| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * background writeback - scan btree for dirty data and write it to the backing |
| * device |
| * |
| * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "writeback.h" |
| |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/sched/clock.h> |
| #include <trace/events/bcache.h> |
| |
| static void update_gc_after_writeback(struct cache_set *c) |
| { |
| if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) || |
| c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD) |
| return; |
| |
| c->gc_after_writeback |= BCH_DO_AUTO_GC; |
| } |
| |
| /* Rate limiting */ |
| static uint64_t __calc_target_rate(struct cached_dev *dc) |
| { |
| struct cache_set *c = dc->disk.c; |
| |
| /* |
| * This is the size of the cache, minus the amount used for |
| * flash-only devices |
| */ |
| uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size - |
| atomic_long_read(&c->flash_dev_dirty_sectors); |
| |
| /* |
| * Unfortunately there is no control of global dirty data. If the |
| * user states that they want 10% dirty data in the cache, and has, |
| * e.g., 5 backing volumes of equal size, we try and ensure each |
| * backing volume uses about 2% of the cache for dirty data. |
| */ |
| uint32_t bdev_share = |
| div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, |
| c->cached_dev_sectors); |
| |
| uint64_t cache_dirty_target = |
| div_u64(cache_sectors * dc->writeback_percent, 100); |
| |
| /* Ensure each backing dev gets at least one dirty share */ |
| if (bdev_share < 1) |
| bdev_share = 1; |
| |
| return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; |
| } |
| |
| static void __update_writeback_rate(struct cached_dev *dc) |
| { |
| /* |
| * PI controller: |
| * Figures out the amount that should be written per second. |
| * |
| * First, the error (number of sectors that are dirty beyond our |
| * target) is calculated. The error is accumulated (numerically |
| * integrated). |
| * |
| * Then, the proportional value and integral value are scaled |
| * based on configured values. These are stored as inverses to |
| * avoid fixed point math and to make configuration easy-- e.g. |
| * the default value of 40 for writeback_rate_p_term_inverse |
| * attempts to write at a rate that would retire all the dirty |
| * blocks in 40 seconds. |
| * |
| * The writeback_rate_i_inverse value of 10000 means that 1/10000th |
| * of the error is accumulated in the integral term per second. |
| * This acts as a slow, long-term average that is not subject to |
| * variations in usage like the p term. |
| */ |
| int64_t target = __calc_target_rate(dc); |
| int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); |
| int64_t error = dirty - target; |
| int64_t proportional_scaled = |
| div_s64(error, dc->writeback_rate_p_term_inverse); |
| int64_t integral_scaled; |
| uint32_t new_rate; |
| |
| if ((error < 0 && dc->writeback_rate_integral > 0) || |
| (error > 0 && time_before64(local_clock(), |
| dc->writeback_rate.next + NSEC_PER_MSEC))) { |
| /* |
| * Only decrease the integral term if it's more than |
| * zero. Only increase the integral term if the device |
| * is keeping up. (Don't wind up the integral |
| * ineffectively in either case). |
| * |
| * It's necessary to scale this by |
| * writeback_rate_update_seconds to keep the integral |
| * term dimensioned properly. |
| */ |
| dc->writeback_rate_integral += error * |
| dc->writeback_rate_update_seconds; |
| } |
| |
| integral_scaled = div_s64(dc->writeback_rate_integral, |
| dc->writeback_rate_i_term_inverse); |
| |
| new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), |
| dc->writeback_rate_minimum, NSEC_PER_SEC); |
| |
| dc->writeback_rate_proportional = proportional_scaled; |
| dc->writeback_rate_integral_scaled = integral_scaled; |
| dc->writeback_rate_change = new_rate - |
| atomic_long_read(&dc->writeback_rate.rate); |
| atomic_long_set(&dc->writeback_rate.rate, new_rate); |
| dc->writeback_rate_target = target; |
| } |
| |
| static bool set_at_max_writeback_rate(struct cache_set *c, |
| struct cached_dev *dc) |
| { |
| /* Don't sst max writeback rate if it is disabled */ |
| if (!c->idle_max_writeback_rate_enabled) |
| return false; |
| |
| /* Don't set max writeback rate if gc is running */ |
| if (!c->gc_mark_valid) |
| return false; |
| /* |
| * Idle_counter is increased everytime when update_writeback_rate() is |
| * called. If all backing devices attached to the same cache set have |
| * identical dc->writeback_rate_update_seconds values, it is about 6 |
| * rounds of update_writeback_rate() on each backing device before |
| * c->at_max_writeback_rate is set to 1, and then max wrteback rate set |
| * to each dc->writeback_rate.rate. |
| * In order to avoid extra locking cost for counting exact dirty cached |
| * devices number, c->attached_dev_nr is used to calculate the idle |
| * throushold. It might be bigger if not all cached device are in write- |
| * back mode, but it still works well with limited extra rounds of |
| * update_writeback_rate(). |
| */ |
| if (atomic_inc_return(&c->idle_counter) < |
| atomic_read(&c->attached_dev_nr) * 6) |
| return false; |
| |
| if (atomic_read(&c->at_max_writeback_rate) != 1) |
| atomic_set(&c->at_max_writeback_rate, 1); |
| |
| atomic_long_set(&dc->writeback_rate.rate, INT_MAX); |
| |
| /* keep writeback_rate_target as existing value */ |
| dc->writeback_rate_proportional = 0; |
| dc->writeback_rate_integral_scaled = 0; |
| dc->writeback_rate_change = 0; |
| |
| /* |
| * Check c->idle_counter and c->at_max_writeback_rate agagain in case |
| * new I/O arrives during before set_at_max_writeback_rate() returns. |
| * Then the writeback rate is set to 1, and its new value should be |
| * decided via __update_writeback_rate(). |
| */ |
| if ((atomic_read(&c->idle_counter) < |
| atomic_read(&c->attached_dev_nr) * 6) || |
| !atomic_read(&c->at_max_writeback_rate)) |
| return false; |
| |
| return true; |
| } |
| |
| static void update_writeback_rate(struct work_struct *work) |
| { |
| struct cached_dev *dc = container_of(to_delayed_work(work), |
| struct cached_dev, |
| writeback_rate_update); |
| struct cache_set *c = dc->disk.c; |
| |
| /* |
| * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| * cancel_delayed_work_sync(). |
| */ |
| set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| smp_mb__after_atomic(); |
| |
| /* |
| * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| * check it here too. |
| */ |
| if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || |
| test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| smp_mb__after_atomic(); |
| return; |
| } |
| |
| if (atomic_read(&dc->has_dirty) && dc->writeback_percent) { |
| /* |
| * If the whole cache set is idle, set_at_max_writeback_rate() |
| * will set writeback rate to a max number. Then it is |
| * unncessary to update writeback rate for an idle cache set |
| * in maximum writeback rate number(s). |
| */ |
| if (!set_at_max_writeback_rate(c, dc)) { |
| down_read(&dc->writeback_lock); |
| __update_writeback_rate(dc); |
| update_gc_after_writeback(c); |
| up_read(&dc->writeback_lock); |
| } |
| } |
| |
| |
| /* |
| * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| * check it here too. |
| */ |
| if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && |
| !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| schedule_delayed_work(&dc->writeback_rate_update, |
| dc->writeback_rate_update_seconds * HZ); |
| } |
| |
| /* |
| * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| * cancel_delayed_work_sync(). |
| */ |
| clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| smp_mb__after_atomic(); |
| } |
| |
| static unsigned int writeback_delay(struct cached_dev *dc, |
| unsigned int sectors) |
| { |
| if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || |
| !dc->writeback_percent) |
| return 0; |
| |
| return bch_next_delay(&dc->writeback_rate, sectors); |
| } |
| |
| struct dirty_io { |
| struct closure cl; |
| struct cached_dev *dc; |
| uint16_t sequence; |
| struct bio bio; |
| }; |
| |
| static void dirty_init(struct keybuf_key *w) |
| { |
| struct dirty_io *io = w->private; |
| struct bio *bio = &io->bio; |
| |
| bio_init(bio, bio->bi_inline_vecs, |
| DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); |
| if (!io->dc->writeback_percent) |
| bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); |
| |
| bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; |
| bio->bi_private = w; |
| bch_bio_map(bio, NULL); |
| } |
| |
| static void dirty_io_destructor(struct closure *cl) |
| { |
| struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| |
| kfree(io); |
| } |
| |
| static void write_dirty_finish(struct closure *cl) |
| { |
| struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| struct keybuf_key *w = io->bio.bi_private; |
| struct cached_dev *dc = io->dc; |
| |
| bio_free_pages(&io->bio); |
| |
| /* This is kind of a dumb way of signalling errors. */ |
| if (KEY_DIRTY(&w->key)) { |
| int ret; |
| unsigned int i; |
| struct keylist keys; |
| |
| bch_keylist_init(&keys); |
| |
| bkey_copy(keys.top, &w->key); |
| SET_KEY_DIRTY(keys.top, false); |
| bch_keylist_push(&keys); |
| |
| for (i = 0; i < KEY_PTRS(&w->key); i++) |
| atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); |
| |
| ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); |
| |
| if (ret) |
| trace_bcache_writeback_collision(&w->key); |
| |
| atomic_long_inc(ret |
| ? &dc->disk.c->writeback_keys_failed |
| : &dc->disk.c->writeback_keys_done); |
| } |
| |
| bch_keybuf_del(&dc->writeback_keys, w); |
| up(&dc->in_flight); |
| |
| closure_return_with_destructor(cl, dirty_io_destructor); |
| } |
| |
| static void dirty_endio(struct bio *bio) |
| { |
| struct keybuf_key *w = bio->bi_private; |
| struct dirty_io *io = w->private; |
| |
| if (bio->bi_status) { |
| SET_KEY_DIRTY(&w->key, false); |
| bch_count_backing_io_errors(io->dc, bio); |
| } |
| |
| closure_put(&io->cl); |
| } |
| |
| static void write_dirty(struct closure *cl) |
| { |
| struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| struct keybuf_key *w = io->bio.bi_private; |
| struct cached_dev *dc = io->dc; |
| |
| uint16_t next_sequence; |
| |
| if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { |
| /* Not our turn to write; wait for a write to complete */ |
| closure_wait(&dc->writeback_ordering_wait, cl); |
| |
| if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { |
| /* |
| * Edge case-- it happened in indeterminate order |
| * relative to when we were added to wait list.. |
| */ |
| closure_wake_up(&dc->writeback_ordering_wait); |
| } |
| |
| continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| return; |
| } |
| |
| next_sequence = io->sequence + 1; |
| |
| /* |
| * IO errors are signalled using the dirty bit on the key. |
| * If we failed to read, we should not attempt to write to the |
| * backing device. Instead, immediately go to write_dirty_finish |
| * to clean up. |
| */ |
| if (KEY_DIRTY(&w->key)) { |
| dirty_init(w); |
| bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); |
| io->bio.bi_iter.bi_sector = KEY_START(&w->key); |
| bio_set_dev(&io->bio, io->dc->bdev); |
| io->bio.bi_end_io = dirty_endio; |
| |
| /* I/O request sent to backing device */ |
| closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| } |
| |
| atomic_set(&dc->writeback_sequence_next, next_sequence); |
| closure_wake_up(&dc->writeback_ordering_wait); |
| |
| continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); |
| } |
| |
| static void read_dirty_endio(struct bio *bio) |
| { |
| struct keybuf_key *w = bio->bi_private; |
| struct dirty_io *io = w->private; |
| |
| /* is_read = 1 */ |
| bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), |
| bio->bi_status, 1, |
| "reading dirty data from cache"); |
| |
| dirty_endio(bio); |
| } |
| |
| static void read_dirty_submit(struct closure *cl) |
| { |
| struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| |
| closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| |
| continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| } |
| |
| static void read_dirty(struct cached_dev *dc) |
| { |
| unsigned int delay = 0; |
| struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; |
| size_t size; |
| int nk, i; |
| struct dirty_io *io; |
| struct closure cl; |
| uint16_t sequence = 0; |
| |
| BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); |
| atomic_set(&dc->writeback_sequence_next, sequence); |
| closure_init_stack(&cl); |
| |
| /* |
| * XXX: if we error, background writeback just spins. Should use some |
| * mempools. |
| */ |
| |
| next = bch_keybuf_next(&dc->writeback_keys); |
| |
| while (!kthread_should_stop() && |
| !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| next) { |
| size = 0; |
| nk = 0; |
| |
| do { |
| BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); |
| |
| /* |
| * Don't combine too many operations, even if they |
| * are all small. |
| */ |
| if (nk >= MAX_WRITEBACKS_IN_PASS) |
| break; |
| |
| /* |
| * If the current operation is very large, don't |
| * further combine operations. |
| */ |
| if (size >= MAX_WRITESIZE_IN_PASS) |
| break; |
| |
| /* |
| * Operations are only eligible to be combined |
| * if they are contiguous. |
| * |
| * TODO: add a heuristic willing to fire a |
| * certain amount of non-contiguous IO per pass, |
| * so that we can benefit from backing device |
| * command queueing. |
| */ |
| if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, |
| &START_KEY(&next->key))) |
| break; |
| |
| size += KEY_SIZE(&next->key); |
| keys[nk++] = next; |
| } while ((next = bch_keybuf_next(&dc->writeback_keys))); |
| |
| /* Now we have gathered a set of 1..5 keys to write back. */ |
| for (i = 0; i < nk; i++) { |
| w = keys[i]; |
| |
| io = kzalloc(struct_size(io, bio.bi_inline_vecs, |
| DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)), |
| GFP_KERNEL); |
| if (!io) |
| goto err; |
| |
| w->private = io; |
| io->dc = dc; |
| io->sequence = sequence++; |
| |
| dirty_init(w); |
| bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); |
| io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); |
| bio_set_dev(&io->bio, |
| PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); |
| io->bio.bi_end_io = read_dirty_endio; |
| |
| if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) |
| goto err_free; |
| |
| trace_bcache_writeback(&w->key); |
| |
| down(&dc->in_flight); |
| |
| /* |
| * We've acquired a semaphore for the maximum |
| * simultaneous number of writebacks; from here |
| * everything happens asynchronously. |
| */ |
| closure_call(&io->cl, read_dirty_submit, NULL, &cl); |
| } |
| |
| delay = writeback_delay(dc, size); |
| |
| while (!kthread_should_stop() && |
| !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| delay) { |
| schedule_timeout_interruptible(delay); |
| delay = writeback_delay(dc, 0); |
| } |
| } |
| |
| if (0) { |
| err_free: |
| kfree(w->private); |
| err: |
| bch_keybuf_del(&dc->writeback_keys, w); |
| } |
| |
| /* |
| * Wait for outstanding writeback IOs to finish (and keybuf slots to be |
| * freed) before refilling again |
| */ |
| closure_sync(&cl); |
| } |
| |
| /* Scan for dirty data */ |
| |
| void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, |
| uint64_t offset, int nr_sectors) |
| { |
| struct bcache_device *d = c->devices[inode]; |
| unsigned int stripe_offset, sectors_dirty; |
| int stripe; |
| |
| if (!d) |
| return; |
| |
| stripe = offset_to_stripe(d, offset); |
| if (stripe < 0) |
| return; |
| |
| if (UUID_FLASH_ONLY(&c->uuids[inode])) |
| atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); |
| |
| stripe_offset = offset & (d->stripe_size - 1); |
| |
| while (nr_sectors) { |
| int s = min_t(unsigned int, abs(nr_sectors), |
| d->stripe_size - stripe_offset); |
| |
| if (nr_sectors < 0) |
| s = -s; |
| |
| if (stripe >= d->nr_stripes) |
| return; |
| |
| sectors_dirty = atomic_add_return(s, |
| d->stripe_sectors_dirty + stripe); |
| if (sectors_dirty == d->stripe_size) |
| set_bit(stripe, d->full_dirty_stripes); |
| else |
| clear_bit(stripe, d->full_dirty_stripes); |
| |
| nr_sectors -= s; |
| stripe_offset = 0; |
| stripe++; |
| } |
| } |
| |
| static bool dirty_pred(struct keybuf *buf, struct bkey *k) |
| { |
| struct cached_dev *dc = container_of(buf, |
| struct cached_dev, |
| writeback_keys); |
| |
| BUG_ON(KEY_INODE(k) != dc->disk.id); |
| |
| return KEY_DIRTY(k); |
| } |
| |
| static void refill_full_stripes(struct cached_dev *dc) |
| { |
| struct keybuf *buf = &dc->writeback_keys; |
| unsigned int start_stripe, next_stripe; |
| int stripe; |
| bool wrapped = false; |
| |
| stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); |
| if (stripe < 0) |
| stripe = 0; |
| |
| start_stripe = stripe; |
| |
| while (1) { |
| stripe = find_next_bit(dc->disk.full_dirty_stripes, |
| dc->disk.nr_stripes, stripe); |
| |
| if (stripe == dc->disk.nr_stripes) |
| goto next; |
| |
| next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, |
| dc->disk.nr_stripes, stripe); |
| |
| buf->last_scanned = KEY(dc->disk.id, |
| stripe * dc->disk.stripe_size, 0); |
| |
| bch_refill_keybuf(dc->disk.c, buf, |
| &KEY(dc->disk.id, |
| next_stripe * dc->disk.stripe_size, 0), |
| dirty_pred); |
| |
| if (array_freelist_empty(&buf->freelist)) |
| return; |
| |
| stripe = next_stripe; |
| next: |
| if (wrapped && stripe > start_stripe) |
| return; |
| |
| if (stripe == dc->disk.nr_stripes) { |
| stripe = 0; |
| wrapped = true; |
| } |
| } |
| } |
| |
| /* |
| * Returns true if we scanned the entire disk |
| */ |
| static bool refill_dirty(struct cached_dev *dc) |
| { |
| struct keybuf *buf = &dc->writeback_keys; |
| struct bkey start = KEY(dc->disk.id, 0, 0); |
| struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); |
| struct bkey start_pos; |
| |
| /* |
| * make sure keybuf pos is inside the range for this disk - at bringup |
| * we might not be attached yet so this disk's inode nr isn't |
| * initialized then |
| */ |
| if (bkey_cmp(&buf->last_scanned, &start) < 0 || |
| bkey_cmp(&buf->last_scanned, &end) > 0) |
| buf->last_scanned = start; |
| |
| if (dc->partial_stripes_expensive) { |
| refill_full_stripes(dc); |
| if (array_freelist_empty(&buf->freelist)) |
| return false; |
| } |
| |
| start_pos = buf->last_scanned; |
| bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); |
| |
| if (bkey_cmp(&buf->last_scanned, &end) < 0) |
| return false; |
| |
| /* |
| * If we get to the end start scanning again from the beginning, and |
| * only scan up to where we initially started scanning from: |
| */ |
| buf->last_scanned = start; |
| bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); |
| |
| return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; |
| } |
| |
| static int bch_writeback_thread(void *arg) |
| { |
| struct cached_dev *dc = arg; |
| struct cache_set *c = dc->disk.c; |
| bool searched_full_index; |
| |
| bch_ratelimit_reset(&dc->writeback_rate); |
| |
| while (!kthread_should_stop() && |
| !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| down_write(&dc->writeback_lock); |
| set_current_state(TASK_INTERRUPTIBLE); |
| /* |
| * If the bache device is detaching, skip here and continue |
| * to perform writeback. Otherwise, if no dirty data on cache, |
| * or there is dirty data on cache but writeback is disabled, |
| * the writeback thread should sleep here and wait for others |
| * to wake up it. |
| */ |
| if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && |
| (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { |
| up_write(&dc->writeback_lock); |
| |
| if (kthread_should_stop() || |
| test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| set_current_state(TASK_RUNNING); |
| break; |
| } |
| |
| schedule(); |
| continue; |
| } |
| set_current_state(TASK_RUNNING); |
| |
| searched_full_index = refill_dirty(dc); |
| |
| if (searched_full_index && |
| RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { |
| atomic_set(&dc->has_dirty, 0); |
| SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); |
| bch_write_bdev_super(dc, NULL); |
| /* |
| * If bcache device is detaching via sysfs interface, |
| * writeback thread should stop after there is no dirty |
| * data on cache. BCACHE_DEV_DETACHING flag is set in |
| * bch_cached_dev_detach(). |
| */ |
| if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { |
| up_write(&dc->writeback_lock); |
| break; |
| } |
| |
| /* |
| * When dirty data rate is high (e.g. 50%+), there might |
| * be heavy buckets fragmentation after writeback |
| * finished, which hurts following write performance. |
| * If users really care about write performance they |
| * may set BCH_ENABLE_AUTO_GC via sysfs, then when |
| * BCH_DO_AUTO_GC is set, garbage collection thread |
| * will be wake up here. After moving gc, the shrunk |
| * btree and discarded free buckets SSD space may be |
| * helpful for following write requests. |
| */ |
| if (c->gc_after_writeback == |
| (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) { |
| c->gc_after_writeback &= ~BCH_DO_AUTO_GC; |
| force_wake_up_gc(c); |
| } |
| } |
| |
| up_write(&dc->writeback_lock); |
| |
| read_dirty(dc); |
| |
| if (searched_full_index) { |
| unsigned int delay = dc->writeback_delay * HZ; |
| |
| while (delay && |
| !kthread_should_stop() && |
| !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && |
| !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) |
| delay = schedule_timeout_interruptible(delay); |
| |
| bch_ratelimit_reset(&dc->writeback_rate); |
| } |
| } |
| |
| if (dc->writeback_write_wq) { |
| flush_workqueue(dc->writeback_write_wq); |
| destroy_workqueue(dc->writeback_write_wq); |
| } |
| cached_dev_put(dc); |
| wait_for_kthread_stop(); |
| |
| return 0; |
| } |
| |
| /* Init */ |
| #define INIT_KEYS_EACH_TIME 500000 |
| #define INIT_KEYS_SLEEP_MS 100 |
| |
| struct sectors_dirty_init { |
| struct btree_op op; |
| unsigned int inode; |
| size_t count; |
| struct bkey start; |
| }; |
| |
| static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, |
| struct bkey *k) |
| { |
| struct sectors_dirty_init *op = container_of(_op, |
| struct sectors_dirty_init, op); |
| if (KEY_INODE(k) > op->inode) |
| return MAP_DONE; |
| |
| if (KEY_DIRTY(k)) |
| bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), |
| KEY_START(k), KEY_SIZE(k)); |
| |
| op->count++; |
| if (atomic_read(&b->c->search_inflight) && |
| !(op->count % INIT_KEYS_EACH_TIME)) { |
| bkey_copy_key(&op->start, k); |
| return -EAGAIN; |
| } |
| |
| return MAP_CONTINUE; |
| } |
| |
| static int bch_root_node_dirty_init(struct cache_set *c, |
| struct bcache_device *d, |
| struct bkey *k) |
| { |
| struct sectors_dirty_init op; |
| int ret; |
| |
| bch_btree_op_init(&op.op, -1); |
| op.inode = d->id; |
| op.count = 0; |
| op.start = KEY(op.inode, 0, 0); |
| |
| do { |
| ret = bcache_btree(map_keys_recurse, |
| k, |
| c->root, |
| &op.op, |
| &op.start, |
| sectors_dirty_init_fn, |
| 0); |
| if (ret == -EAGAIN) |
| schedule_timeout_interruptible( |
| msecs_to_jiffies(INIT_KEYS_SLEEP_MS)); |
| else if (ret < 0) { |
| pr_warn("sectors dirty init failed, ret=%d!\n", ret); |
| break; |
| } |
| } while (ret == -EAGAIN); |
| |
| return ret; |
| } |
| |
| static int bch_dirty_init_thread(void *arg) |
| { |
| struct dirty_init_thrd_info *info = arg; |
| struct bch_dirty_init_state *state = info->state; |
| struct cache_set *c = state->c; |
| struct btree_iter iter; |
| struct bkey *k, *p; |
| int cur_idx, prev_idx, skip_nr; |
| |
| k = p = NULL; |
| cur_idx = prev_idx = 0; |
| |
| bch_btree_iter_init(&c->root->keys, &iter, NULL); |
| k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); |
| BUG_ON(!k); |
| |
| p = k; |
| |
| while (k) { |
| spin_lock(&state->idx_lock); |
| cur_idx = state->key_idx; |
| state->key_idx++; |
| spin_unlock(&state->idx_lock); |
| |
| skip_nr = cur_idx - prev_idx; |
| |
| while (skip_nr) { |
| k = bch_btree_iter_next_filter(&iter, |
| &c->root->keys, |
| bch_ptr_bad); |
| if (k) |
| p = k; |
| else { |
| atomic_set(&state->enough, 1); |
| /* Update state->enough earlier */ |
| smp_mb__after_atomic(); |
| goto out; |
| } |
| skip_nr--; |
| cond_resched(); |
| } |
| |
| if (p) { |
| if (bch_root_node_dirty_init(c, state->d, p) < 0) |
| goto out; |
| } |
| |
| p = NULL; |
| prev_idx = cur_idx; |
| cond_resched(); |
| } |
| |
| out: |
| /* In order to wake up state->wait in time */ |
| smp_mb__before_atomic(); |
| if (atomic_dec_and_test(&state->started)) |
| wake_up(&state->wait); |
| |
| return 0; |
| } |
| |
| static int bch_btre_dirty_init_thread_nr(void) |
| { |
| int n = num_online_cpus()/2; |
| |
| if (n == 0) |
| n = 1; |
| else if (n > BCH_DIRTY_INIT_THRD_MAX) |
| n = BCH_DIRTY_INIT_THRD_MAX; |
| |
| return n; |
| } |
| |
| void bch_sectors_dirty_init(struct bcache_device *d) |
| { |
| int i; |
| struct bkey *k = NULL; |
| struct btree_iter iter; |
| struct sectors_dirty_init op; |
| struct cache_set *c = d->c; |
| struct bch_dirty_init_state *state; |
| char name[32]; |
| |
| /* Just count root keys if no leaf node */ |
| if (c->root->level == 0) { |
| bch_btree_op_init(&op.op, -1); |
| op.inode = d->id; |
| op.count = 0; |
| op.start = KEY(op.inode, 0, 0); |
| |
| for_each_key_filter(&c->root->keys, |
| k, &iter, bch_ptr_invalid) |
| sectors_dirty_init_fn(&op.op, c->root, k); |
| return; |
| } |
| |
| state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL); |
| if (!state) { |
| pr_warn("sectors dirty init failed: cannot allocate memory\n"); |
| return; |
| } |
| |
| state->c = c; |
| state->d = d; |
| state->total_threads = bch_btre_dirty_init_thread_nr(); |
| state->key_idx = 0; |
| spin_lock_init(&state->idx_lock); |
| atomic_set(&state->started, 0); |
| atomic_set(&state->enough, 0); |
| init_waitqueue_head(&state->wait); |
| |
| for (i = 0; i < state->total_threads; i++) { |
| /* Fetch latest state->enough earlier */ |
| smp_mb__before_atomic(); |
| if (atomic_read(&state->enough)) |
| break; |
| |
| state->infos[i].state = state; |
| atomic_inc(&state->started); |
| snprintf(name, sizeof(name), "bch_dirty_init[%d]", i); |
| |
| state->infos[i].thread = |
| kthread_run(bch_dirty_init_thread, |
| &state->infos[i], |
| name); |
| if (IS_ERR(state->infos[i].thread)) { |
| pr_err("fails to run thread bch_dirty_init[%d]\n", i); |
| for (--i; i >= 0; i--) |
| kthread_stop(state->infos[i].thread); |
| goto out; |
| } |
| } |
| |
| wait_event_interruptible(state->wait, |
| atomic_read(&state->started) == 0 || |
| test_bit(CACHE_SET_IO_DISABLE, &c->flags)); |
| |
| out: |
| kfree(state); |
| } |
| |
| void bch_cached_dev_writeback_init(struct cached_dev *dc) |
| { |
| sema_init(&dc->in_flight, 64); |
| init_rwsem(&dc->writeback_lock); |
| bch_keybuf_init(&dc->writeback_keys); |
| |
| dc->writeback_metadata = true; |
| dc->writeback_running = false; |
| dc->writeback_percent = 10; |
| dc->writeback_delay = 30; |
| atomic_long_set(&dc->writeback_rate.rate, 1024); |
| dc->writeback_rate_minimum = 8; |
| |
| dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; |
| dc->writeback_rate_p_term_inverse = 40; |
| dc->writeback_rate_i_term_inverse = 10000; |
| |
| WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); |
| } |
| |
| int bch_cached_dev_writeback_start(struct cached_dev *dc) |
| { |
| dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", |
| WQ_MEM_RECLAIM, 0); |
| if (!dc->writeback_write_wq) |
| return -ENOMEM; |
| |
| cached_dev_get(dc); |
| dc->writeback_thread = kthread_create(bch_writeback_thread, dc, |
| "bcache_writeback"); |
| if (IS_ERR(dc->writeback_thread)) { |
| cached_dev_put(dc); |
| destroy_workqueue(dc->writeback_write_wq); |
| return PTR_ERR(dc->writeback_thread); |
| } |
| dc->writeback_running = true; |
| |
| WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| schedule_delayed_work(&dc->writeback_rate_update, |
| dc->writeback_rate_update_seconds * HZ); |
| |
| bch_writeback_queue(dc); |
| |
| return 0; |
| } |