
| src++; |
| } |
| } else if ((unsigned long)dst & 3) { |
| while (words--) { |
| put_unaligned(swab32(*src++), dst); |
| dst++; |
| } |
| } else { |
| while (words--) |
| *dst++ = swab32(*src++); |
| } |
| } |
| |
| static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| /* src or dst can be unaligned, but not both */ |
| if ((unsigned long)src & 3) { |
| while (words--) { |
| *dst++ = swahw32(get_unaligned(src)); |
| src++; |
| } |
| } else if ((unsigned long)dst & 3) { |
| while (words--) { |
| put_unaligned(swahw32(*src++), dst); |
| dst++; |
| } |
| } else { |
| while (words--) |
| *dst++ = swahw32(*src++); |
| } |
| } |
| |
| static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| memcpy(dst, src, words * 4); |
| } |
| |
| static int sh_msiof_transfer_one(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *t) |
| { |
| struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); |
| void (*copy32)(u32 *, const u32 *, unsigned int); |
| void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); |
| void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); |
| const void *tx_buf = t->tx_buf; |
| void *rx_buf = t->rx_buf; |
| unsigned int len = t->len; |
| unsigned int bits = t->bits_per_word; |
| unsigned int bytes_per_word; |
| unsigned int words; |
| int n; |
| bool swab; |
| int ret; |
| |
| /* setup clocks (clock already enabled in chipselect()) */ |
| if (!spi_controller_is_slave(p->master)) |
| sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); |
| |
| while (master->dma_tx && len > 15) { |
| /* |
| * DMA supports 32-bit words only, hence pack 8-bit and 16-bit |
| * words, with byte resp. word swapping. |
| */ |
| unsigned int l = 0; |
| |
| if (tx_buf) |
| l = min(len, p->tx_fifo_size * 4); |
| if (rx_buf) |
| l = min(len, p->rx_fifo_size * 4); |
| |
| if (bits <= 8) { |
| if (l & 3) |
| break; |
| copy32 = copy_bswap32; |
| } else if (bits <= 16) { |
| if (l & 3) |
| break; |
| copy32 = copy_wswap32; |
| } else { |
| copy32 = copy_plain32; |
| } |
| |
| if (tx_buf) |
| copy32(p->tx_dma_page, tx_buf, l / 4); |
| |
| ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); |
| if (ret == -EAGAIN) { |
| dev_warn_once(&p->pdev->dev, |
| "DMA not available, falling back to PIO\n"); |
| break; |
| } |
| if (ret) |
| return ret; |
| |
| if (rx_buf) { |
| copy32(rx_buf, p->rx_dma_page, l / 4); |
| rx_buf += l; |
| } |
| if (tx_buf) |
| tx_buf += l; |
| |
| len -= l; |
| if (!len) |
| return 0; |
| } |
| |
| if (bits <= 8 && len > 15 && !(len & 3)) { |
| bits = 32; |
| swab = true; |
| } else { |
| swab = false; |
| } |
| |
| /* setup bytes per word and fifo read/write functions */ |
| if (bits <= 8) { |
| bytes_per_word = 1; |
| tx_fifo = sh_msiof_spi_write_fifo_8; |
| rx_fifo = sh_msiof_spi_read_fifo_8; |
| } else if (bits <= 16) { |
| bytes_per_word = 2; |
| if ((unsigned long)tx_buf & 0x01) |
| tx_fifo = sh_msiof_spi_write_fifo_16u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_16; |
| |
| if ((unsigned long)rx_buf & 0x01) |
| rx_fifo = sh_msiof_spi_read_fifo_16u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_16; |
| } else if (swab) { |
| bytes_per_word = 4; |
| if ((unsigned long)tx_buf & 0x03) |
| tx_fifo = sh_msiof_spi_write_fifo_s32u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_s32; |
| |
| if ((unsigned long)rx_buf & 0x03) |
| rx_fifo = sh_msiof_spi_read_fifo_s32u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_s32; |
| } else { |
| bytes_per_word = 4; |
| if ((unsigned long)tx_buf & 0x03) |
| tx_fifo = sh_msiof_spi_write_fifo_32u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_32; |
| |
| if ((unsigned long)rx_buf & 0x03) |
| rx_fifo = sh_msiof_spi_read_fifo_32u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_32; |
| } |
| |
| /* transfer in fifo sized chunks */ |
| words = len / bytes_per_word; |
| |
| while (words > 0) { |
| n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, |
| words, bits); |
| if (n < 0) |
| return n; |
| |
| if (tx_buf) |
| tx_buf += n * bytes_per_word; |
| if (rx_buf) |
| rx_buf += n * bytes_per_word; |
| words -= n; |
| } |
| |
| return 0; |
| } |
| |
| static const struct sh_msiof_chipdata sh_data = { |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .master_flags = 0, |
| .min_div = 1, |
| }; |
| |
| static const struct sh_msiof_chipdata rcar_gen2_data = { |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .master_flags = SPI_MASTER_MUST_TX, |
| .min_div = 1, |
| }; |
| |
| static const struct sh_msiof_chipdata rcar_gen3_data = { |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .master_flags = SPI_MASTER_MUST_TX, |
| .min_div = 2, |
| }; |
| |
| static const struct of_device_id sh_msiof_match[] = { |
| { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, |
| { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, |
| { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, |
| { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, sh_msiof_match); |
| |
| #ifdef CONFIG_OF |
| static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) |
| { |
| struct sh_msiof_spi_info *info; |
| struct device_node *np = dev->of_node; |
| u32 num_cs = 1; |
| |
| info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); |
| if (!info) |
| return NULL; |
| |
| info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE |
| : MSIOF_SPI_MASTER; |
| |
| /* Parse the MSIOF properties */ |
| if (info->mode == MSIOF_SPI_MASTER) |
| of_property_read_u32(np, "num-cs", &num_cs); |
| of_property_read_u32(np, "renesas,tx-fifo-size", |
| &info->tx_fifo_override); |
| of_property_read_u32(np, "renesas,rx-fifo-size", |
| &info->rx_fifo_override); |
| of_property_read_u32(np, "renesas,dtdl", &info->dtdl); |
| of_property_read_u32(np, "renesas,syncdl", &info->syncdl); |
| |
| info->num_chipselect = num_cs; |
| |
| return info; |
| } |
| #else |
| static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) |
| { |
| struct device *dev = &p->pdev->dev; |
| unsigned int used_ss_mask = 0; |
| unsigned int cs_gpios = 0; |
| unsigned int num_cs, i; |
| int ret; |
| |
| ret = gpiod_count(dev, "cs"); |
| if (ret <= 0) |
| return 0; |
| |
| num_cs = max_t(unsigned int, ret, p->master->num_chipselect); |
| for (i = 0; i < num_cs; i++) { |
| struct gpio_desc *gpiod; |
| |
| gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); |
| if (!IS_ERR(gpiod)) { |
| cs_gpios++; |
| continue; |
| } |
| |
| if (PTR_ERR(gpiod) != -ENOENT) |
| return PTR_ERR(gpiod); |
| |
| if (i >= MAX_SS) { |
| dev_err(dev, "Invalid native chip select %d\n", i); |
| return -EINVAL; |
| } |
| used_ss_mask |= BIT(i); |
| } |
| p->unused_ss = ffz(used_ss_mask); |
| if (cs_gpios && p->unused_ss >= MAX_SS) { |
| dev_err(dev, "No unused native chip select available\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, |
| enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) |
| { |
| dma_cap_mask_t mask; |
| struct dma_chan *chan; |
| struct dma_slave_config cfg; |
| int ret; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, |
| (void *)(unsigned long)id, dev, |
| dir == DMA_MEM_TO_DEV ? "tx" : "rx"); |
| if (!chan) { |
| dev_warn(dev, "dma_request_slave_channel_compat failed\n"); |
| return NULL; |
| } |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.direction = dir; |
| if (dir == DMA_MEM_TO_DEV) { |
| cfg.dst_addr = port_addr; |
| cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| } else { |
| cfg.src_addr = port_addr; |
| cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| } |
| |
| ret = dmaengine_slave_config(chan, &cfg); |
| if (ret) { |
| dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); |
| dma_release_channel(chan); |
| return NULL; |
| } |
| |
| return chan; |
| } |
| |
| static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) |
| { |
| struct platform_device *pdev = p->pdev; |
| struct device *dev = &pdev->dev; |
| const struct sh_msiof_spi_info *info = dev_get_platdata(dev); |
| unsigned int dma_tx_id, dma_rx_id; |
| const struct resource *res; |
| struct spi_master *master; |
| struct device *tx_dev, *rx_dev; |
| |
| if (dev->of_node) { |
| /* In the OF case we will get the slave IDs from the DT */ |
| dma_tx_id = 0; |
| dma_rx_id = 0; |
| } else if (info && info->dma_tx_id && info->dma_rx_id) { |
| dma_tx_id = info->dma_tx_id; |
| dma_rx_id = info->dma_rx_id; |
| } else { |
| /* The driver assumes no error */ |
| return 0; |
| } |
| |
| /* The DMA engine uses the second register set, if present */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res) |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| |
| master = p->master; |
| master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, |
| dma_tx_id, |
| res->start + TFDR); |
| if (!master->dma_tx) |
| return -ENODEV; |
| |
| master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, |
| dma_rx_id, |
| res->start + RFDR); |
| if (!master->dma_rx) |
| goto free_tx_chan; |
| |
| p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); |
| if (!p->tx_dma_page) |
| goto free_rx_chan; |
| |
| p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); |
| if (!p->rx_dma_page) |
| goto free_tx_page; |
| |
| tx_dev = master->dma_tx->device->dev; |
| p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(tx_dev, p->tx_dma_addr)) |
| goto free_rx_page; |
| |
| rx_dev = master->dma_rx->device->dev; |
| p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(rx_dev, p->rx_dma_addr)) |
| goto unmap_tx_page; |
| |
| dev_info(dev, "DMA available"); |
| return 0; |
| |
| unmap_tx_page: |
| dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); |
| free_rx_page: |
| free_page((unsigned long)p->rx_dma_page); |
| free_tx_page: |
| free_page((unsigned long)p->tx_dma_page); |
| free_rx_chan: |
| dma_release_channel(master->dma_rx); |
| free_tx_chan: |
| dma_release_channel(master->dma_tx); |
| master->dma_tx = NULL; |
| return -ENODEV; |
| } |
| |
| static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) |
| { |
| struct spi_master *master = p->master; |
| |
| if (!master->dma_tx) |
| return; |
| |
| dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, |
| PAGE_SIZE, DMA_TO_DEVICE); |
| free_page((unsigned long)p->rx_dma_page); |
| free_page((unsigned long)p->tx_dma_page); |
| dma_release_channel(master->dma_rx); |
| dma_release_channel(master->dma_tx); |
| } |
| |
| static int sh_msiof_spi_probe(struct platform_device *pdev) |
| { |
| struct resource *r; |
| struct spi_master *master; |
| const struct sh_msiof_chipdata *chipdata; |
| struct sh_msiof_spi_info *info; |
| struct sh_msiof_spi_priv *p; |
| int i; |
| int ret; |
| |
| chipdata = of_device_get_match_data(&pdev->dev); |
| if (chipdata) { |
| info = sh_msiof_spi_parse_dt(&pdev->dev); |
| } else { |
| chipdata = (const void *)pdev->id_entry->driver_data; |
| info = dev_get_platdata(&pdev->dev); |
| } |
| |
| if (!info) { |
| dev_err(&pdev->dev, "failed to obtain device info\n"); |
| return -ENXIO; |
| } |
| |
| if (info->mode == MSIOF_SPI_SLAVE) |
| master = spi_alloc_slave(&pdev->dev, |
| sizeof(struct sh_msiof_spi_priv)); |
| else |
| master = spi_alloc_master(&pdev->dev, |
| sizeof(struct sh_msiof_spi_priv)); |
| if (master == NULL) |
| return -ENOMEM; |
| |
| p = spi_master_get_devdata(master); |
| |
| platform_set_drvdata(pdev, p); |
| p->master = master; |
| p->info = info; |
| p->min_div = chipdata->min_div; |
| |
| init_completion(&p->done); |
| |
| p->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(p->clk)) { |
| dev_err(&pdev->dev, "cannot get clock\n"); |
| ret = PTR_ERR(p->clk); |
| goto err1; |
| } |
| |
| i = platform_get_irq(pdev, 0); |
| if (i < 0) { |
| dev_err(&pdev->dev, "cannot get platform IRQ\n"); |
| ret = -ENOENT; |
| goto err1; |
| } |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| p->mapbase = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(p->mapbase)) { |
| ret = PTR_ERR(p->mapbase); |
| goto err1; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, |
| dev_name(&pdev->dev), p); |
| if (ret) { |
| dev_err(&pdev->dev, "unable to request irq\n"); |
| goto err1; |
| } |
| |
| p->pdev = pdev; |
| pm_runtime_enable(&pdev->dev); |
| |
| /* Platform data may override FIFO sizes */ |
| p->tx_fifo_size = chipdata->tx_fifo_size; |
| p->rx_fifo_size = chipdata->rx_fifo_size; |
| if (p->info->tx_fifo_override) |
| p->tx_fifo_size = p->info->tx_fifo_override; |
| if (p->info->rx_fifo_override) |
| p->rx_fifo_size = p->info->rx_fifo_override; |
| |
| /* Setup GPIO chip selects */ |
| master->num_chipselect = p->info->num_chipselect; |
| ret = sh_msiof_get_cs_gpios(p); |
| if (ret) |
| goto err1; |
| |
| /* init master code */ |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; |
| master->flags = chipdata->master_flags; |
| master->bus_num = pdev->id; |
| master->dev.of_node = pdev->dev.of_node; |
| master->setup = sh_msiof_spi_setup; |
| master->prepare_message = sh_msiof_prepare_message; |
| master->slave_abort = sh_msiof_slave_abort; |
| master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); |
| master->auto_runtime_pm = true; |
| master->transfer_one = sh_msiof_transfer_one; |
| |
| ret = sh_msiof_request_dma(p); |
| if (ret < 0) |
| dev_warn(&pdev->dev, "DMA not available, using PIO\n"); |
| |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "spi_register_master error.\n"); |
| goto err2; |
| } |
| |
| return 0; |
| |
| err2: |
| sh_msiof_release_dma(p); |
| pm_runtime_disable(&pdev->dev); |
| err1: |
| spi_master_put(master); |
| return ret; |
| } |
| |
| static int sh_msiof_spi_remove(struct platform_device *pdev) |
| { |
| struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); |
| |
| sh_msiof_release_dma(p); |
| pm_runtime_disable(&pdev->dev); |
| return 0; |
| } |
| |
| static const struct platform_device_id spi_driver_ids[] = { |
| { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(platform, spi_driver_ids); |
| |
| static struct platform_driver sh_msiof_spi_drv = { |
| .probe = sh_msiof_spi_probe, |
| .remove = sh_msiof_spi_remove, |
| .id_table = spi_driver_ids, |
| .driver = { |
| .name = "spi_sh_msiof", |
| .of_match_table = of_match_ptr(sh_msiof_match), |
| }, |
| }; |
| module_platform_driver(sh_msiof_spi_drv); |
| |
| MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); |
| MODULE_AUTHOR("Magnus Damm"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:spi_sh_msiof"); |