| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2016 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_shared.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_refcount_item.h" |
| #include "xfs_log.h" |
| #include "xfs_refcount.h" |
| |
| |
| kmem_zone_t *xfs_cui_zone; |
| kmem_zone_t *xfs_cud_zone; |
| |
| static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_cui_log_item, cui_item); |
| } |
| |
| void |
| xfs_cui_item_free( |
| struct xfs_cui_log_item *cuip) |
| { |
| if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| kmem_free(cuip); |
| else |
| kmem_zone_free(xfs_cui_zone, cuip); |
| } |
| |
| /* |
| * Freeing the CUI requires that we remove it from the AIL if it has already |
| * been placed there. However, the CUI may not yet have been placed in the AIL |
| * when called by xfs_cui_release() from CUD processing due to the ordering of |
| * committed vs unpin operations in bulk insert operations. Hence the reference |
| * count to ensure only the last caller frees the CUI. |
| */ |
| void |
| xfs_cui_release( |
| struct xfs_cui_log_item *cuip) |
| { |
| ASSERT(atomic_read(&cuip->cui_refcount) > 0); |
| if (atomic_dec_and_test(&cuip->cui_refcount)) { |
| xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); |
| xfs_cui_item_free(cuip); |
| } |
| } |
| |
| |
| STATIC void |
| xfs_cui_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| |
| *nvecs += 1; |
| *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given cui log item. We use only 1 iovec, and we point that |
| * at the cui_log_format structure embedded in the cui item. |
| * It is at this point that we assert that all of the extent |
| * slots in the cui item have been filled. |
| */ |
| STATIC void |
| xfs_cui_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| ASSERT(atomic_read(&cuip->cui_next_extent) == |
| cuip->cui_format.cui_nextents); |
| |
| cuip->cui_format.cui_type = XFS_LI_CUI; |
| cuip->cui_format.cui_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, |
| xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); |
| } |
| |
| /* |
| * Pinning has no meaning for an cui item, so just return. |
| */ |
| STATIC void |
| xfs_cui_item_pin( |
| struct xfs_log_item *lip) |
| { |
| } |
| |
| /* |
| * The unpin operation is the last place an CUI is manipulated in the log. It is |
| * either inserted in the AIL or aborted in the event of a log I/O error. In |
| * either case, the CUI transaction has been successfully committed to make it |
| * this far. Therefore, we expect whoever committed the CUI to either construct |
| * and commit the CUD or drop the CUD's reference in the event of error. Simply |
| * drop the log's CUI reference now that the log is done with it. |
| */ |
| STATIC void |
| xfs_cui_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| |
| xfs_cui_release(cuip); |
| } |
| |
| /* |
| * CUI items have no locking or pushing. However, since CUIs are pulled from |
| * the AIL when their corresponding CUDs are committed to disk, their situation |
| * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller |
| * will eventually flush the log. This should help in getting the CUI out of |
| * the AIL. |
| */ |
| STATIC uint |
| xfs_cui_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| { |
| return XFS_ITEM_PINNED; |
| } |
| |
| /* |
| * The CUI has been either committed or aborted if the transaction has been |
| * cancelled. If the transaction was cancelled, an CUD isn't going to be |
| * constructed and thus we free the CUI here directly. |
| */ |
| STATIC void |
| xfs_cui_item_unlock( |
| struct xfs_log_item *lip) |
| { |
| if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) |
| xfs_cui_release(CUI_ITEM(lip)); |
| } |
| |
| /* |
| * The CUI is logged only once and cannot be moved in the log, so simply return |
| * the lsn at which it's been logged. |
| */ |
| STATIC xfs_lsn_t |
| xfs_cui_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| return lsn; |
| } |
| |
| /* |
| * The CUI dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| STATIC void |
| xfs_cui_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| } |
| |
| /* |
| * This is the ops vector shared by all cui log items. |
| */ |
| static const struct xfs_item_ops xfs_cui_item_ops = { |
| .iop_size = xfs_cui_item_size, |
| .iop_format = xfs_cui_item_format, |
| .iop_pin = xfs_cui_item_pin, |
| .iop_unpin = xfs_cui_item_unpin, |
| .iop_unlock = xfs_cui_item_unlock, |
| .iop_committed = xfs_cui_item_committed, |
| .iop_push = xfs_cui_item_push, |
| .iop_committing = xfs_cui_item_committing, |
| }; |
| |
| /* |
| * Allocate and initialize an cui item with the given number of extents. |
| */ |
| struct xfs_cui_log_item * |
| xfs_cui_init( |
| struct xfs_mount *mp, |
| uint nextents) |
| |
| { |
| struct xfs_cui_log_item *cuip; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), |
| KM_SLEEP); |
| else |
| cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP); |
| |
| xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); |
| cuip->cui_format.cui_nextents = nextents; |
| cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; |
| atomic_set(&cuip->cui_next_extent, 0); |
| atomic_set(&cuip->cui_refcount, 2); |
| |
| return cuip; |
| } |
| |
| static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_cud_log_item, cud_item); |
| } |
| |
| STATIC void |
| xfs_cud_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| *nvecs += 1; |
| *nbytes += sizeof(struct xfs_cud_log_format); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given cud log item. We use only 1 iovec, and we point that |
| * at the cud_log_format structure embedded in the cud item. |
| * It is at this point that we assert that all of the extent |
| * slots in the cud item have been filled. |
| */ |
| STATIC void |
| xfs_cud_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| cudp->cud_format.cud_type = XFS_LI_CUD; |
| cudp->cud_format.cud_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, |
| sizeof(struct xfs_cud_log_format)); |
| } |
| |
| /* |
| * Pinning has no meaning for an cud item, so just return. |
| */ |
| STATIC void |
| xfs_cud_item_pin( |
| struct xfs_log_item *lip) |
| { |
| } |
| |
| /* |
| * Since pinning has no meaning for an cud item, unpinning does |
| * not either. |
| */ |
| STATIC void |
| xfs_cud_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| } |
| |
| /* |
| * There isn't much you can do to push on an cud item. It is simply stuck |
| * waiting for the log to be flushed to disk. |
| */ |
| STATIC uint |
| xfs_cud_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| { |
| return XFS_ITEM_PINNED; |
| } |
| |
| /* |
| * The CUD is either committed or aborted if the transaction is cancelled. If |
| * the transaction is cancelled, drop our reference to the CUI and free the |
| * CUD. |
| */ |
| STATIC void |
| xfs_cud_item_unlock( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| |
| if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) { |
| xfs_cui_release(cudp->cud_cuip); |
| kmem_zone_free(xfs_cud_zone, cudp); |
| } |
| } |
| |
| /* |
| * When the cud item is committed to disk, all we need to do is delete our |
| * reference to our partner cui item and then free ourselves. Since we're |
| * freeing ourselves we must return -1 to keep the transaction code from |
| * further referencing this item. |
| */ |
| STATIC xfs_lsn_t |
| xfs_cud_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| |
| /* |
| * Drop the CUI reference regardless of whether the CUD has been |
| * aborted. Once the CUD transaction is constructed, it is the sole |
| * responsibility of the CUD to release the CUI (even if the CUI is |
| * aborted due to log I/O error). |
| */ |
| xfs_cui_release(cudp->cud_cuip); |
| kmem_zone_free(xfs_cud_zone, cudp); |
| |
| return (xfs_lsn_t)-1; |
| } |
| |
| /* |
| * The CUD dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| STATIC void |
| xfs_cud_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| } |
| |
| /* |
| * This is the ops vector shared by all cud log items. |
| */ |
| static const struct xfs_item_ops xfs_cud_item_ops = { |
| .iop_size = xfs_cud_item_size, |
| .iop_format = xfs_cud_item_format, |
| .iop_pin = xfs_cud_item_pin, |
| .iop_unpin = xfs_cud_item_unpin, |
| .iop_unlock = xfs_cud_item_unlock, |
| .iop_committed = xfs_cud_item_committed, |
| .iop_push = xfs_cud_item_push, |
| .iop_committing = xfs_cud_item_committing, |
| }; |
| |
| /* |
| * Allocate and initialize an cud item with the given number of extents. |
| */ |
| struct xfs_cud_log_item * |
| xfs_cud_init( |
| struct xfs_mount *mp, |
| struct xfs_cui_log_item *cuip) |
| |
| { |
| struct xfs_cud_log_item *cudp; |
| |
| cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP); |
| xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); |
| cudp->cud_cuip = cuip; |
| cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; |
| |
| return cudp; |
| } |
| |
| /* |
| * Process a refcount update intent item that was recovered from the log. |
| * We need to update the refcountbt. |
| */ |
| int |
| xfs_cui_recover( |
| struct xfs_mount *mp, |
| struct xfs_cui_log_item *cuip, |
| struct xfs_defer_ops *dfops) |
| { |
| int i; |
| int error = 0; |
| unsigned int refc_type; |
| struct xfs_phys_extent *refc; |
| xfs_fsblock_t startblock_fsb; |
| bool op_ok; |
| struct xfs_cud_log_item *cudp; |
| struct xfs_trans *tp; |
| struct xfs_btree_cur *rcur = NULL; |
| enum xfs_refcount_intent_type type; |
| xfs_fsblock_t new_fsb; |
| xfs_extlen_t new_len; |
| struct xfs_bmbt_irec irec; |
| bool requeue_only = false; |
| |
| ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)); |
| |
| /* |
| * First check the validity of the extents described by the |
| * CUI. If any are bad, then assume that all are bad and |
| * just toss the CUI. |
| */ |
| for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| refc = &cuip->cui_format.cui_extents[i]; |
| startblock_fsb = XFS_BB_TO_FSB(mp, |
| XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); |
| switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { |
| case XFS_REFCOUNT_INCREASE: |
| case XFS_REFCOUNT_DECREASE: |
| case XFS_REFCOUNT_ALLOC_COW: |
| case XFS_REFCOUNT_FREE_COW: |
| op_ok = true; |
| break; |
| default: |
| op_ok = false; |
| break; |
| } |
| if (!op_ok || startblock_fsb == 0 || |
| refc->pe_len == 0 || |
| startblock_fsb >= mp->m_sb.sb_dblocks || |
| refc->pe_len >= mp->m_sb.sb_agblocks || |
| (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { |
| /* |
| * This will pull the CUI from the AIL and |
| * free the memory associated with it. |
| */ |
| set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); |
| xfs_cui_release(cuip); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * Under normal operation, refcount updates are deferred, so we |
| * wouldn't be adding them directly to a transaction. All |
| * refcount updates manage reservation usage internally and |
| * dynamically by deferring work that won't fit in the |
| * transaction. Normally, any work that needs to be deferred |
| * gets attached to the same defer_ops that scheduled the |
| * refcount update. However, we're in log recovery here, so we |
| * we use the passed in defer_ops and to finish up any work that |
| * doesn't fit. We need to reserve enough blocks to handle a |
| * full btree split on either end of the refcount range. |
| */ |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, |
| mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); |
| if (error) |
| return error; |
| tp->t_dfops = dfops; |
| cudp = xfs_trans_get_cud(tp, cuip); |
| |
| for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| refc = &cuip->cui_format.cui_extents[i]; |
| refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; |
| switch (refc_type) { |
| case XFS_REFCOUNT_INCREASE: |
| case XFS_REFCOUNT_DECREASE: |
| case XFS_REFCOUNT_ALLOC_COW: |
| case XFS_REFCOUNT_FREE_COW: |
| type = refc_type; |
| break; |
| default: |
| error = -EFSCORRUPTED; |
| goto abort_error; |
| } |
| if (requeue_only) { |
| new_fsb = refc->pe_startblock; |
| new_len = refc->pe_len; |
| } else |
| error = xfs_trans_log_finish_refcount_update(tp, cudp, |
| dfops, type, refc->pe_startblock, refc->pe_len, |
| &new_fsb, &new_len, &rcur); |
| if (error) |
| goto abort_error; |
| |
| /* Requeue what we didn't finish. */ |
| if (new_len > 0) { |
| irec.br_startblock = new_fsb; |
| irec.br_blockcount = new_len; |
| switch (type) { |
| case XFS_REFCOUNT_INCREASE: |
| error = xfs_refcount_increase_extent( |
| tp->t_mountp, dfops, &irec); |
| break; |
| case XFS_REFCOUNT_DECREASE: |
| error = xfs_refcount_decrease_extent( |
| tp->t_mountp, dfops, &irec); |
| break; |
| case XFS_REFCOUNT_ALLOC_COW: |
| error = xfs_refcount_alloc_cow_extent( |
| tp->t_mountp, dfops, |
| irec.br_startblock, |
| irec.br_blockcount); |
| break; |
| case XFS_REFCOUNT_FREE_COW: |
| error = xfs_refcount_free_cow_extent( |
| tp->t_mountp, dfops, |
| irec.br_startblock, |
| irec.br_blockcount); |
| break; |
| default: |
| ASSERT(0); |
| } |
| if (error) |
| goto abort_error; |
| requeue_only = true; |
| } |
| } |
| |
| xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); |
| /* |
| * Recovery finishes all deferred ops once intent processing is |
| * complete. Reset the trans reference because commit expects a finished |
| * dfops or none at all. |
| */ |
| tp->t_dfops = NULL; |
| error = xfs_trans_commit(tp); |
| return error; |
| |
| abort_error: |
| xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| tp->t_dfops = NULL; |
| xfs_trans_cancel(tp); |
| return error; |
| } |